Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 119,708 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
:: On semilattice structure of {M}izar types
::  by Grzegorz Bancerek

environ

 vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,
      PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,
      WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,
      BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,
      ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,
      FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN, XCMPLX_0;
 notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,
      FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,
      ORDERS_1, FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5,
      NUMBERS, XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3,
      REWRITE1, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0;
 constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,
      WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0, NUMBERS;
 registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,
      XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, REWRITE1, STRUCT_0, LATTICE3,
      YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1, CARD_1,
      RELSET_1;
 requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM;
 definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,
      YELLOW_0, WAYBEL_0, RELSET_1;
 equalities FINSEQ_1, LATTICE3, ORDINAL1;
 expansions TARSKI, XBOOLE_0, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1, WAYBEL_0;
 theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,
      CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,
      FUNCOP_1, STRUCT_0, ORDERS_2, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_4,
      YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3, HILBERT2,
      REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, CARD_2;
 schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1,
      XFAMILY;

begin :: Semilattice of type widening

registration
  cluster reflexive -> complete for 1-element RelStr;
  coherence;
end;

definition
  let T be RelStr;
  mode type of T is Element of T;
end;

definition
  let T be RelStr;
  attr T is Noetherian means
  :Def1:
  the InternalRel of T is co-well_founded;
end;

registration
  cluster -> Noetherian for 1-element RelStr;
  coherence
  proof
    let S be 1-element RelStr;
    let Y be set;
    set R = the InternalRel of S;
    assume
A1: Y c= field R;
    assume Y <> {};
    then reconsider X = Y as non empty set;
    set a = the Element of X;
    take a;
    thus a in Y;
A2: a in field R by A1;
    let b be object;
A3: field R c= (the carrier of S) \/ the carrier of S by RELSET_1:8;
    assume b in Y;
    then b in field R by A1;
    hence thesis by A2,A3,ZFMISC_1:def 10;
  end;
end;

definition
  let T be non empty RelStr;
  redefine attr T is Noetherian means
  :Def2:
  for A being non empty Subset of T
  ex a being Element of T st a in A & for b being Element of T st b in A holds
  not a < b;
  compatibility
  proof
    set R = the InternalRel of T;
    thus T is Noetherian implies for A being non empty Subset of T ex a being
    Element of T st a in A & for b being Element of T st b in A holds not a < b
    proof
      assume
A1:   for Y being set st Y c= field R & Y <> {}
      ex a being object st a in
      Y & for b being object st b in Y & a <> b holds not [a,b] in R;
      let A be non empty Subset of T;
      set a = the Element of A;
      reconsider a as Element of T;
      set Y = A /\ field R;
      per cases;
      suppose
A2:     A misses field R;
        take a;
        thus a in A;
        let b be Element of T;
        assume that
        b in A and
A3:     a < b;
        a <= b by A3,ORDERS_2:def 6;
        then [a,b] in R by ORDERS_2:def 5;
        then a in field R by RELAT_1:15;
        hence contradiction by A2,XBOOLE_0:3;
      end;
      suppose
        A meets field R;
        then Y <> {};
        then consider x being object such that
A4:     x in Y and
A5:     for y being object st y in Y & x <> y holds not [x,y] in R by A1,
XBOOLE_1:17;
        reconsider x as Element of T by A4;
        take x;
        thus x in A by A4,XBOOLE_0:def 4;
        let b be Element of T;
        assume that
A6:     b in A and
A7:     x < b;
        x <= b by A7,ORDERS_2:def 6;
        then
A8:     [x,b] in R by ORDERS_2:def 5;
        then b in field R by RELAT_1:15;
        then b in Y by A6,XBOOLE_0:def 4;
        hence contradiction by A5,A7,A8;
      end;
    end;
    assume
A9: for A being non empty Subset of T ex a being Element of T st a in
    A & for b being Element of T st b in A holds not a < b;
    let Y be set;
    assume that
A10: Y c= field R and
A11: Y <> {};
    field R c= (the carrier of T) \/ the carrier of T by RELSET_1:8;
    then reconsider A = Y as non empty Subset of T by A10,A11,XBOOLE_1:1;
    consider a being Element of T such that
A12: a in A and
A13: for b being Element of T st b in A holds not a < b by A9;
    take a;
    thus a in Y by A12;
    let b be object;
    assume that
A14: b in Y and
A15: a <> b;
    b in A by A14;
    then reconsider b as Element of T;
    not a < b by A13,A14;
    then not a <= b by A15,ORDERS_2:def 6;
    hence thesis by ORDERS_2:def 5;
  end;
end;

definition
  let T be Poset;
  attr T is Mizar-widening-like means
  T is sup-Semilattice & T is Noetherian;
end;

registration
  cluster Mizar-widening-like -> Noetherian with_suprema upper-bounded for
Poset;
  coherence
  proof
    let T be Poset;
    assume that
A1: T is sup-Semilattice and
A2: T is Noetherian;
    reconsider S = T as sup-Semilattice by A1;
    the carrier of S c= the carrier of S;
    then consider a being Element of T such that
    a in the carrier of T and
A3: for b being Element of T st b in the carrier of T holds not a < b
    by A2,Def2;
    thus T is Noetherian with_suprema by A1,A2;
    take a;
    let b be Element of T;
A4: a"\/"b in the carrier of S;
    then
A5: a"\/"b >= a by YELLOW_0:22;
    not a < a"\/"b by A3,A4;
    then a"\/"b = a by A5,ORDERS_2:def 6;
    hence thesis by A1,YELLOW_0:22;
  end;
end;

registration
  cluster Noetherian -> Mizar-widening-like for sup-Semilattice;
  coherence;
end;

registration
  cluster Mizar-widening-like for complete sup-Semilattice;
  existence
  proof
    set T =the 1-element LATTICE;
    take T;
    thus T is sup-Semilattice;
    thus thesis;
  end;
end;

registration
  let T be Noetherian RelStr;
  cluster the InternalRel of T -> co-well_founded;
  coherence by Def1;
end;

theorem Th1:
  for T being Noetherian sup-Semilattice for I being Ideal of T
  holds ex_sup_of I, T & sup I in I
proof
  let T be Noetherian sup-Semilattice;
  let I be Ideal of T;
  consider a being Element of T such that
A1: a in I and
A2: for b being Element of T st b in I holds not a < b by Def2;
A3: I is_<=_than a
  proof
    let d be Element of T;
    assume d in I;
    then a"\/"d in I by A1,WAYBEL_0:40;
    then
A4: not a < a"\/"d by A2;
    a <= a"\/"d by YELLOW_0:22;
    then a = a"\/"d by A4,ORDERS_2:def 6;
    hence thesis by YELLOW_0:22;
  end;
  for c being Element of T st I is_<=_than c holds a <= c by A1;
  hence thesis by A1,A3,YELLOW_0:30;
end;

begin :: Adjectives

definition
  struct AdjectiveStr (# adjectives -> set, non-op -> UnOp of the adjectives
  #);
end;

definition
  let A be AdjectiveStr;
  attr A is void means
  :Def4:
  the adjectives of A is empty;
  mode adjective of A is Element of the adjectives of A;
end;

theorem
  for A1,A2 being AdjectiveStr st the adjectives of A1 = the adjectives
  of A2 holds A1 is void implies A2 is void;

definition
  let A be AdjectiveStr;
  let a be Element of the adjectives of A;
  func non-a -> adjective of A equals
  (the non-op of A).a;
  coherence
  proof
    per cases;
    suppose
A1:   the adjectives of A is empty;
      then
A2:   dom the non-op of A = the adjectives of A;
      a = {} by A1,SUBSET_1:def 1;
      hence thesis by A1,A2,FUNCT_1:def 2;
    end;
    suppose
      the adjectives of A is non empty;
      hence thesis by FUNCT_2:5;
    end;
  end;
end;

theorem
  for A1,A2 being AdjectiveStr st the AdjectiveStr of A1 = the
AdjectiveStr of A2 for a1 being adjective of A1, a2 being adjective of A2 st a1
  = a2 holds non-a1 = non-a2;

definition
  let A be AdjectiveStr;
  attr A is involutive means
  :Def6:
  for a being adjective of A holds non-non-a = a;
  attr A is without_fixpoints means
  not ex a being adjective of A st non-a = a;
end;

theorem Th4:
  for a1,a2 being set st a1 <> a2 for A being AdjectiveStr st the
adjectives of A = {a1,a2} & (the non-op of A).a1 = a2 & (the non-op of A).a2 =
  a1 holds A is non void involutive without_fixpoints
proof
  let a1,a2 be set such that
A1: a1 <> a2;
  let A be AdjectiveStr such that
A2: the adjectives of A = {a1,a2} and
A3: (the non-op of A).a1 = a2 and
A4: (the non-op of A).a2 = a1;
  thus the adjectives of A is non empty by A2;
  hereby
    let a be adjective of A;
    a = a1 or a = a2 by A2,TARSKI:def 2;
    hence non-non-a = a by A3,A4;
  end;
  let a be adjective of A;
  assume
A5: non-a = a;
  a = a1 or a = a2 by A2,TARSKI:def 2;
  hence thesis by A1,A3,A4,A5;
end;

theorem Th5:
  for A1,A2 being AdjectiveStr st the AdjectiveStr of A1 = the
  AdjectiveStr of A2 holds A1 is involutive implies A2 is involutive
proof
  let A1,A2 be AdjectiveStr such that
A1: the AdjectiveStr of A1 = the AdjectiveStr of A2;
  assume
A2: for a being adjective of A1 holds non-non-a = a;
  let a be adjective of A2;
  reconsider b = a as adjective of A1 by A1;
  thus non-non-a = non-non-b by A1
    .= a by A2;
end;

theorem Th6:
  for A1,A2 being AdjectiveStr st the AdjectiveStr of A1 = the
  AdjectiveStr of A2 holds A1 is without_fixpoints implies A2 is
  without_fixpoints
proof
  let A1,A2 be AdjectiveStr such that
A1: the AdjectiveStr of A1 = the AdjectiveStr of A2;
  assume
A2: not ex a being adjective of A1 st non-a = a;
  given a being adjective of A2 such that
A3: non-a = a;
  reconsider b = a as adjective of A1 by A1;
  non-b = b by A1,A3;
  hence contradiction by A2;
end;

registration
  cluster non void involutive without_fixpoints for strict AdjectiveStr;
  existence
  proof
    reconsider x = 0, y = 1 as Element of {0,1} by TARSKI:def 2;
    reconsider n = (0,1)-->(y,x) as UnOp of {0,1};
    take AdjectiveStr(#{0,1}, n#);
A1: n.y = x by FUNCT_4:63;
    n.x = y by FUNCT_4:63;
    hence thesis by A1,Th4;
  end;
end;

registration
  let A be non void AdjectiveStr;
  cluster the adjectives of A -> non empty;
  coherence by Def4;
end;

definition
  struct(RelStr,AdjectiveStr) TA-structure(# carrier, adjectives -> set,
    InternalRel -> (Relation of the carrier), non-op -> UnOp of the adjectives,
    adj-map -> Function of the carrier, Fin the adjectives #);
end;

registration
  let X be non empty set;
  let A be set;
  let r be Relation of X;
  let n be UnOp of A;
  let a be Function of X, Fin A;
  cluster TA-structure(#X,A,r,n,a#) -> non empty;
  coherence;
end;

registration
  let X be set;
  let A be non empty set;
  let r be Relation of X;
  let n be UnOp of A;
  let a be Function of X, Fin A;
  cluster TA-structure(#X,A,r,n,a#) -> non void;
  coherence;
end;

registration
  cluster 1-element reflexive non void involutive without_fixpoints
    strict for TA-structure;
  existence
  proof

set R = the reflexive 1-element RelStr,A = the non void involutive
without_fixpoints AdjectiveStr,f = the Function of the carrier of R , Fin the
adjectives of A;
    take T = TA-structure(# the carrier of R, the adjectives of A, the
      InternalRel of R, the non-op of A, f #);
    thus T is 1-element by STRUCT_0:def 19;
    the RelStr of R = the RelStr of T;
    hence T is reflexive by WAYBEL_8:12;
    thus T is non void;
    the AdjectiveStr of A = the AdjectiveStr of T;
    hence T is involutive without_fixpoints by Th5,Th6;
    thus thesis;
  end;
end;

definition
  let T be TA-structure;
  let t be Element of T;
  func adjs t -> Subset of the adjectives of T equals
  (the adj-map of T).t;
  coherence
  proof
    per cases;
    suppose
A1:   the carrier of T is empty;
      then dom the adj-map of T = the carrier of T;
      then (the adj-map of T).t = {} the adjectives of T by A1,FUNCT_1:def 2;
      hence thesis;
    end;
    suppose
      the carrier of T is non empty;
      then (the adj-map of T).t in Fin the adjectives of T by FUNCT_2:5;
      hence thesis by FINSUB_1:16;
    end;
  end;
end;

theorem
  for T1,T2 being TA-structure st the TA-structure of T1 = the
  TA-structure of T2 for t1 being type of T1, t2 being type of T2 st t1 = t2
  holds adjs t1 = adjs t2;

definition
  let T be TA-structure;
  attr T is consistent means
  :Def9:
  for t being type of T for a being
  adjective of T st a in adjs t holds not non-a in adjs t;
end;

theorem Th8:
  for T1,T2 being TA-structure st the TA-structure of T1 = the
  TA-structure of T2 holds T1 is consistent implies T2 is consistent
proof
  let T1,T2 be TA-structure such that
A1: the TA-structure of T1 = the TA-structure of T2 and
A2: for t being type of T1 for a being adjective of T1 st a in adjs t
  holds not non-a in adjs t;
  let t2 be type of T2, a2 be adjective of T2;
  reconsider a1 = a2 as adjective of T1 by A1;
  reconsider t1 = t2 as type of T1 by A1;
  assume a2 in adjs t2;
  then not non-a1 in adjs t1 by A1,A2;
  hence thesis by A1;
end;

definition
  let T be non empty TA-structure;
  attr T is adj-structured means
  the adj-map of T is join-preserving Function
  of T, (BoolePoset the adjectives of T) opp;
end;

theorem Th9:
  for T1,T2 being non empty TA-structure st the TA-structure of T1
  = the TA-structure of T2 holds T1 is adj-structured implies T2 is
  adj-structured
proof
  let T1,T2 be non empty TA-structure such that
A1: the TA-structure of T1 = the TA-structure of T2;
  assume the adj-map of T1 is join-preserving Function of T1, (BoolePoset the
  adjectives of T1) opp;
  then reconsider f = the adj-map of T1 as join-preserving Function of T1, (
  BoolePoset the adjectives of T1) opp;
  reconsider g = f as Function of T2, (BoolePoset the adjectives of T2) opp by
A1;
A2: the RelStr of T1 = the RelStr of T2 by A1;
  g is join-preserving
  proof
    let x,y be type of T2;
    reconsider x9 = x, y9 = y as type of T1 by A1;
    assume
A3: ex_sup_of {x,y}, T2;
    then
A4: ex_sup_of {x9,y9}, T1 by A2,YELLOW_0:14;
A5: f preserves_sup_of {x9,y9} by WAYBEL_0:def 35;
    hence ex_sup_of g.:{x,y}, (BoolePoset the adjectives of T2) opp by A1,A4;
    sup (f.:{x9,y9}) = f.sup {x9,y9} by A4,A5;
    hence thesis by A1,A2,A3,YELLOW_0:26;
  end;
  hence the adj-map of T2 is join-preserving Function of T2, (BoolePoset the
  adjectives of T2) opp by A1;
end;

definition
  let T be reflexive transitive antisymmetric with_suprema TA-structure;
  redefine attr T is adj-structured means
  :Def11:
  for t1,t2 being type of T holds adjs(t1"\/"t2) = (adjs t1) /\ (adjs t2);
  compatibility
  proof
A1: dom the adj-map of T = the carrier of T by FUNCT_2:def 1;
A2: Fin the adjectives of T c= bool the adjectives of T by FINSUB_1:13;
    BoolePoset the adjectives of T = InclPoset bool the adjectives of T by
YELLOW_1:4
      .= RelStr(#bool the adjectives of T, RelIncl bool the adjectives of T
    #) by YELLOW_1:def 1;
    then
    rng the adj-map of T c= the carrier of (BoolePoset the adjectives of T
    ) opp by A2;
    then reconsider f = the adj-map of T as Function of T, (BoolePoset the
    adjectives of T) opp by A1,FUNCT_2:2;
    thus T is adj-structured implies for t1,t2 being type of T holds adjs(t1
    "\/"t2) = (adjs t1) /\ (adjs t2)
    proof
      assume the adj-map of T is join-preserving Function of T, (BoolePoset
      the adjectives of T) opp;
      then reconsider f = the adj-map of T as join-preserving Function of T, (
      BoolePoset the adjectives of T) opp;
      let t1,t2 be type of T;
      thus adjs(t1"\/"t2) = (f.t1) "\/" (f.t2) by WAYBEL_6:2
        .= (~(f.t1)) "/\" (~(f.t2)) by YELLOW_7:22
        .= (adjs t1) /\ (adjs t2) by YELLOW_1:17;
    end;
    assume
A3: for t1,t2 being type of T holds adjs(t1"\/"t2) = (adjs t1) /\ ( adjs t2);
    now
      let t1,t2 be type of T;
      thus f.(t1"\/"t2) = adjs(t1"\/"t2) .= (adjs t1)/\(adjs t2) by A3
        .= (~(f.t1))"/\"(~(f.t2)) by YELLOW_1:17
        .= f.t1 "\/" f.t2 by YELLOW_7:22;
    end;
    hence the adj-map of T is join-preserving Function of T, (BoolePoset the
    adjectives of T) opp by WAYBEL_6:2;
  end;
end;

theorem Th10:
  for T being reflexive transitive antisymmetric with_suprema
TA-structure st T is adj-structured for t1,t2 being type of T st t1 <= t2 holds
  adjs t2 c= adjs t1
proof
  let T be reflexive transitive antisymmetric with_suprema TA-structure such
  that
A1: for t1,t2 being type of T holds adjs(t1"\/"t2) = (adjs t1) /\ (adjs t2);
  let t1,t2 be type of T;
  assume t1 <= t2;
  then t1"\/"t2 = t2 by YELLOW_0:24;
  then adjs t2 = (adjs t1)/\(adjs t2) by A1;
  hence thesis by XBOOLE_1:17;
end;

definition
  let T be TA-structure;
  let a be Element of the adjectives of T;
  func types a -> Subset of T means
  :Def12:
  for x being object holds x in it iff
  ex t being type of T st x = t & a in adjs t;
  existence
  proof
    defpred P[object] means ex t being type of T st $1 = t & a in adjs t;
    consider tt being set such that
A1: for x being object holds x in tt iff x in the carrier of T & P[x]
    from XBOOLE_0:sch 1;
    tt c= the carrier of T
    by A1;
    then reconsider tt as Subset of T;
    take tt;
    let x be object;
    thus x in tt implies ex t being type of T st x = t & a in adjs t by A1;
    given t being type of T such that
A2: x = t and
A3: a in adjs t;
    now
A4:   dom the adj-map of T = the carrier of T by FUNCT_2:def 1;
      assume not x in the carrier of T;
      hence contradiction by A2,A3,A4,FUNCT_1:def 2;
    end;
    hence thesis by A1,A2,A3;
  end;
  uniqueness
  proof
    defpred P[object] means ex t being type of T st $1 = t & a in adjs t;
    let X1,X2 be Subset of T such that
A5: for x being object holds x in X1 iff P[x] and
A6: for x being object holds x in X2 iff P[x];
    thus thesis from XBOOLE_0:sch 2(A5,A6);
  end;
end;

definition
  let T be non empty TA-structure;
  let A be Subset of the adjectives of T;
  func types A -> Subset of T means
  :Def13:
  for t being type of T holds t in
  it iff for a being adjective of T st a in A holds t in types a;
  existence
  proof
    defpred P[object] means for a being adjective of T st a in A holds $1 in
    types a;
    consider tt being set such that
A1: for x being object holds x in tt iff x in the carrier of T & P[x]
    from XBOOLE_0:sch 1;
    tt c= the carrier of T
    by A1;
    then reconsider tt as Subset of T;
    take tt;
    thus thesis by A1;
  end;
  uniqueness
  proof
    let X1,X2 be Subset of T such that
A2: for t being type of T holds t in X1 iff for a being adjective of T
    st a in A holds t in types a and
A3: for t being type of T holds t in X2 iff for a being adjective of T
    st a in A holds t in types a;
    now
      let x be object;
      x in X1 iff x is type of T & for a being adjective of T st a in A
      holds x in types a by A2;
      hence x in X1 iff x in X2 by A3;
    end;
    hence thesis by TARSKI:2;
  end;
end;

theorem Th11:
  for T1,T2 being TA-structure st the TA-structure of T1 = the
TA-structure of T2 for a1 being adjective of T1, a2 being adjective of T2 st a1
  = a2 holds types a1 = types a2
proof
  let T1,T2 be TA-structure such that
A1: the TA-structure of T1 = the TA-structure of T2;
  let a1 be adjective of T1, a2 be adjective of T2 such that
A2: a1 = a2;
  now
    thus types a1 is Subset of T2 by A1;
    let x be object;
    hereby
      assume x in types a1;
      then consider t1 being type of T1 such that
A3:   x = t1 and
A4:   a1 in adjs t1 by Def12;
      reconsider t2 = t1 as type of T2 by A1;
      adjs t1 = adjs t2 by A1;
      hence ex t2 being type of T2 st x = t2 & a2 in adjs t2 by A2,A3,A4;
    end;
    given t2 being type of T2 such that
A5: x = t2 and
A6: a2 in adjs t2;
    reconsider t1 = t2 as type of T1 by A1;
    adjs t1 = adjs t2 by A1;
    hence x in types a1 by A2,A5,A6,Def12;
  end;
  hence thesis by Def12;
end;

theorem
  for T being non empty TA-structure for a being adjective of T holds
  types a = {t where t is type of T: a in adjs t}
proof
  let T be non empty TA-structure;
  let a be adjective of T;
  set X = {t where t is type of T: a in adjs t};
  X c= the carrier of T
  proof
    let x be object;
    assume x in X;
    then ex t being type of T st x = t & a in adjs t;
    hence thesis;
  end;
  then reconsider X as Subset of T;
  for x being object
holds x in X iff ex t being type of T st x = t & a in adjs t;
  hence thesis by Def12;
end;

theorem Th13:
  for T being TA-structure for t being type of T, a being
  adjective of T holds a in adjs t iff t in types a
proof
  let T be TA-structure;
  let t be type of T, a be adjective of T;
  thus a in adjs t implies t in types a by Def12;
  assume t in types a;
  then ex t9 being type of T st t = t9 & a in adjs t9 by Def12;
  hence thesis;
end;

theorem Th14:
  for T being non empty TA-structure for t being type of T, A
  being Subset of the adjectives of T holds A c= adjs t iff t in types A
proof
  let T be non empty TA-structure;
  let t be type of T, a be Subset of the adjectives of T;
  hereby
    assume a c= adjs t;
    then for b being adjective of T st b in a holds t in types b by Th13;
    hence t in types a by Def13;
  end;
  assume
A1: t in types a;
  let x be object;
  assume
A2: x in a;
  then reconsider x as adjective of T;
  t in types x by A1,A2,Def13;
  hence thesis by Th13;
end;

theorem
  for T being non void TA-structure for t being type of T holds adjs t =
  {a where a is adjective of T: t in types a}
proof
  let T be non void TA-structure;
  let t be type of T;
  set X = {a where a is adjective of T: t in types a};
  thus adjs t c= X
  proof
    let x be object;
    assume
A1: x in adjs t;
    then reconsider a = x as adjective of T;
    t in types a by A1,Th13;
    hence thesis;
  end;
  let x be object;
  assume x in X;
  then ex a being adjective of T st x = a & t in types a;
  hence thesis by Th13;
end;

theorem Th16:
  for T being non empty TA-structure holds types ({} the
  adjectives of T) = the carrier of T
proof
  let T be non empty TA-structure;
  thus types ({} the adjectives of T) c= the carrier of T;
  let x be object;
  assume x in the carrier of T;
  then reconsider t = x as type of T;
  for a being adjective of T st a in {} the adjectives of T holds t in types a;
  hence thesis by Def13;
end;

definition
  let T be TA-structure;
  attr T is adjs-typed means
  for a being adjective of T holds types a \/ types non-a is non empty;
end;

theorem Th17:
  for T1,T2 being TA-structure st the TA-structure of T1 = the
  TA-structure of T2 holds T1 is adjs-typed implies T2 is adjs-typed
proof
  let T1,T2 be TA-structure such that
A1: the TA-structure of T1 = the TA-structure of T2 and
A2: for a being adjective of T1 holds types a \/ types non-a is non empty;
  let b be adjective of T2;
  reconsider a = b as adjective of T1 by A1;
A3: types a \/ types non-a is non empty by A2;
  types a = types b by A1,Th11;
  hence thesis by A1,A3,Th11;
end;

registration
  cluster non void Mizar-widening-like involutive without_fixpoints consistent
adj-structured adjs-typed for complete upper-bounded 1-element reflexive
    transitive antisymmetric strict TA-structure;
  existence
  proof
    {0} c= {0,1} by ZFMISC_1:7;
    then reconsider A = {0} as Element of Fin {0,1} by FINSUB_1:def 5;
    reconsider x = 0, y = 1 as Element of {0,1} by TARSKI:def 2;
    set R =the reflexive 1-element RelStr;
    reconsider n = (0,1)-->(y,x) as UnOp of {0,1};
    set f = (the carrier of R) --> A;
    set T = TA-structure(#the carrier of R, {0,1}, the InternalRel of R, n, f
    #);
    the RelStr of T = the RelStr of R;
    then reconsider T as strict 1-element reflexive TA-structure by
STRUCT_0:def 19,WAYBEL_8:12;
    take T;
    thus T is non void;
    thus T is Mizar-widening-like;
A1: n.y = x by FUNCT_4:63;
A2: n.x = y by FUNCT_4:63;
    hence T is involutive without_fixpoints by A1,Th4;
    hereby
      let t be type of T;
      let a be adjective of T;
A3:   adjs t = A by FUNCOP_1:7;
      a = 0 or a = 1 by TARSKI:def 2;
      hence a in adjs t implies not non-a in adjs t by A2,A3,TARSKI:def 1;
    end;
    set t = the type of T;
    hereby
      let t1,t2 be type of T;
A4:   adjs t2 = A by FUNCOP_1:7;
      adjs t1 = A by FUNCOP_1:7;
      hence adjs(t1"\/"t2) = adjs t1 /\ adjs t2 by A4,FUNCOP_1:7;
    end;
    let a be adjective of T;
A5: adjs t = A by FUNCOP_1:7;
    a = 0 or a = 1 by TARSKI:def 2;
    then a in adjs t or non-a in adjs t by A1,A5,TARSKI:def 1;
    then t in types a or t in types non-a by Th13;
    hence thesis;
  end;
end;

theorem
  for T being consistent TA-structure for a being adjective of T holds
  types a misses types non-a
proof
  let T be consistent TA-structure;
  let a be adjective of T;
  assume types a meets types non-a;
  then consider x being object such that
A1: x in types a and
A2: x in types non-a by XBOOLE_0:3;
A3: ex t2 being type of T st x = t2 & non-a in adjs t2 by A2,Def12;
  ex t1 being type of T st x = t1 & a in adjs t1 by A1,Def12;
  hence thesis by A3,Def9;
end;

registration
  let T be adj-structured reflexive transitive antisymmetric with_suprema
  TA-structure;
  let a be adjective of T;
  cluster types a -> lower directed;
  coherence
  proof
    thus types a is lower
    proof
      let x,y be Element of T;
      assume that
A1:   x in types a and
A2:   y <= x;
A3:   adjs x c= adjs y by A2,Th10;
      a in adjs x by A1,Th13;
      hence thesis by A3,Th13;
    end;
    let x,y be Element of T;
    assume that
A4: x in types a and
A5: y in types a;
    take x"\/"y;
A6: a in adjs y by A5,Th13;
    a in adjs x by A4,Th13;
    then a in (adjs x)/\adjs y by A6,XBOOLE_0:def 4;
    then a in adjs(x"\/"y) by Def11;
    hence thesis by Th13,YELLOW_0:22;
  end;
end;

registration
  let T be adj-structured reflexive transitive antisymmetric with_suprema
  TA-structure;
  let A be Subset of the adjectives of T;
  cluster types A -> lower directed;
  coherence
  proof
    thus types A is lower
    proof
      let x,y be Element of T;
      assume that
A1:   x in types A and
A2:   y <= x;
      now
        let a be adjective of T;
        assume a in A;
        then x in types a by A1,Def13;
        then
A3:     a in adjs x by Th13;
        adjs x c= adjs y by A2,Th10;
        hence y in types a by A3,Th13;
      end;
      hence thesis by Def13;
    end;
    let x,y be Element of T;
    assume that
A4: x in types A and
A5: y in types A;
    take x"\/"y;
    now
      let a be adjective of T;
      assume
A6:   a in A;
      then y in types a by A5,Def13;
      then
A7:   a in adjs y by Th13;
      x in types a by A4,A6,Def13;
      then a in adjs x by Th13;
      then a in (adjs x)/\adjs y by A7,XBOOLE_0:def 4;
      then a in adjs(x"\/"y) by Def11;
      hence x"\/"y in types a by Th13;
    end;
    hence thesis by Def13,YELLOW_0:22;
  end;
end;

begin :: Applicability of adjectives

definition
  let T be TA-structure;
  let t be Element of T;
  let a be adjective of T;
  pred a is_applicable_to t means

  ex t9 being type of T st t9 in types a & t9 <= t;
end;

definition
  let T be TA-structure;
  let t be type of T;
  let A be Subset of the adjectives of T;
  pred A is_applicable_to t means

  ex t9 being type of T st A c= adjs t9 & t9 <= t;
end;

theorem Th19:
  for T being adj-structured reflexive transitive antisymmetric
with_suprema TA-structure for a being adjective of T for t being type of T st
  a is_applicable_to t holds types a /\ downarrow t is Ideal of T
proof
  let T be adj-structured reflexive transitive antisymmetric with_suprema
  TA-structure;
  let a be adjective of T;
  let t be type of T;
  given t9 being type of T such that
A1: t9 in types a and
A2: t9 <= t;
  t9 in downarrow t by A2,WAYBEL_0:17;
  hence thesis by A1,WAYBEL_0:27,44,XBOOLE_0:def 4;
end;

definition
  let T be non empty reflexive transitive TA-structure;
  let t be Element of T;
  let a be adjective of T;
  func a ast t -> type of T equals
  sup(types a /\ downarrow t);
  coherence;
end;

theorem Th20:
  for T being Noetherian adj-structured reflexive transitive
  antisymmetric with_suprema TA-structure for t being type of T for a being
  adjective of T st a is_applicable_to t holds a ast t <= t
proof
  let T be Noetherian adj-structured reflexive transitive antisymmetric
  with_suprema TA-structure;
  let t be type of T;
  let a be adjective of T;
  assume a is_applicable_to t;
  then types a /\ downarrow t is Ideal of T by Th19;
  then sup (types a /\ downarrow t) in types a /\ downarrow t by Th1;
  then a ast t in downarrow t by XBOOLE_0:def 4;
  hence thesis by WAYBEL_0:17;
end;

theorem Th21:
  for T being Noetherian adj-structured reflexive transitive
  antisymmetric with_suprema TA-structure for t being type of T for a being
  adjective of T st a is_applicable_to t holds a in adjs(a ast t)
proof
  let T be Noetherian adj-structured reflexive transitive antisymmetric
  with_suprema TA-structure;
  let t be type of T;
  let a be adjective of T;
  assume a is_applicable_to t;
  then types a /\ downarrow t is Ideal of T by Th19;
  then sup (types a /\ downarrow t) in types a /\ downarrow t by Th1;
  then a ast t in types a by XBOOLE_0:def 4;
  hence thesis by Th13;
end;

theorem Th22:
  for T being Noetherian adj-structured reflexive transitive
  antisymmetric with_suprema TA-structure for t being type of T for a being
  adjective of T st a is_applicable_to t holds a ast t in types a
proof
  let T be Noetherian adj-structured reflexive transitive antisymmetric
  with_suprema TA-structure;
  let t be type of T;
  let a be adjective of T;
  assume a is_applicable_to t;
  then types a /\ downarrow t is Ideal of T by Th19;
  then sup (types a /\ downarrow t) in types a /\ downarrow t by Th1;
  hence thesis by XBOOLE_0:def 4;
end;

theorem Th23:
  for T being Noetherian adj-structured reflexive transitive
  antisymmetric with_suprema TA-structure for t being type of T for a being
  adjective of T for t9 being type of T st t9 <= t & a in adjs t9 holds a
  is_applicable_to t & t9 <= a ast t
proof
  let T be Noetherian adj-structured reflexive transitive antisymmetric
  with_suprema TA-structure;
  let t be type of T;
  let a be adjective of T;
  let t9 be type of T;
  assume that
A1: t9 <= t and
A2: a in adjs t9;
A3: t9 in downarrow t by A1,WAYBEL_0:17;
  thus a is_applicable_to t
  by A1,A2,Th13;
  then types a /\ downarrow t is Ideal of T by Th19;
  then ex_sup_of types a /\ downarrow t, T by Th1;
  then
A4: a ast t is_>=_than types a /\ downarrow t by YELLOW_0:30;
  t9 in types a by A2,Th13;
  then t9 in types a /\ downarrow t by A3,XBOOLE_0:def 4;
  hence thesis by A4;
end;

theorem Th24:
  for T being Noetherian adj-structured reflexive transitive
  antisymmetric with_suprema TA-structure for t being type of T for a being
  adjective of T st a in adjs t holds a is_applicable_to t & a ast t = t
proof
  let T be Noetherian adj-structured reflexive transitive antisymmetric
  with_suprema TA-structure;
  let t be type of T;
  let a be adjective of T;
  assume
A1: a in adjs t;
  hence a is_applicable_to t by Th23;
  then
A2: a ast t <= t by Th20;
  t <= a ast t by A1,Th23;
  hence thesis by A2,YELLOW_0:def 3;
end;

theorem
  for T being Noetherian adj-structured reflexive transitive
  antisymmetric with_suprema TA-structure for t being type of T for a,b being
  adjective of T st a is_applicable_to t & b is_applicable_to a ast t holds b
  is_applicable_to t & a is_applicable_to b ast t & a ast (b ast t) = b ast (a
  ast t)
proof
  let T be Noetherian adj-structured reflexive transitive antisymmetric
  with_suprema TA-structure;
  let t be type of T;
  let a,b be adjective of T such that
A1: a is_applicable_to t and
A2: b is_applicable_to a ast t;
  consider t9 being type of T such that
A3: t9 in types b and
A4: t9 <= a ast t by A2;
A5: b in adjs t9 by A3,Th13;
A6: a ast t <= t by A1,Th20;
  thus
A7: b is_applicable_to t
  by A6,A3,A4,YELLOW_0:def 2;
A8: t9 <= t by A6,A4,YELLOW_0:def 2;
  thus
A9: a is_applicable_to b ast t
  proof
    take t9;
    a ast t in types a by A1,Th22;
    hence t9 in types a by A4,WAYBEL_0:def 19;
    thus t9 <= b ast t by A8,A5,Th23;
  end;
  then
A10: a ast (b ast t) <= b ast t by Th20;
A11: a ast t in types a by A1,Th22;
A12: a ast (b ast t) is_>=_than types b /\ downarrow (a ast t)
  proof
    let t9 be type of T;
    assume
A13: t9 in types b /\ downarrow (a ast t);
    then t9 in types b by XBOOLE_0:def 4;
    then
A14: b in adjs t9 by Th13;
    t9 in downarrow (a ast t) by A13,XBOOLE_0:def 4;
    then
A15: t9 <= a ast t by WAYBEL_0:17;
    then t9 in types a by A11,WAYBEL_0:def 19;
    then
A16: a in adjs t9 by Th13;
    t9 <= t by A6,A15,YELLOW_0:def 2;
    then t9 <= b ast t by A14,Th23;
    hence thesis by A16,Th23;
  end;
  b ast t <= t by A7,Th20;
  then
A17: a ast (b ast t) <= t by A10,YELLOW_0:def 2;
  a in adjs (a ast (b ast t)) by A9,Th21;
  then a ast (b ast t) <= a ast t by A17,Th23;
  then
A18: a ast (b ast t) in downarrow (a ast t) by WAYBEL_0:17;
A19: a ast (b ast t) <= b ast t by A9,Th20;
  b ast t in types b by A7,Th22;
  then a ast (b ast t) in types b by A19,WAYBEL_0:def 19;
  then a ast (b ast t) in types b /\ downarrow (a ast t) by A18,XBOOLE_0:def 4;
  then for t9 being type of T st t9 is_>=_than types b /\ downarrow (a ast t)
  holds a ast (b ast t) <= t9;
  hence thesis by A12,YELLOW_0:30;
end;

theorem Th26:
  for T being adj-structured reflexive transitive antisymmetric
  with_suprema TA-structure for A being Subset of the adjectives of T for t
  being type of T st A is_applicable_to t holds types A /\ downarrow t is Ideal
  of T
proof
  let T be adj-structured reflexive transitive antisymmetric with_suprema
  TA-structure;
  let A be Subset of the adjectives of T;
  let t be type of T;
  given t9 being type of T such that
A1: A c= adjs t9 and
A2: t9 <= t;
A3: t9 in downarrow t by A2,WAYBEL_0:17;
  t9 in types A by A1,Th14;
  hence thesis by A3,WAYBEL_0:27,44,XBOOLE_0:def 4;
end;

definition
  let T be non empty reflexive transitive TA-structure;
  let t be type of T;
  let A be Subset of the adjectives of T;
  func A ast t -> type of T equals
  sup(types A /\ downarrow t);
  coherence;
end;

theorem Th27:
  for T being non empty reflexive transitive antisymmetric
  TA-structure for t being type of T holds ({} the adjectives of T) ast t = t
proof
  let T be non empty reflexive transitive antisymmetric TA-structure;
  let t be type of T;
  set A = {} the adjectives of T;
  types A = the carrier of T by Th16;
  then types A /\ downarrow t = downarrow t by XBOOLE_1:28;
  hence thesis by WAYBEL_0:34;
end;

definition
  let T be non empty non void reflexive transitive TA-structure;
  let t be type of T;
  let p be FinSequence of the adjectives of T;
  func apply(p,t) -> FinSequence of the carrier of T means
  :Def19:
  len it =
  len p+1 & it.1 = t & for i being Element of NAT, a being adjective of T, t
  being type of T st i in dom p & a = p.i & t = it.i holds it.(i+1) = a ast t;
  existence
  proof
    defpred P[set,set,set] means ex a being adjective of T st a = p.$1 & ($2
is not type of T & $3 = 0 or ex t being type of T st t = $2 & $3 = a ast t);
A1: for i being Nat st 1 <= i & i < len p+1 for x being set ex
    y being set st P[i,x,y]
    proof
      let i be Nat;
      assume
A2:   1 <= i;
      assume i < len p+1;
      then i <= len p by NAT_1:13;
      then i in dom p by A2,FINSEQ_3:25;
      then p.i in rng p by FUNCT_1:3;
      then reconsider a = p.i as adjective of T;
      let x be set;
      per cases;
      suppose
A3:     x is not type of T;
        take 0, a;
        thus thesis by A3;
      end;
      suppose
        x is type of T;
        then reconsider t = x as type of T;
        take a ast t, a;
        thus a = p.i;
        thus thesis;
      end;
    end;
    consider q being FinSequence such that
A4: len q = len p+1 and
A5: q.1 = t or len p+1 = 0 and
A6: for i being Nat st 1 <= i & i < len p+1 holds P[i,q.i,
    q.(i+1)] from RECDEF_1:sch 3(A1);
    defpred P[Nat] means $1 in dom q implies q.$1 is type of T;
A7: now
      let k be Nat such that
A8:   P[k];
      now
        assume k+1 in dom q;
        then k+1 <= len q by FINSEQ_3:25;
        then
A9:     k < len q by NAT_1:13;
A10:    k <> 0 implies k >= 0+1 by NAT_1:13;
        then
        k <> 0 implies ex a being adjective of T st a = p.k & (q.k is not
type of T & q.(k+1) = 0 or ex t being type of T st t = q.k & q.(k+1) = a ast t)
        by A4,A6,A9;
        hence q.(k+1) is type of T by A5,A8,A10,A9,FINSEQ_3:25;
      end;
      hence P[k+1];
    end;
A11: P[0] by FINSEQ_3:24;
A12: for k being Nat holds P[k] from NAT_1:sch 2(A11,A7);
    rng q c= the carrier of T
    proof
      let a be object;
      assume a in rng q;
      then ex x being object st x in dom q & a = q.x by FUNCT_1:def 3;
      then a is type of T by A12;
      hence thesis;
    end;
    then reconsider q as FinSequence of the carrier of T by FINSEQ_1:def 4;
    take q;
    thus len q = len p+1 & q.1 = t by A4,A5;
    let i be Element of NAT, a be adjective of T, t being type of T;
    assume that
A13: i in dom p and
A14: a = p.i and
A15: t = q.i;
    i <= len p by A13,FINSEQ_3:25;
    then
A16: i < len p+1 by NAT_1:13;
    i >= 1 by A13,FINSEQ_3:25;
    then
    ex a being adjective of T st a = p.i & (q.i is not type of T & q.(i+1
    )=0 or ex t being type of T st t = q.i & q.(i+1) = a ast t) by A6,A16;
    hence thesis by A14,A15;
  end;
  correctness
  proof
    let q1, q2 be FinSequence of the carrier of T such that
A17: len q1 = len p+1 and
A18: q1.1 = t and
A19: for i being Element of NAT, a being adjective of T, t being type
    of T st i in dom p & a = p.i & t = q1.i holds q1.(i+1) = a ast t and
A20: len q2 = len p+1 and
A21: q2.1 = t and
A22: for i being Element of NAT, a being adjective of T, t being type
    of T st i in dom p & a = p.i & t = q2.i holds q2.(i+1) = a ast t;
    defpred P[Nat] means $1 in dom q1 implies q1.$1 = q2.$1;
A23: now
      let i be Nat such that
A24:  P[i];
      now
        assume i+1 in dom q1;
        then
A25:    i+1 <= len q1 by FINSEQ_3:25;
        then
A26:    i <= len q1 by NAT_1:13;
A27:    i <= len p by A17,A25,XREAL_1:6;
        per cases;
        suppose
          i = 0;
          hence q1.(i+1) = q2.(i+1) by A18,A21;
        end;
        suppose
          i > 0;
          then
A28:      i >= 0+1 by NAT_1:13;
          then
A29:      i in dom p by A27,FINSEQ_3:25;
          then reconsider a = p.i as adjective of T by FINSEQ_2:11;
          i in dom q1 by A26,A28,FINSEQ_3:25;
          then reconsider t = q1.i as type of T by FINSEQ_2:11;
          thus q1.(i+1) = a ast t by A19,A29
            .= q2.(i+1) by A22,A24,A26,A28,A29,FINSEQ_3:25;
        end;
      end;
      hence P[i+1];
    end;
A30: P[0] by FINSEQ_3:25;
A31: for i being Nat holds P[i] from NAT_1:sch 2(A30,A23);
    dom q1 = dom q2 by A17,A20,FINSEQ_3:29;
    hence thesis by A31;
  end;
end;

registration
  let T be non empty non void reflexive transitive TA-structure;
  let t be type of T;
  let p be FinSequence of the adjectives of T;
  cluster apply(p,t) -> non empty;
  coherence
  proof
    len apply(p,t) = len p+1 by Def19;
    hence thesis;
  end;
end;

theorem
  for T being non empty non void reflexive transitive TA-structure for t
  being type of T holds apply(<*> the adjectives of T, t) = <*t*>
proof
  let T be non empty non void reflexive transitive TA-structure;
  let t be type of T;
A1: apply(<*> the adjectives of T, t).1 = t by Def19;
  len apply(<*> the adjectives of T, t) = 0+1 by Def19,CARD_1:27;
  hence thesis by A1,FINSEQ_1:40;
end;

theorem Th29:
  for T being non empty non void reflexive transitive TA-structure
for t being type of T, a be adjective of T holds apply(<*a*>, t) = <*t, a ast t
  *>
proof
  let T be non empty non void reflexive transitive TA-structure;
  let t be type of T, a be adjective of T;
A1: <*a*>.1 = a by FINSEQ_1:40;
A2: apply(<*a*>, t).1 = t by Def19;
A3: len <*a*> = 1 by FINSEQ_1:40;
  then
A4: len apply(<*a*>, t) = 1+1 by Def19;
  1 in dom <*a*> by A3,FINSEQ_3:25;
  then apply(<*a*>, t).(len <*a*>+1) = a ast t by A3,A2,A1,Def19;
  hence thesis by A3,A4,A2,FINSEQ_1:44;
end;

definition
  let T be non empty non void reflexive transitive TA-structure;
  let t be type of T;
  let v be FinSequence of the adjectives of T;
  func v ast t -> type of T equals
  apply(v,t).(len v+1);
  coherence
  proof
A1: len v+1 >= 1 by NAT_1:11;
    len apply(v,t) = len v+1 by Def19;
    then len v+1 in dom apply(v,t) by A1,FINSEQ_3:25;
    hence thesis by FINSEQ_2:11;
  end;
end;

theorem
  for T being non empty non void reflexive transitive TA-structure for t
  being type of T holds (<*> the adjectives of T) ast t = t by Def19;

theorem Th31:
  for T being non empty non void reflexive transitive TA-structure
  for t being type of T for a being adjective of T holds <*a*> ast t = a ast t
proof
  let T be non empty non void reflexive transitive TA-structure;
  let t be type of T;
  let a be adjective of T;
A1: len <*a*> = 1 by FINSEQ_1:40;
  apply(<*a*>, t) = <*t, a ast t*> by Th29;
  hence thesis by A1,FINSEQ_1:44;
end;

theorem
  for p,q being FinSequence for i being Nat st i >= 1 & i <
  len p holds (p$^q).i = p.i
proof
  let p,q be FinSequence;
  let i be Nat;
  assume that
A1: i >= 1 and
A2: i < len p;
  per cases;
  suppose
    q = {};
    hence thesis by REWRITE1:1;
  end;
  suppose
    q <> {};
    then consider j being Nat, r being FinSequence such that
A3: len p = j+1 and
A4: r = p|Seg j and
A5: p$^q = r^q by A2,CARD_1:27,REWRITE1:def 1;
A6: p = r^<*p.len p*> by A3,A4,FINSEQ_3:55;
    j < len p by A3,NAT_1:13;
    then
A7: len r = j by A4,FINSEQ_1:17;
    i <= j by A2,A3,NAT_1:13;
    then
A8: i in dom r by A1,A7,FINSEQ_3:25;
    then (p$^q).i = r.i by A5,FINSEQ_1:def 7;
    hence thesis by A8,A6,FINSEQ_1:def 7;
  end;
end;

theorem Th33:
  for p being non empty FinSequence, q being FinSequence for i
  being Nat st i < len q holds (p$^q).(len p+i) = q.(i+1)
proof
  let p be non empty FinSequence, q be FinSequence;
  let i be Nat;
A1: i+1 >= 1 by NAT_1:11;
  assume
A2: i < len q;
  then consider j being Nat, r being FinSequence such that
A3: len p = j+1 and
A4: r = p|Seg j and
A5: p$^q = r^q by CARD_1:27,REWRITE1:def 1;
  i+1 <= len q by A2,NAT_1:13;
  then
A6: i+1 in dom q by A1,FINSEQ_3:25;
  j < len p by A3,NAT_1:13;
  then len r = j by A4,FINSEQ_1:17;
  then len p+i =len r+(i+1) by A3;
  hence thesis by A5,A6,FINSEQ_1:def 7;
end;

theorem Th34:
  for T being non empty non void reflexive transitive TA-structure
for t being type of T for v1,v2 being FinSequence of the adjectives of T holds
  apply(v1^v2, t) = apply(v1, t) $^ apply(v2, v1 ast t)
proof
  let T be non empty non void reflexive transitive TA-structure;
  let t be type of T;
  let v1,v2 be FinSequence of the adjectives of T;
  consider tt being FinSequence of the carrier of T, q being Element of T such
  that
A1: apply(v1,t) = tt^<*q*> by HILBERT2:4;
  set s = apply(v1, t) $^ apply(v2, v1 ast t), p = v1^v2;
A2: len apply(v1,t) = len v1+1 by Def19;
A3: apply(v1, t) $^ apply(v2, v1 ast t) = tt^apply(v2, v1 ast t) by A1,
REWRITE1:2;
  len <*q*> = 1 by FINSEQ_1:39;
  then
A4: len v1+1 = len tt+1 by A2,A1,FINSEQ_1:22;
A5: s.1 = t
  proof
    per cases;
    suppose
A6:   len v1 = 0;
      then tt = {} by A4;
      then
A7:   s = apply(v2, v1 ast t) by A3,FINSEQ_1:34;
      v1 ast t = t by A6,Def19;
      hence thesis by A7,Def19;
    end;
    suppose
      len v1 > 0;
      then len tt >= 0+1 by A4,NAT_1:13;
      then
A8:   1 in dom tt by FINSEQ_3:25;
      then
A9:   tt.1 = apply(v1, t).1 by A1,FINSEQ_1:def 7;
      s.1 = tt.1 by A3,A8,FINSEQ_1:def 7;
      hence thesis by A9,Def19;
    end;
  end;
A10: now
A11: len p = len v1+len v2 by FINSEQ_1:22;
A12: len apply(v2, v1 ast t) = len v2+1 by Def19;
    let i be Element of NAT, a be adjective of T, t9 be type of T such that
A13: i in dom p and
A14: a = p.i and
A15: t9 = s.i;
A16: 1 <= i by A13,FINSEQ_3:25;
A17: i <= len p by A13,FINSEQ_3:25;
    per cases by XXREAL_0:1;
    suppose
A18:  i < len v1;
A19:  i+1 >= 1 by NAT_1:11;
      i+1 <= len v1 by A18,NAT_1:13;
      then
A20:  i+1 in dom tt by A4,A19,FINSEQ_3:25;
      then
A21:  s.(i+1) = tt.(i+1) by A3,FINSEQ_1:def 7;
A22:  i in dom tt by A4,A16,A18,FINSEQ_3:25;
      then
A23:  s.i = tt.i by A3,FINSEQ_1:def 7;
A24:  tt.(i+1) = apply(v1, t).(i+1) by A1,A20,FINSEQ_1:def 7;
A25:  tt.i = apply(v1, t).i by A1,A22,FINSEQ_1:def 7;
A26:  i in dom v1 by A16,A18,FINSEQ_3:25;
      then p.i = v1 .i by FINSEQ_1:def 7;
      hence s.(i+1) = a ast t9 by A14,A15,A26,A23,A25,A21,A24,Def19;
    end;
    suppose
A27:  i = len v1;
      1 <= len apply(v2, v1 ast t) by A12,NAT_1:11;
      then 1 in dom apply(v2, v1 ast t) by FINSEQ_3:25;
      then
A28:  s.(i+1) = apply(v2, v1 ast t) .1 by A3,A4,A27,FINSEQ_1:def 7;
A29:  i in dom tt by A4,A16,A27,FINSEQ_3:25;
      then
A30:  s.i = tt.i by A3,FINSEQ_1:def 7;
A31:  tt.i = apply(v1, t).i by A1,A29,FINSEQ_1:def 7;
A32:  i in dom v1 by A16,A27,FINSEQ_3:25;
      then p.i = v1.i by FINSEQ_1:def 7;
      then a ast t9 = v1 ast t by A14,A15,A27,A32,A30,A31,Def19;
      hence s.(i+1) = a ast t9 by A28,Def19;
    end;
    suppose
      i > len v1;
      then i >= len v1+1 by NAT_1:13;
      then consider j being Nat such that
A33:  i = len v1+1+j by NAT_1:10;
A34:  1+j+1 >= 1 by NAT_1:11;
A35:  j+1+len v1+1 = j+1+1+len v1;
A36:  1+j >= 1 by NAT_1:11;
A37:  i = j+1+len v1 by A33;
      then
A38:  1+j <= len v2 by A17,A11,XREAL_1:6;
      then 1+j+0 <= len v2+1 by XREAL_1:7;
      then j+1 in dom apply(v2, v1 ast t) by A12,A36,FINSEQ_3:25;
      then
A39:  s.i = apply(v2, v1 ast t).(j+1) by A3,A4,A37,FINSEQ_1:def 7;
      1+j+1 <= len v2+1 by A38,XREAL_1:7;
      then j+1+1 in dom apply(v2, v1 ast t) by A12,A34,FINSEQ_3:25;
      then
A40:  s.(i+1) = apply(v2, v1 ast t).(j+1+1) by A3,A4,A33,A35,FINSEQ_1:def 7;
A41:  j+1 in dom v2 by A36,A38,FINSEQ_3:25;
      then p.i = v2.(j+1) by A37,FINSEQ_1:def 7;
      hence s.(i+1) = a ast t9 by A14,A15,A41,A39,A40,Def19;
    end;
  end;
  len apply(v2, v1 ast t) = len v2+1 by Def19;
  then len s = len tt+(len v2+1) by A3,FINSEQ_1:22
    .= len v1+len v2+1 by A4
    .= len p+1 by FINSEQ_1:22;
  hence thesis by A3,A5,A10,Def19;
end;

theorem Th35:
  for T being non empty non void reflexive transitive TA-structure
for t being type of T for v1,v2 being FinSequence of the adjectives of T for i
  being Nat st i in dom v1 holds apply(v1^v2, t).i = apply(v1, t).i
proof
  let T be non empty non void reflexive transitive TA-structure;
  let t be type of T;
  let v1,v2 be FinSequence of the adjectives of T;
  set v = v1^v2;
  consider tt being FinSequence of the carrier of T, q being Element of T such
  that
A1: apply(v1,t) = tt^<*q*> by HILBERT2:4;
  let i be Nat;
A2: len apply(v1,t) = len v1+1 by Def19;
  assume
A3: i in dom v1;
  then
A4: i >= 1 by FINSEQ_3:25;
  len <*q*> = 1 by FINSEQ_1:39;
  then len v1+1 = len tt+1 by A2,A1,FINSEQ_1:22;
  then i <= len tt by A3,FINSEQ_3:25;
  then
A5: i in dom tt by A4,FINSEQ_3:25;
  apply(v,t) = apply(v1,t) $^ apply(v2, v1 ast t) by Th34
    .= tt^apply(v2, v1 ast t) by A1,REWRITE1:2;
  then apply(v,t).i = tt.i by A5,FINSEQ_1:def 7;
  hence thesis by A1,A5,FINSEQ_1:def 7;
end;

theorem Th36:
  for T being non empty non void reflexive transitive TA-structure
for t being type of T for v1,v2 being FinSequence of the adjectives of T holds
  apply(v1^v2, t).(len v1+1) = v1 ast t
proof
  let T be non empty non void reflexive transitive TA-structure;
  let t be type of T;
  let v1,v2 be FinSequence of the adjectives of T;
  set v = v1^v2;
A1: len apply(v2, v1 ast t) = len v2+1 by Def19;
A2: apply(v,t) = apply(v1,t) $^ apply(v2, v1 ast t) by Th34;
  len apply(v1,t) = len v1+1 by Def19;
  then apply(v,t).(len v1+1+0) = apply(v2, v1 ast t).(0+1) by A1,A2,Th33;
  hence thesis by Def19;
end;

theorem Th37:
  for T being non empty non void reflexive transitive TA-structure
for t being type of T for v1,v2 being FinSequence of the adjectives of T holds
  v2 ast (v1 ast t) = v1^v2 ast t
proof
  let T be non empty non void reflexive transitive TA-structure;
  let t be type of T;
  let v1,v2 be FinSequence of the adjectives of T;
  set v = v1^v2;
  consider tt being FinSequence of the carrier of T, q being Element of T such
  that
A1: apply(v1,t) = tt^<*q*> by HILBERT2:4;
A2: len apply(v1,t) = len v1+1 by Def19;
  len <*q*> = 1 by FINSEQ_1:39;
  then
A3: len v1+1 = len tt+1 by A2,A1,FINSEQ_1:22;
A4: len v2+1 >= 1 by NAT_1:11;
  len apply(v2, v1 ast t) = len v2+1 by Def19;
  then
A5: len v2+1 in dom apply(v2, v1 ast t) by A4,FINSEQ_3:25;
  apply(v,t) = apply(v1,t) $^ apply(v2, v1 ast t) by Th34
    .= tt^apply(v2, v1 ast t) by A1,REWRITE1:2;
  hence v2 ast (v1 ast t) = apply(v,t).(len tt+(len v2+1)) by A5,FINSEQ_1:def 7
    .= apply(v,t).(len v1+len v2+1) by A3
    .= v ast t by FINSEQ_1:22;
end;

definition
  let T be non empty non void reflexive transitive TA-structure;
  let t be type of T;
  let v be FinSequence of the adjectives of T;
  pred v is_applicable_to t means

  for i being Nat, a being
  adjective of T, s being type of T st i in dom v & a = v.i & s = apply(v,t).i
  holds a is_applicable_to s;
end;

theorem
  for T being non empty non void reflexive transitive TA-structure for t
  being type of T holds <*> the adjectives of T is_applicable_to t;

theorem
  for T being non empty non void reflexive transitive TA-structure for t
  being type of T, a being adjective of T holds a is_applicable_to t iff <*a*>
  is_applicable_to t
proof
  let T be non empty non void reflexive transitive TA-structure;
  let t be type of T;
  let a be adjective of T;
  set v = <*a*>;
A1: v.1 = a by FINSEQ_1:40;
  hereby
    assume
A2: a is_applicable_to t;
    thus <*a*> is_applicable_to t
    proof
      let i be Nat, b be adjective of T, s be type of T;
      assume i in dom v;
      then i in Seg 1 by FINSEQ_1:38;
      then
A3:   i = 1 by FINSEQ_1:2,TARSKI:def 1;
      then v.i = a by FINSEQ_1:40;
      hence thesis by A2,A3,Def19;
    end;
  end;
  assume
A4: for i being Nat, a9 being adjective of T, s being type of
  T st i in dom v & a9 = v.i & s = apply(v,t).i holds a9 is_applicable_to s;
  len v = 1 by FINSEQ_1:40;
  then
A5: 1 in dom v by FINSEQ_3:25;
  apply(v,t).1 = t by Def19;
  hence thesis by A4,A5,A1;
end;

theorem Th40:
  for T being non empty non void reflexive transitive TA-structure
for t being type of T for v1,v2 being FinSequence of the adjectives of T st v1^
v2 is_applicable_to t holds v1 is_applicable_to t & v2 is_applicable_to v1 ast
  t
proof
  let T be non empty non void reflexive transitive TA-structure;
  let t be type of T;
  let v1,v2 be FinSequence of the adjectives of T;
  set v = v1^v2;
A1: apply(v,t) = apply(v1,t)$^apply(v2, v1 ast t) by Th34;
A2: len apply(v2, v1 ast t) = len v2+1 by Def19;
  assume
A3: for i being Nat, a being adjective of T, s being type of
  T st i in dom v & a = v.i & s = apply(v,t).i holds a is_applicable_to s;
  hereby
A4: dom v1 c= dom v by FINSEQ_1:26;
    let i be Nat, a be adjective of T, s be type of T such that
A5: i in dom v1 and
A6: a = v1.i and
A7: s = apply(v1,t).i;
A8: a = v.i by A5,A6,FINSEQ_1:def 7;
    s = apply(v,t).i by A5,A7,Th35;
    hence a is_applicable_to s by A3,A5,A4,A8;
  end;
  let i be Nat, a be adjective of T, s be type of T such that
A9: i in dom v2 and
A10: a = v2.i and
A11: s = apply(v2, v1 ast t).i;
A12: a = v.(len v1+i) by A9,A10,FINSEQ_1:def 7;
  i >= 1 by A9,FINSEQ_3:25;
  then consider j being Nat such that
A13: i = 1+j by NAT_1:10;
  i <= len v2 by A9,FINSEQ_3:25;
  then j < len v2 by A13,NAT_1:13;
  then
A14: j < len apply(v2, v1 ast t) by A2,NAT_1:13;
  len apply(v1,t) = len v1+1 by Def19;
  then len v1+i = len apply(v1,t)+j by A13;
  then s = apply(v,t).(len v1+i) by A11,A1,A13,A14,Th33;
  hence thesis by A3,A9,A12,FINSEQ_1:28;
end;

theorem Th41:
  for T being Noetherian adj-structured reflexive transitive
  antisymmetric with_suprema non void TA-structure for t being type of T for v
  being FinSequence of the adjectives of T st v is_applicable_to t for i1,i2
being Nat st 1 <= i1 & i1 <= i2 & i2 <= len v+1 for t1,t2 being type
  of T st t1 = apply(v,t).i1 & t2 = apply(v,t).i2 holds t2 <= t1
proof
  let T be Noetherian adj-structured reflexive transitive antisymmetric
  with_suprema non void TA-structure;
  let t be type of T;
  let v be FinSequence of the adjectives of T such that
A1: for i being Nat, a being adjective of T, s being type of
  T st i in dom v & a = v.i & s = apply(v,t).i holds a is_applicable_to s;
  let i1,i2 be Nat such that
A2: 1 <= i1 and
A3: i1 <= i2 and
A4: i2 <= len v+1;
  consider j being Nat such that
A5: i2 = i1+j by A3,NAT_1:10;
  let s1,s2 be type of T;
  defpred P[Nat] means i1+$1 <= len apply(v,t) implies for s being
  type of T st s = apply(v,t).(i1+$1) holds s <= s1;
A6: len apply(v,t) = len v+1 by Def19;
A7: for i being Nat st P[i] holds P[i+1]
  proof
    let i be Nat such that
A8: P[i] and
A9: i1+(i+1) <= len apply(v,t);
    i1 <= i1+i by NAT_1:11;
    then
A10: 1 <= i1+i by A2,XXREAL_0:2;
A11: i1+(i+1) = i1+i+1;
    then i1+i <= len v by A6,A9,XREAL_1:6;
    then
A12: i1+i in dom v by A10,FINSEQ_3:25;
    then v.(i1+i) in rng v by FUNCT_1:3;
    then reconsider a = v.(i1+i) as adjective of T;
    i1+i < len v+1 by A6,A9,A11,NAT_1:13;
    then i1+i in dom apply(v,t) by A6,A10,FINSEQ_3:25;
    then apply(v,t).(i1+i) in rng apply(v,t) by FUNCT_1:3;
    then reconsider s = apply(v,t).(i1+i) as type of T;
A13: apply(v,t).(i1+i+1) = a ast s by A12,Def19;
A14: a ast s <= s by A1,A12,Th20;
    s <= s1 by A8,A9,A11,NAT_1:13;
    hence thesis by A13,A14,YELLOW_0:def 2;
  end;
  assume that
A15: s1 = apply(v,t).i1 and
A16: s2 = apply(v,t).i2;
A17: P[0] by A15;
  for i being Nat holds P[i] from NAT_1:sch 2(A17,A7);
  hence thesis by A4,A5,A6,A16;
end;

theorem Th42:
  for T being Noetherian adj-structured reflexive transitive
  antisymmetric with_suprema non void TA-structure for t being type of T for v
  being FinSequence of the adjectives of T st v is_applicable_to t for s being
  type of T st s in rng apply(v, t) holds v ast t <= s & s <= t
proof
  let T be Noetherian adj-structured reflexive transitive antisymmetric
  with_suprema non void TA-structure;
  let t be type of T;
  let v be FinSequence of the adjectives of T such that
A1: v is_applicable_to t;
A2: len apply(v,t) = len v+1 by Def19;
  let s be type of T;
  assume s in rng apply(v,t);
  then consider x being object such that
A3: x in dom apply(v,t) and
A4: s = apply(v,t).x by FUNCT_1:def 3;
  reconsider x as Element of NAT by A3;
A5: x <= len apply(v,t) by A3,FINSEQ_3:25;
A6: apply(v,t).1 = t by Def19;
  x >= 1 by A3,FINSEQ_3:25;
  hence thesis by A1,A4,A5,A2,A6,Th41;
end;

theorem Th43:
  for T being Noetherian adj-structured reflexive transitive
  antisymmetric with_suprema non void TA-structure for t being type of T for v
being FinSequence of the adjectives of T st v is_applicable_to t holds v ast t
  <= t
proof
  let T be Noetherian adj-structured reflexive transitive antisymmetric
  with_suprema non void TA-structure;
  let t be type of T;
  let v be FinSequence of the adjectives of T such that
A1: v is_applicable_to t;
A2: len v+1 >= 1 by NAT_1:11;
  len apply(v,t) = len v+1 by Def19;
  then len v+1 in dom apply(v, t) by A2,FINSEQ_3:25;
  then apply(v,t).(len v+1) in rng apply(v,t) by FUNCT_1:3;
  hence thesis by A1,Th42;
end;

theorem Th44:
  for T being Noetherian adj-structured reflexive transitive
  antisymmetric with_suprema non void TA-structure for t being type of T for v
being FinSequence of the adjectives of T st v is_applicable_to t holds rng v c=
  adjs (v ast t)
proof
  let T be Noetherian adj-structured reflexive transitive antisymmetric
  with_suprema non void TA-structure;
  let t be type of T;
  let v be FinSequence of the adjectives of T such that
A1: v is_applicable_to t;
  let a be object;
  assume
A2: a in rng v;
  then consider x being object such that
A3: x in dom v and
A4: a = v.x by FUNCT_1:def 3;
  reconsider a as adjective of T by A2;
  reconsider x as Element of NAT by A3;
A5: x >= 1 by A3,FINSEQ_3:25;
  then
A6: x+1 >= 1 by NAT_1:13;
A7: len apply(v,t) = len v+1 by Def19;
A8: x <= len v by A3,FINSEQ_3:25;
  then x+1 <= len apply(v,t) by A7,XREAL_1:6;
  then x+1 in dom apply(v,t) by A6,FINSEQ_3:25;
  then
A9: apply(v,t).(x+1) in rng apply(v,t) by FUNCT_1:3;
  x < len apply(v,t) by A8,A7,NAT_1:13;
  then x in dom apply(v,t) by A5,FINSEQ_3:25;
  then apply(v,t).x in rng apply(v,t) by FUNCT_1:3;
  then reconsider s = apply(v,t).x as type of T;
  a ast s = apply(v,t).(x+1) by A3,A4,Def19;
  then a ast s >= v ast t by A1,A9,Th42;
  then
A10: adjs (a ast s) c= adjs(v ast t) by Th10;
  a is_applicable_to s by A1,A3,A4;
  then a in adjs (a ast s) by Th21;
  hence thesis by A10;
end;

theorem Th45:
  for T being Noetherian adj-structured reflexive transitive
  antisymmetric with_suprema non void TA-structure for t being type of T for v
  being FinSequence of the adjectives of T st v is_applicable_to t for A being
  Subset of the adjectives of T st A = rng v holds A is_applicable_to t
proof
  let T be Noetherian adj-structured reflexive transitive antisymmetric
  with_suprema non void TA-structure;
  let t be type of T;
  let v be FinSequence of the adjectives of T;
  assume
A1: v is_applicable_to t;
  then
A2: rng v c= adjs (v ast t) by Th44;
  v ast t <= t by A1,Th43;
  hence thesis by A2;
end;

theorem Th46:
  for T being Noetherian adj-structured reflexive transitive
antisymmetric with_suprema non void TA-structure for t being type of T for v1,
  v2 being FinSequence of the adjectives of T st v1 is_applicable_to t & rng v2
  c= rng v1 for s being type of T st s in rng apply(v2,t) holds v1 ast t <= s
proof
  let T be Noetherian adj-structured reflexive transitive antisymmetric
  with_suprema non void TA-structure;
  let t be type of T;
  let v,v9 be FinSequence of the adjectives of T such that
A1: v is_applicable_to t and
A2: rng v9 c= rng v;
  defpred P[Nat] means $1 <= len apply(v9,t) implies for s being type of T st
  s = apply(v9,t).$1 holds v ast t <= s;
A3: for i being non zero Nat st P[i] holds P[i+1]
  proof
A4: rng v c= adjs (v ast t) by A1,Th44;
    let i be non zero Nat such that
A5: P[i] and
A6: i+1 <= len apply(v9,t);
A7: 0+1 <= i by NAT_1:13;
A8: len apply(v9,t) = len v9+1 by Def19;
    then i < len v9+1 by A6,NAT_1:13;
    then i in dom apply(v9,t) by A8,A7,FINSEQ_3:25;
    then apply(v9,t).i in rng apply(v9,t) by FUNCT_1:3;
    then reconsider s = apply(v9,t).i as type of T;
A9: v ast t <= s by A5,A6,NAT_1:13;
    i <= len v9 by A6,A8,XREAL_1:6;
    then
A10: i in dom v9 by A7,FINSEQ_3:25;
    then
A11: v9.i in rng v9 by FUNCT_1:3;
    then reconsider a = v9.i as adjective of T;
A12: a in rng v by A2,A11;
    apply(v9,t).(i+1) = a ast s by A10,Def19;
    hence thesis by A12,A4,A9,Th23;
  end;
  apply(v9,t).1 = t by Def19;
  then
A13: P[1] by A1,Th43;
A14: for i being non zero Nat holds P[i] from NAT_1:sch 10(A13,A3);
  let s be type of T;
  assume s in rng apply(v9,t);
  then consider x being object such that
A15: x in dom apply(v9,t) and
A16: s = apply(v9,t).x by FUNCT_1:def 3;
A17: x in Seg len apply(v9,t) by A15,FINSEQ_1:def 3;
  reconsider x as Element of NAT by A15;
  reconsider x as non zero Element of NAT by A17,FINSEQ_1:1;
  x <= len apply(v9,t) by A15,FINSEQ_3:25;
  hence thesis by A16,A14;
end;

theorem Th47:
  for T being Noetherian adj-structured reflexive transitive
antisymmetric with_suprema non void TA-structure for t being type of T for v1,
  v2 being FinSequence of the adjectives of T st v1^v2 is_applicable_to t holds
  v2^v1 is_applicable_to t
proof
  let T be Noetherian adj-structured reflexive transitive antisymmetric
  with_suprema non void TA-structure;
  let t be type of T;
  let v1,v2 be FinSequence of the adjectives of T;
A1: rng (v1^v2) = rng v1 \/ rng v2 by FINSEQ_1:31;
  assume
A2: v1^v2 is_applicable_to t;
  then
A3: rng (v1^v2) c= adjs ((v1^v2) ast t) by Th44;
  let i be Nat, a be adjective of T, s be type of T such that
A4: i in dom (v2^v1) and
A5: a = (v2^v1).i and
A6: s = apply(v2^v1,t).i;
A7: a in rng (v2^v1) by A4,A5,FUNCT_1:3;
A8: len apply(v2^v1,t) = len (v2^v1)+1 by Def19;
A9: rng (v2^v1) = rng v1 \/ rng v2 by FINSEQ_1:31;
  i <= len (v2^v1) by A4,FINSEQ_3:25;
  then
A10: i < len (v2^v1)+1 by NAT_1:13;
  i >= 1 by A4,FINSEQ_3:25;
  then i in dom apply(v2^v1,t) by A10,A8,FINSEQ_3:25;
  then s in rng apply(v2^v1,t) by A6,FUNCT_1:3;
  then (v1^v2) ast t <= s by A2,A1,A9,Th46;
  hence thesis by A1,A9,A7,A3,Th23;
end;

theorem
  for T being Noetherian adj-structured reflexive transitive
antisymmetric with_suprema non void TA-structure for t being type of T for v1,
  v2 being FinSequence of the adjectives of T st v1^v2 is_applicable_to t holds
  v1^v2 ast t = v2^v1 ast t
proof
  let T be Noetherian adj-structured reflexive transitive antisymmetric
  with_suprema non void TA-structure;
  let t be type of T;
  let v1,v2 be FinSequence of the adjectives of T;
  assume
A1: v1^v2 is_applicable_to t;
A2: len (v1^v2) = len v1+len v2 by FINSEQ_1:22;
A3: rng (v1^v2) = rng v1 \/ rng v2 by FINSEQ_1:31;
A4: len (v2^v1) = len v1+len v2 by FINSEQ_1:22;
A5: len (v1^v2)+1 >= 1 by NAT_1:11;
A6: rng (v2^v1) = rng v1 \/ rng v2 by FINSEQ_1:31;
  len apply(v2^v1, t) = len (v2^v1)+1 by Def19;
  then len (v1^v2)+1 in dom apply(v2^ v1, t) by A2,A4,A5,FINSEQ_3:25;
  then v2^v1 ast t in rng apply(v2^v1, t) by A2,A4,FUNCT_1:3;
  then
A7: v1^v2 ast t <= v2^v1 ast t by A1,A3,A6,Th46;
  len apply(v1^v2, t) = len (v1^v2)+1 by Def19;
  then len (v1^v2)+1 in dom apply(v1^v2, t) by A5,FINSEQ_3:25;
  then v1^v2 ast t in rng apply(v1^v2, t) by FUNCT_1:3;
  then v2^v1 ast t <= v1^v2 ast t by A1,A3,A6,Th46,Th47;
  hence thesis by A7,YELLOW_0:def 3;
end;

theorem Th49:
  for T being Noetherian adj-structured reflexive transitive
  antisymmetric with_suprema TA-structure for t being type of T for A being
  Subset of the adjectives of T st A is_applicable_to t holds A ast t <= t
proof
  let T be Noetherian adj-structured reflexive transitive antisymmetric
  with_suprema TA-structure;
  let t be type of T;
  let a be Subset of the adjectives of T;
  assume a is_applicable_to t;
  then types a /\ downarrow t is Ideal of T by Th26;
  then sup (types a /\ downarrow t) in types a /\ downarrow t by Th1;
  then a ast t in downarrow t by XBOOLE_0:def 4;
  hence thesis by WAYBEL_0:17;
end;

theorem Th50:
  for T being Noetherian adj-structured reflexive transitive
  antisymmetric with_suprema TA-structure for t being type of T for A being
Subset of the adjectives of T st A is_applicable_to t holds A c= adjs(A ast t)
proof
  let T be Noetherian adj-structured reflexive transitive antisymmetric
  with_suprema TA-structure;
  let t be type of T;
  let a be Subset of the adjectives of T;
  assume a is_applicable_to t;
  then types a /\ downarrow t is Ideal of T by Th26;
  then sup (types a /\ downarrow t) in types a /\ downarrow t by Th1;
  then a ast t in types a by XBOOLE_0:def 4;
  hence thesis by Th14;
end;

theorem
  for T being Noetherian adj-structured reflexive transitive
  antisymmetric with_suprema TA-structure for t being type of T for A being
Subset of the adjectives of T st A is_applicable_to t holds A ast t in types A
proof
  let T be Noetherian adj-structured reflexive transitive antisymmetric
  with_suprema TA-structure;
  let t be type of T;
  let a be Subset of the adjectives of T;
  assume a is_applicable_to t;
  then types a /\ downarrow t is Ideal of T by Th26;
  then sup (types a /\ downarrow t) in types a /\ downarrow t by Th1;
  hence thesis by XBOOLE_0:def 4;
end;

theorem Th52:
  for T being Noetherian adj-structured reflexive transitive
  antisymmetric with_suprema TA-structure for t being type of T for A being
Subset of the adjectives of T for t9 being type of T st t9 <= t & A c= adjs t9
  holds A is_applicable_to t & t9 <= A ast t
proof
  let T be Noetherian adj-structured reflexive transitive antisymmetric
  with_suprema TA-structure;
  let t be type of T;
  let a be Subset of the adjectives of T;
  let t9 be type of T;
  assume that
A1: t9 <= t and
A2: a c= adjs t9;
A3: t9 in downarrow t by A1,WAYBEL_0:17;
  thus a is_applicable_to t
  by A1,A2;
  then types a /\ downarrow t is Ideal of T by Th26;
  then ex_sup_of types a /\ downarrow t, T by Th1;
  then
A4: a ast t is_>=_than types a /\ downarrow t by YELLOW_0:30;
  t9 in types a by A2,Th14;
  then t9 in types a /\ downarrow t by A3,XBOOLE_0:def 4;
  hence thesis by A4;
end;

theorem
  for T being Noetherian adj-structured reflexive transitive
  antisymmetric with_suprema TA-structure for t being type of T for A being
Subset of the adjectives of T st A c= adjs t holds A is_applicable_to t & A ast
  t = t
proof
  let T be Noetherian adj-structured reflexive transitive antisymmetric
  with_suprema TA-structure;
  let t be type of T;
  let a be Subset of the adjectives of T;
  assume
A1: a c= adjs t;
  hence a is_applicable_to t by Th52;
  then
A2: a ast t <= t by Th49;
  t <= a ast t by A1,Th52;
  hence thesis by A2,YELLOW_0:def 3;
end;

theorem Th54:
  for T being TA-structure, t being type of T for A,B being Subset
  of the adjectives of T st A is_applicable_to t & B c= A holds B
  is_applicable_to t
proof
  let T be TA-structure;
  let t be type of T;
  let A,B be Subset of the adjectives of T;
  given t9 being type of T such that
A1: A c= adjs t9 and
A2: t9 <= t;
  assume
A3: B c= A;
  take t9;
  thus thesis by A1,A2,A3;
end;

theorem Th55:
  for T being Noetherian adj-structured reflexive transitive
  antisymmetric with_suprema non void TA-structure for t being type of T, a
being adjective of T for A,B being Subset of the adjectives of T st B = A \/ {a
  } & B is_applicable_to t holds a ast (A ast t) = B ast t
proof
  let T be Noetherian adj-structured reflexive transitive antisymmetric
  with_suprema non void TA-structure;
  let t be type of T, a be adjective of T;
  let A,B be Subset of the adjectives of T such that
A1: B = A \/ {a} and
A2: B is_applicable_to t;
A3: A is_applicable_to t by A1,A2,Th54,XBOOLE_1:7;
A4: {a} c= B by A1,XBOOLE_1:7;
A5: A c= B by A1,XBOOLE_1:7;
  types a /\ downarrow (A ast t) = types B /\ downarrow t
  proof
    thus types a /\ downarrow (A ast t) c= types B /\ downarrow t
    proof
      let x be object;
      assume
A6:   x in types a /\ downarrow (A ast t);
      then reconsider t9 = x as type of T;
      x in types a by A6,XBOOLE_0:def 4;
      then a in adjs t9 by Th13;
      then
A7:   {a} c= adjs t9 by ZFMISC_1:31;
      x in downarrow (A ast t) by A6,XBOOLE_0:def 4;
      then
A8:   t9 <= A ast t by WAYBEL_0:17;
      then
A9:   adjs (A ast t) c= adjs t9 by Th10;
      A ast t <= t by A3,Th49;
      then t9 <= t by A8,YELLOW_0:def 2;
      then
A10:  t9 in downarrow t by WAYBEL_0:17;
      A c= adjs (A ast t) by A3,Th50;
      then A c= adjs t9 by A9;
      then B c= adjs t9 by A1,A7,XBOOLE_1:8;
      then t9 in types B by Th14;
      hence thesis by A10,XBOOLE_0:def 4;
    end;
    let x be object;
    assume
A11: x in types B /\ downarrow t;
    then reconsider t9 = x as type of T;
    x in downarrow t by A11,XBOOLE_0:def 4;
    then
A12: t9 <= t by WAYBEL_0:17;
    x in types B by A11,XBOOLE_0:def 4;
    then
A13: B c= adjs t9 by Th14;
    then A c= adjs t9 by A5;
    then t9 <= A ast t by A12,Th52;
    then
A14: t9 in downarrow (A ast t) by WAYBEL_0:17;
    a in B by A4,ZFMISC_1:31;
    then t9 in types a by A13,Th13;
    hence thesis by A14,XBOOLE_0:def 4;
  end;
  hence thesis;
end;

theorem Th56:
  for T being Noetherian adj-structured reflexive transitive
  antisymmetric with_suprema non void TA-structure for t being type of T for v
  being FinSequence of the adjectives of T st v is_applicable_to t for A being
  Subset of the adjectives of T st A = rng v holds v ast t = A ast t
proof
  let T be Noetherian adj-structured reflexive transitive antisymmetric
  with_suprema non void TA-structure;
  defpred P[Nat] means for t being type of T, v being FinSequence
of the adjectives of T st $1 = len v & v is_applicable_to t for A being Subset
  of the adjectives of T st A = rng v holds v ast t = A ast t;
  let t be type of T;
  let v be FinSequence of the adjectives of T;
A1: now
    let n be Nat such that
A2: P[n];
    now
      let t be type of T, v be FinSequence of the adjectives of T such that
A3:   n+1 = len v and
A4:   v is_applicable_to t;
      consider v1 being FinSequence of the adjectives of T, a being Element of
      the adjectives of T such that
A5:   v = v1^<*a*> by A3,FINSEQ_2:19;
      reconsider B = rng v1 as Subset of the adjectives of T;
      reconsider a as adjective of T;
      len <*a*> = 1 by FINSEQ_1:40;
      then
A6:   len v = len v1+1 by A5,FINSEQ_1:22;
      v1 is_applicable_to t by A4,A5,Th40;
      then
A7:   v1 ast t = B ast t by A2,A3,A6;
      let A be Subset of the adjectives of T;
      assume
A8:   A = rng v;
      then
A9:   A = B \/ rng <*a*> by A5,FINSEQ_1:31
        .= B \/ {a} by FINSEQ_1:38;
      thus v ast t = <*a*> ast (v1 ast t) by A5,Th37
        .= a ast (B ast t) by A7,Th31
        .= A ast t by A4,A8,A9,Th45,Th55;
    end;
    hence P[n+1];
  end;
A10: P[0]
  proof
    let t be type of T;
    let v be FinSequence of the adjectives of T;
    assume
A11: 0 = len v;
    then v = <*> the adjectives of T;
    then
A12: rng v = {} the adjectives of T;
    v ast t = t by A11,Def19;
    hence thesis by A12,Th27;
  end;
  for n being Nat holds P[n] from NAT_1:sch 2(A10,A1);
  hence thesis;
end;

begin :: Subject function

definition
  let T be non empty non void TA-structure;
  func sub T -> Function of the adjectives of T, the carrier of T means
  :Def22
  :
  for a being adjective of T holds it.a = sup(types a \/ types non-a);
  existence
  proof
    deffunc F(Element of the adjectives of T) = sup(types $1 \/ types non-$1);
    consider f being Function of the adjectives of T, the carrier of T such
    that
A1: for a being Element of the adjectives of T holds f.a = F(a) from
    FUNCT_2:sch 4;
    take f;
    thus thesis by A1;
  end;
  uniqueness
  proof
    let f1,f2 be Function of the adjectives of T, the carrier of T such that
A2: for a being adjective of T holds f1.a = sup(types a \/ types non-a ) and
A3: for a being adjective of T holds f2.a = sup(types a \/ types non-a );
    now
      let a be Element of the adjectives of T;
      reconsider b = a as adjective of T;
      thus f1.a = sup(types b \/ types non-b) by A2
        .= f2.a by A3;
    end;
    hence thesis by FUNCT_2:63;
  end;
end;

definition
  struct(TA-structure) TAS-structure(# carrier, adjectives -> set, InternalRel
    -> (Relation of the carrier), non-op -> UnOp of the adjectives, adj-map ->
    Function of the carrier, Fin the adjectives, sub-map -> Function of the
    adjectives, the carrier #);
end;

registration
  cluster non void reflexive 1-element strict for TAS-structure;
  existence
  proof
    set P = the non void reflexive 1-element TA-structure;
    set s = the Function of the adjectives of P, the carrier of P;
    take T = TAS-structure(#the carrier of P, the adjectives of P, the
      InternalRel of P, the non-op of P, the adj-map of P, s#);
    the RelStr of P = the RelStr of T;
    hence thesis by STRUCT_0:def 19,WAYBEL_8:12;
  end;
end;

definition
  let T be non empty non void TAS-structure;
  let a be adjective of T;
  func sub a -> type of T equals
  (the sub-map of T).a;
  coherence;
end;

definition
  let T be non empty non void TAS-structure;
  attr T is non-absorbing means
  (the sub-map of T)*(the non-op of T) = the sub-map of T;
  attr T is subjected means
  for a being adjective of T holds types a \/ types
non-a is_<=_than sub a & (types a <> {} & types non-a <> {} implies sub a = sup
  (types a \/ types non-a));
end;

definition
  let T be non empty non void TAS-structure;
  redefine attr T is non-absorbing means
  for a being adjective of T holds sub non-a = sub a;
  compatibility
  proof
    thus T is non-absorbing implies for a being adjective of T holds sub non-a
    = sub a
    by FUNCT_2:15;
    assume
A1: for a being adjective of T holds sub non-a = sub a;
    now
      let x be Element of the adjectives of T;
      reconsider a = x as adjective of T;
      thus ((the sub-map of T)*(the non-op of T)).x = sub non-a by FUNCT_2:15
        .= sub a by A1
        .= (the sub-map of T).x;
    end;
    hence (the sub-map of T)*(the non-op of T) = the sub-map of T by FUNCT_2:63
;
  end;
end;

definition
  let T be non empty non void TAS-structure;
  let t be Element of T;
  let a be adjective of T;
  pred a is_properly_applicable_to t means

  t <= sub a & a is_applicable_to t;
end;

definition
  let T be non empty non void reflexive transitive TAS-structure;
  let t be type of T;
  let v be FinSequence of the adjectives of T;
  pred v is_properly_applicable_to t means

  for i being Nat,
a being adjective of T, s being type of T st i in dom v & a = v.i & s = apply(v
  ,t).i holds a is_properly_applicable_to s;
end;

theorem Th57:
  for T being non empty non void reflexive transitive
TAS-structure for t being type of T, v being FinSequence of the adjectives of T
  st v is_properly_applicable_to t holds v is_applicable_to t
proof
  let T be non empty non void reflexive transitive TAS-structure;
  let t be type of T;
  let v be FinSequence of the adjectives of T;
  assume
A1: for i being Nat, a being adjective of T, s being type of
T st i in dom v & a = v.i & s = apply(v,t).i holds a is_properly_applicable_to
  s;
  let i be Nat, a be adjective of T, s be type of T such that
A2: i in dom v and
A3: a = v.i and
A4: s = apply(v, t).i;
  a is_properly_applicable_to s by A1,A2,A3,A4;
  hence thesis;
end;

theorem
  for T being non empty non void reflexive transitive TAS-structure for
  t being type of T holds <*> the adjectives of T is_properly_applicable_to t;

theorem
  for T being non empty non void reflexive transitive TAS-structure for
  t being type of T, a being adjective of T holds a is_properly_applicable_to t
  iff <*a*> is_properly_applicable_to t
proof
  let T be non empty non void reflexive transitive TAS-structure;
  let t be type of T;
  let a be adjective of T;
  set v = <*a*>;
A1: v.1 = a by FINSEQ_1:40;
  hereby
    assume
A2: a is_properly_applicable_to t;
    thus <*a*> is_properly_applicable_to t
    proof
      let i be Nat, b be adjective of T, s be type of T;
      assume i in dom v;
      then i in Seg 1 by FINSEQ_1:38;
      then
A3:   i = 1 by FINSEQ_1:2,TARSKI:def 1;
      then v.i = a by FINSEQ_1:40;
      hence thesis by A2,A3,Def19;
    end;
  end;
  assume
A4: for i being Nat, a9 being adjective of T, s being type of
  T st i in dom v & a9 = v.i & s = apply(v,t).i holds a9
  is_properly_applicable_to s;
  len v = 1 by FINSEQ_1:40;
  then
A5: 1 in dom v by FINSEQ_3:25;
  apply(v,t).1 = t by Def19;
  hence thesis by A4,A5,A1;
end;

theorem Th60:
  for T being non empty non void reflexive transitive
TAS-structure for t being type of T, v1,v2 being FinSequence of the adjectives
of T st v1^v2 is_properly_applicable_to t holds v1 is_properly_applicable_to t
  & v2 is_properly_applicable_to v1 ast t
proof
  let T be non empty non void reflexive transitive TAS-structure;
  let t be type of T;
  let v1,v2 be FinSequence of the adjectives of T;
  set v = v1^v2;
A1: apply(v,t) = apply(v1,t)$^apply(v2, v1 ast t) by Th34;
A2: len apply(v2, v1 ast t) = len v2+1 by Def19;
  assume
A3: for i being Nat, a being adjective of T, s being type of
T st i in dom v & a = v.i & s = apply(v,t).i holds a is_properly_applicable_to
  s;
  hereby
A4: dom v1 c= dom v by FINSEQ_1:26;
    let i be Nat, a be adjective of T, s be type of T such that
A5: i in dom v1 and
A6: a = v1.i and
A7: s = apply(v1,t).i;
A8: a = v.i by A5,A6,FINSEQ_1:def 7;
    s = apply(v,t).i by A5,A7,Th35;
    hence a is_properly_applicable_to s by A3,A5,A4,A8;
  end;
  let i be Nat, a be adjective of T, s be type of T such that
A9: i in dom v2 and
A10: a = v2.i and
A11: s = apply(v2, v1 ast t).i;
A12: a = v.(len v1+i) by A9,A10,FINSEQ_1:def 7;
  i >= 1 by A9,FINSEQ_3:25;
  then consider j being Nat such that
A13: i = 1+j by NAT_1:10;
  i <= len v2 by A9,FINSEQ_3:25;
  then j < len v2 by A13,NAT_1:13;
  then
A14: j < len apply(v2, v1 ast t) by A2,NAT_1:13;
  len apply(v1,t) = len v1+1 by Def19;
  then len v1+i = len apply(v1,t)+j by A13;
  then s = apply(v,t).(len v1+i) by A11,A1,A13,A14,Th33;
  hence thesis by A3,A9,A12,FINSEQ_1:28;
end;

theorem Th61:
  for T being non empty non void reflexive transitive
TAS-structure for t being type of T, v1,v2 being FinSequence of the adjectives
of T st v1 is_properly_applicable_to t & v2 is_properly_applicable_to v1 ast t
  holds v1^v2 is_properly_applicable_to t
proof
  let T be non empty non void reflexive transitive TAS-structure;
  let t be type of T;
  let v1,v2 be FinSequence of the adjectives of T;
  set v = v1^v2;
  assume
A1: for i being Nat, a being adjective of T, s being type of
  T st i in dom v1 & a = v1.i & s = apply(v1,t).i holds a
  is_properly_applicable_to s;
  assume
A2: for i being Nat, a being adjective of T, s being type of
  T st i in dom v2 & a = v2.i & s = apply(v2, v1 ast t).i holds a
  is_properly_applicable_to s;
A3: apply(v,t) = apply(v1,t)$^apply(v2, v1 ast t) by Th34;
  let i be Nat, a be adjective of T, s be type of T such that
A4: i in dom v and
A5: a = v.i and
A6: s = apply(v, t).i;
A7: i >= 1 by A4,FINSEQ_3:25;
A8: i <= len v by A4,FINSEQ_3:25;
  per cases;
  suppose
    i <= len v1;
    then
A9: i in dom v1 by A7,FINSEQ_3:25;
    then
A10: a = v1.i by A5,FINSEQ_1:def 7;
    s = apply(v1,t).i by A6,A9,Th35;
    hence thesis by A1,A9,A10;
  end;
  suppose
    i > len v1;
    then i >= 1+len v1 by NAT_1:13;
    then consider j being Nat such that
A11: i = len v1+1+j by NAT_1:10;
A12: len apply(v2, v1 ast t) = len v2+1 by Def19;
A13: len v = len v1+len v2 by FINSEQ_1:22;
A14: len apply(v1,t) = len v1+1 by Def19;
    i = len v1+(j+1) by A11;
    then
A15: j+1 <= len v2 by A8,A13,XREAL_1:6;
    then j < len v2 by NAT_1:13;
    then j < len apply(v2, v1 ast t) by A12,NAT_1:13;
    then
A16: s = apply(v2,v1 ast t).(1+j) by A6,A3,A11,A14,Th33;
    j+1 >= 1 by NAT_1:11;
    then
A17: j+1 in dom v2 by A15,FINSEQ_3:25;
    len v1+(j+1) = len apply(v1,t)+j by A14;
    then a = v2.(1+j) by A5,A11,A17,FINSEQ_1:def 7;
    hence thesis by A2,A17,A16;
  end;
end;

definition
  let T be non empty non void reflexive transitive TAS-structure;
  let t be type of T;
  let A be Subset of the adjectives of T;
  pred A is_properly_applicable_to t means

  ex s being FinSequence of
  the adjectives of T st rng s = A & s is_properly_applicable_to t;
end;

theorem
  for T being non empty non void reflexive transitive
TAS-structure for t being type of T, A being Subset of the adjectives of T st A
  is_properly_applicable_to t holds A is finite;

theorem Th63:
  for T being non empty non void reflexive transitive
  TAS-structure for t being type of T holds {} the adjectives of T
  is_properly_applicable_to t
proof
  let T be non empty non void reflexive transitive TAS-structure;
  let t be type of T;
  take s = <*> the adjectives of T;
  thus rng s = {} the adjectives of T;
  let i be Nat;
  thus thesis;
end;

scheme
  MinimalFiniteSet{P[set]}: ex A being finite set st P[A] & for B being set st
  B c= A & P[B] holds B = A
provided
A1: ex A being finite set st P[A]
proof
  consider A being finite set such that
A2: P[A] by A1;
  defpred R[set,set] means $1 c= $2;
  consider Y being set such that
A3: for x being set holds x in Y iff x in bool A & P[x] from XFAMILY:
  sch 1;
  A c= A;
  then reconsider Y as non empty set by A2,A3;
  Y c= bool A
  by A3;
  then reconsider Y as finite non empty set;
A4: for x,y being Element of Y st R[x,y] & R[y,x] holds x = y;
A5: for x,y,z being Element of Y st R[x,y] & R[y,z] holds R[x,z] by XBOOLE_1:1;
A6: for X being set st X c= Y & (for x,y being Element of Y st x in X & y in
X holds R[x,y] or R[y,x]) holds ex y being Element of Y st for x being Element
  of Y st x in X holds R[y,x]
  proof
    let X be set such that
A7: X c= Y and
A8: for x,y being Element of Y st x in X & y in X holds R[x,y] or R[y ,x];
    per cases;
    suppose
A9:   X = {};
      set y = the Element of Y;
      take y;
      thus thesis by A9;
    end;
    suppose
A10:  X <> {};
      set x0 = the Element of X;
      x0 in X by A10;
      then reconsider x0 as Element of Y by A7;
      deffunc F(set) = card {y where y is Element of Y: y in X & y c< $1};
      consider f being Function such that
A11:  dom f = X & for x being set st x in X holds f.x = F(x) from
      FUNCT_1:sch 5;
      defpred P[Nat] means ex x being Element of Y st x in X & $1 = f.x;
A12:  for k being Nat st k<>0 & P[k] ex n being Nat st n<k & P[n]
      proof
        let k be Nat such that
A13:    k <> 0;
        given x being Element of Y such that
A14:    x in X and
A15:    k = f.x;
        set fx = {a where a is Element of Y: a in X & a c< x};
        fx c= Y
        proof
          let a be object;
          assume a in fx;
          then ex z being Element of Y st a = z & z in X & z c< x;
          hence thesis;
        end;
        then reconsider fx as finite set;
A16:    k = card fx by A11,A14,A15;
        set A = {z where z is Element of Y: z in X & z c< x};
        reconsider A as non empty set by A11,A13,A14,A15,CARD_1:27;
        set z = the Element of A;
        z in A;
        then consider y being Element of Y such that
A17:    z = y and
A18:    y in X and
A19:    y c< x;
        set fx0 = {a where a is Element of Y: a in X & a c< y};
        fx0 c= Y
        proof
          let a be object;
          assume a in fx0;
          then ex z being Element of Y st a = z & z in X & z c< y;
          hence thesis;
        end;
        then reconsider fx0 as finite set;
        reconsider n = card fx0 as Element of NAT;
        take n;
        not ex a being Element of Y st y = a & a in X & a c< y;
        then
A20:    not y in fx0;
A21:    y in fx by A17;
A22:    fx0 c= fx
        proof
          let a be object;
          assume a in fx0;
          then consider b being Element of Y such that
A23:      a = b and
A24:      b in X and
A25:      b c< y;
          b c< x by A19,A25,XBOOLE_1:56;
          hence thesis by A23,A24;
        end;
        then Segm card fx0 c= Segm card fx by CARD_1:11;
        then n <= k by A16,NAT_1:39;
        hence n < k by A16,A22,A21,A20,CARD_2:102,XXREAL_0:1;
        take y;
        thus thesis by A11,A18;
      end;
      set fx0 = {y where y is Element of Y: y in X & y c< x0};
      fx0 c= Y
      proof
        let a be object;
        assume a in fx0;
        then ex y being Element of Y st a = y & y in X & y c< x0;
        hence thesis;
      end;
      then reconsider fx0 as finite set;
      f.x0 = card fx0 by A10,A11;
      then
A26:  ex n being Nat st P[n] by A10;
      P[0] from NAT_1:sch 7(A26,A12);
      then consider y being Element of Y such that
A27:  y in X and
A28:  0 = f.y;
      take y;
      let x be Element of Y;
      assume
A29:  x in X;
      then x c= y or y c= x by A8,A27;
      then x c< y or y c= x;
      then
A30:  x in {z where z is Element of Y: z in X & z c< y} or y c= x by A29;
      f.y = card {z where z is Element of Y: z in X & z c< y} by A11,A27;
      hence thesis by A28,A30;
    end;
  end;
A31: for x being Element of Y holds R[x,x];
  consider x being Element of Y such that
A32: for y being Element of Y st x <> y holds not R[y,x] from ORDERS_1:
  sch 2(A31,A4,A5,A6);
  x in bool A by A3;
  then reconsider x as finite set;
  take x;
  thus P[x] by A3;
  let B be set;
  assume that
A33: B c= x and
A34: P[B];
  x in bool A by A3;
  then B c= A by A33,XBOOLE_1:1;
  then B in Y by A3,A34;
  hence thesis by A32,A33;
end;

theorem Th64:
  for T being non empty non void reflexive transitive
TAS-structure for t being type of T, A being Subset of the adjectives of T st A
is_properly_applicable_to t ex B being Subset of the adjectives of T st B c= A
& B is_properly_applicable_to t & A ast t = B ast t & for C being Subset of the
  adjectives of T st C c= B & C is_properly_applicable_to t & A ast t = C ast t
  holds C = B
proof
  let T be non empty non void reflexive transitive TAS-structure;
  let t be type of T, A be Subset of the adjectives of T;
  defpred P[set] means ex B being Subset of the adjectives of T st $1 = B & $1
  c= A & B is_properly_applicable_to t & A ast t = B ast t;
  assume
A1: A is_properly_applicable_to t;
A2: ex a being finite set st P[a] by A1;
  consider B being finite set such that
A3: P[B] and
A4: for C being set st C c= B & P[C] holds C = B from MinimalFiniteSet(
  A2);
  reconsider B as Subset of the adjectives of T by A3;
  take B;
  thus B c= A & B is_properly_applicable_to t & A ast t = B ast t by A3;
  let C be Subset of the adjectives of T;
  assume
A5: C c= B;
  then C c= A by A3,XBOOLE_1:1;
  hence thesis by A4,A5;
end;

definition
  let T be non empty non void reflexive transitive TAS-structure;
  attr T is commutative means
  :Def30:
  for t1,t2 being type of T, a being
  adjective of T st a is_properly_applicable_to t1 & a ast t1 <= t2 ex A being
finite Subset of the adjectives of T st A is_properly_applicable_to t1 "\/" t2
  & A ast (t1 "\/" t2) = t2;
end;

registration
  cluster Mizar-widening-like involutive without_fixpoints consistent
    adj-structured adjs-typed non-absorbing subjected commutative for complete
    upper-bounded non void 1-element reflexive transitive antisymmetric
    strict TAS-structure;
  existence
  proof

set P = the non void Mizar-widening-like involutive without_fixpoints
consistent adj-structured adjs-typed 1-element reflexive complete
strict TA-structure;
    set T = TAS-structure(#the carrier of P, the adjectives of P, the
      InternalRel of P, the non-op of P, the adj-map of P, sub P#);
    the RelStr of P = the RelStr of T;
    then reconsider
    T as non void 1-element reflexive strict TAS-structure
    by Def4,STRUCT_0:def 19,WAYBEL_8:12;
    take T;
    thus T is Mizar-widening-like;
    the AdjectiveStr of P = the AdjectiveStr of T;
    hence T is involutive without_fixpoints by Th5,Th6;
    thus T is consistent adj-structured adjs-typed by Th8,Th9,Th17;
    hereby
      let a be adjective of T;
      reconsider b = a as adjective of P;
      thus sub non-a = sup (types non-b \/ types non-non-b) by Def22
        .= sup (types non-b \/ types b) by Def6
        .= sub a by Def22;
    end;
A1: the RelStr of P = the RelStr of T;
    thus T is subjected
    proof
      let a be adjective of T;
      reconsider b = a as adjective of P;
A2:   types non-a = types non-b by Th11;
      types a = types b by Th11;
      then sup (types a \/ types non-a) = sup (types b \/ types non-b) by A1,A2
,YELLOW_0:17,26;
      then sup (types a \/ types non-a) = sub a by Def22;
      hence thesis by YELLOW_0:32;
    end;
    let t1,t2 be type of T, a be adjective of T such that
    a is_properly_applicable_to t1 and
    a ast t1 <= t2;
    take A = {} the adjectives of T;
    thus A is_properly_applicable_to t1 "\/" t2 by Th63;
    thus A ast (t1 "\/" t2) = t2 by STRUCT_0:def 10;
  end;
end;

theorem Th65:
  for T being Noetherian adj-structured reflexive transitive
  antisymmetric with_suprema non void TAS-structure for t being type of T, A
being Subset of the adjectives of T st A is_properly_applicable_to t ex s being
  one-to-one FinSequence of the adjectives of T st rng s = A & s
  is_properly_applicable_to t
proof
  let T be Noetherian adj-structured reflexive transitive antisymmetric
  with_suprema non void TAS-structure;
  let t be type of T, A be Subset of the adjectives of T;
  given s9 being FinSequence of the adjectives of T such that
A1: rng s9 = A and
A2: s9 is_properly_applicable_to t;
  defpred P[Nat] means ex s being FinSequence of the adjectives of T st $1 =
  len s & rng s = A & s is_properly_applicable_to t;
  len s9 = len s9;
  then
A3: ex k being Nat st P[k] by A1,A2;
  consider k being Nat such that
A4: P[k] and
A5: for n being Nat st P[n] holds k <= n from NAT_1:sch 5(A3);
  consider s being FinSequence of the adjectives of T such that
A6: k = len s and
A7: rng s = A and
A8: s is_properly_applicable_to t by A4;
  s is one-to-one
  proof
    let x,y be object;
    assume that
A9: x in dom s and
A10: y in dom s and
A11: s.x = s.y and
A12: x <> y;
    reconsider x,y as Element of NAT by A9,A10;
    x < y or x > y by A12,XXREAL_0:1;
    then consider x,y being Element of NAT such that
A13: x in dom s and
A14: y in dom s and
A15: x < y and
A16: s.x = s.y by A9,A10,A11;
A17: x >= 1 by A13,FINSEQ_3:25;
    y >= 1 by A14,FINSEQ_3:25;
    then consider i being Nat such that
A18: y = 1+i by NAT_1:10;
    reconsider i as Element of NAT by ORDINAL1:def 12;
    reconsider s1 = s|Seg i as FinSequence of the adjectives of T by
FINSEQ_1:18;
A19: y <= len s by A14,FINSEQ_3:25;
    then i <= len s by A18,NAT_1:13;
    then
A20: len s1 = i by FINSEQ_1:17;
    x <= i by A15,A18,NAT_1:13;
    then
A21: x in dom s1 by A20,A17,FINSEQ_3:25;
    s1 c= s by TREES_1:def 1;
    then consider s2 being FinSequence such that
A22: s = s1^s2 by TREES_1:1;
    reconsider s2 as FinSequence of the adjectives of T by A22,FINSEQ_1:36;
A23: len s = len s1+len s2 by A22,FINSEQ_1:22;
    then
A24: len s2 >= 1 by A18,A19,A20,XREAL_1:6;
    then
A25: 1 in dom s2 by FINSEQ_3:25;
    reconsider s21 = s2|Seg 1 as FinSequence of the adjectives of T by
FINSEQ_1:18;
    s21 c= s2 by TREES_1:def 1;
    then consider s22 being FinSequence such that
A26: s2 = s21^s22 by TREES_1:1;
    reconsider s22 as FinSequence of the adjectives of T by A26,FINSEQ_1:36;
A27: len s21 = 1 by A24,FINSEQ_1:17;
    then
A28: s21 = <*s21.1*> by FINSEQ_1:40;
    then
A29: rng s21 = {s21.1} by FINSEQ_1:39;
    then reconsider a = s21.1 as adjective of T by ZFMISC_1:31;
A30: rng s2 = rng s21 \/ rng s22 by A26,FINSEQ_1:31;
    a = s2.1 by A28,A26,FINSEQ_1:41
      .= s.y by A18,A22,A20,A25,FINSEQ_1:def 7;
    then a = s1.x by A16,A22,A21,FINSEQ_1:def 7;
    then
A31: a in rng s1 by A21,FUNCT_1:3;
    then rng s21 c= rng s1 by A29,ZFMISC_1:31;
    then rng s1 \/ rng s21 = rng s1 by XBOOLE_1:12;
    then
A32: rng (s1^s22) = rng s1 \/ rng s21 \/ rng s22 by FINSEQ_1:31;
A33: s2 is_properly_applicable_to s1 ast t by A8,A22,Th60;
A34: s1 is_properly_applicable_to t by A8,A22,A23,Th60;
    then rng s1 c= adjs (s1 ast t) by Th44,Th57;
    then s1 ast t = a ast (s1 ast t) by A31,Th24
      .= s21 ast (s1 ast t) by A28,Th31;
    then s22 is_properly_applicable_to s1 ast t by A26,A33,Th60;
    then
A35: s1^s22 is_properly_applicable_to t by A34,Th61;
A36: len s2 = len s21+len s22 by A26,FINSEQ_1:22;
    rng s = rng s1 \/ rng s2 by A22,FINSEQ_1:31;
    then k <= len (s1^s22) by A5,A7,A35,A32,A30,XBOOLE_1:4;
    then k <= len s1+len s22 by FINSEQ_1:22;
    then len s21+len s22 <= 0+len s22 by A6,A23,A36,XREAL_1:6;
    hence thesis by A27,XREAL_1:6;
  end;
  hence thesis by A7,A8;
end;

begin :: Reduction of adjectives

definition
  let T be non empty non void reflexive transitive TAS-structure;
  func T @--> -> Relation of T means
  :Def31:
  for t1,t2 being type of T holds [
  t1,t2] in it iff ex a being adjective of T st not a in adjs t2 & a
  is_properly_applicable_to t2 & a ast t2 = t1;
  existence
  proof
    defpred P[Element of T, Element of T] means ex a being adjective of T st
    not a in adjs $2 & a is_properly_applicable_to $2 & a ast $2 = $1;
    consider R being Relation of the carrier of T such that
A1: for t1,t2 being Element of T holds [t1,t2] in R iff P[t1,t2] from
    RELSET_1:sch 2;
    reconsider R as Relation of T;
    take R;
    thus thesis by A1;
  end;
  uniqueness
  proof
    let R1,R2 be Relation of T such that
A2: for t1,t2 being type of T holds [t1,t2] in R1 iff ex a being
adjective of T st not a in adjs t2 & a is_properly_applicable_to t2 & a ast t2
    = t1 and
A3: for t1,t2 being type of T holds [t1,t2] in R2 iff ex a being
adjective of T st not a in adjs t2 & a is_properly_applicable_to t2 & a ast t2
    = t1;
    let t1,t2 be Element of T;
    [t1,t2] in R1 iff ex a being adjective of T st not a in adjs t2 & a
    is_properly_applicable_to t2 & a ast t2 = t1 by A2;
    hence [t1,t2] in R1 iff [t1,t2] in R2 by A3;
  end;
end;

theorem Th66:
  for T being adj-structured antisymmetric non void reflexive
  transitive with_suprema Noetherian TAS-structure holds T@--> c= the
  InternalRel of T
proof
  let T be adj-structured with_suprema antisymmetric non empty non void
  reflexive transitive Noetherian TAS-structure;
  let t1,t2 be Element of T;
  reconsider q1 = t1, q2 = t2 as type of T;
  assume [t1,t2] in T@-->;
  then consider a being adjective of T such that
  not a in adjs q2 and
A1: a is_properly_applicable_to q2 and
A2: a ast q2 = q1 by Def31;
  a is_applicable_to q2 by A1;
  then q1 <= q2 by A2,Th20;
  hence thesis by ORDERS_2:def 5;
end;

scheme
  RedInd{X() -> non empty set, P[set,set], R() -> Relation of X()}: for x,y
  being Element of X() st R() reduces x,y holds P[x,y]
provided
A1: for x,y being Element of X() st [x,y] in R() holds P[x,y] and
A2: for x being Element of X() holds P[x,x] and
A3: for x,y,z being Element of X() st P[x,y] & P[y,z] holds P[x,z]
proof
  let x,y be Element of X();
  given p being RedSequence of R() such that
A4: p.1 = x and
A5: p.len p = y;
  defpred P[Nat] means 1+$1 <= len p implies P[x, p.(1+$1)];
A6: now
    let i be Nat such that
A7: P[i];
    now
A8:   i+1 >= 1 by NAT_1:11;
      assume
A9:   1+(i+1) <= len p;
      1+(i+1) >= 1 by NAT_1:11;
      then
A10:  1+(i+1) in dom p by A9,FINSEQ_3:25;
      i+1 < len p by A9,NAT_1:13;
      then i+1 in dom p by A8,FINSEQ_3:25;
      then
A11:  [p.(i+1), p.(1+(i+1))] in R() by A10,REWRITE1:def 2;
      then
A12:  p.(1+(i+1)) in X() by ZFMISC_1:87;
A13:  p.(i+1) in X() by A11,ZFMISC_1:87;
      then P[p.(i+1), p.(1+(i+1))] by A1,A11,A12;
      hence P[x, p.(1+(i+1))] by A3,A7,A9,A13,A12,NAT_1:13;
    end;
    hence P[i+1];
  end;
A14: P[0] by A2,A4;
A15: for n being Nat holds P[n] from NAT_1:sch 2(A14,A6);
  len p >= 0+1 by NAT_1:13;
  then consider n being Nat such that
A16: len p = 1+n by NAT_1:10;
  thus thesis by A5,A16,A15;
end;

theorem Th67:
  for T being adj-structured antisymmetric non void reflexive
transitive with_suprema Noetherian TAS-structure for t1,t2 being type of T st
  T@--> reduces t1,t2 holds t1 <= t2
proof
  let T be adj-structured with_suprema antisymmetric non empty non void
  reflexive transitive Noetherian TAS-structure;
  let t1,t2 be type of T;
  set R = T@-->;
  defpred P[Element of T, Element of T] means $1 <= $2;
A1: for x,y,z be Element of T holds P[x, y] & P[y, z] implies P[x, z] by
YELLOW_0:def 2;
A2: now
    let x,y be Element of T;
    R c= the InternalRel of T by Th66;
    hence [x,y] in R implies P[x, y] by ORDERS_2:def 5;
  end;
A3: for x being Element of T holds P[x, x];
  for x,y being Element of T st R reduces x,y holds P[x,y] from RedInd(A2,
  A3,A1);
  hence thesis;
end;

theorem Th68:
  for T being Noetherian adj-structured reflexive transitive
  antisymmetric non void with_suprema TAS-structure holds T@--> is irreflexive
proof
  let T be Noetherian adj-structured reflexive transitive antisymmetric non
  void with_suprema TAS-structure;
  set R = T@-->;
  let x be object;
  assume x in field R;
  assume
A1: [x,x] in R;
  then reconsider x as type of T by ZFMISC_1:87;
  consider a being adjective of T such that
A2: not a in adjs x and
A3: a is_properly_applicable_to x and
A4: a ast x = x by A1,Def31;
  a is_applicable_to x by A3;
  hence thesis by A2,A4,Th21;
end;

theorem Th69:
  for T being adj-structured antisymmetric non void reflexive
  transitive with_suprema Noetherian TAS-structure holds T@--> is
  strongly-normalizing
proof
  let T be adj-structured with_suprema antisymmetric non empty non void
  reflexive transitive Noetherian TAS-structure;
  set R = T@-->, Q = the InternalRel of T;
A1: field R c= field Q by Th66,RELAT_1:16;
A2: R c= Q by Th66;
  R is co-well_founded
  proof
    let Y be set;
    assume that
A3: Y c= field R and
A4: Y <> {};
    Y c= field Q by A1,A3;
    then consider a being object such that
A5: a in Y and
A6: for b being object st b in Y & a <> b holds not [a,b] in Q by A4,
REWRITE1:def 16;
    take a;
    thus thesis by A2,A5,A6;
  end;
  then R is irreflexive co-well_founded Relation by Th68;
  hence thesis;
end;

theorem Th70:
  for T being Noetherian adj-structured reflexive transitive
  antisymmetric with_suprema non void TAS-structure for t being type of T, A
  being finite Subset of the adjectives of T st for C being Subset of the
  adjectives of T st C c= A & C is_properly_applicable_to t & A ast t = C ast t
holds C = A for s being one-to-one FinSequence of the adjectives of T st rng s
= A & s is_properly_applicable_to t for i being Nat st 1 <= i & i <=
  len s holds [apply(s, t).(i+1), apply(s, t).i] in T@-->
proof
  let T be Noetherian adj-structured reflexive transitive antisymmetric
  with_suprema non void TAS-structure;
  let t be type of T, A be finite Subset of the adjectives of T such that
A1: for C being Subset of the adjectives of T st C c= A & C
  is_properly_applicable_to t & A ast t = C ast t holds C = A;
  let s be one-to-one FinSequence of the adjectives of T such that
A2: rng s = A and
A3: s is_properly_applicable_to t;
  let j be Nat;
  assume that
A4: 1 <= j and
A5: j <= len s;
A6: len apply(s, t) = len s+1 by Def19;
  j < len s+1 by A5,NAT_1:13;
  then j in dom apply(s, t) by A6,A4,FINSEQ_3:25;
  then apply(s, t).j in rng apply(s, t) by FUNCT_1:3;
  then reconsider tt = apply(s, t).j as type of T;
A7: j in dom s by A4,A5,FINSEQ_3:25;
  then s.j in rng s by FUNCT_1:3;
  then reconsider a = s.j as adjective of T;
A8: apply(s, t).(j+1) = a ast tt by A7,Def19;
A9: not a in adjs tt
  proof
    assume
A10: a in adjs tt;
    consider i being Nat such that
A11: j = 1+i by A4,NAT_1:10;
    reconsider i as Element of NAT by ORDINAL1:def 12;
    reconsider s1 = s|Seg i as FinSequence of the adjectives of T by
FINSEQ_1:18;
    s1 c= s by TREES_1:def 1;
    then consider s2 being FinSequence such that
A12: s = s1^s2 by TREES_1:1;
    reconsider s2 as FinSequence of the adjectives of T by A12,FINSEQ_1:36;
A13: len s = len s1+len s2 by A12,FINSEQ_1:22;
    then
A14: s1 is_properly_applicable_to t by A3,A12,Th60;
    reconsider s21 = s2|Seg 1 as FinSequence of the adjectives of T by
FINSEQ_1:18;
    i <= len s by A5,A11,NAT_1:13;
    then
A15: len s1 = i by FINSEQ_1:17;
    then
A16: len s2 >= 1 by A5,A11,A13,XREAL_1:6;
    then
A17: len s21 = 1 by FINSEQ_1:17;
    then
A18: s21 = <*s21.1*> by FINSEQ_1:40;
    then
A19: rng s21 = {s21.1} by FINSEQ_1:39;
    then reconsider b = s21.1 as adjective of T by ZFMISC_1:31;
A20: 1 in dom s2 by A16,FINSEQ_3:25;
    s21 c= s2 by TREES_1:def 1;
    then consider s22 being FinSequence such that
A21: s2 = s21^s22 by TREES_1:1;
    reconsider s22 as FinSequence of the adjectives of T by A21,FINSEQ_1:36;
A22: rng s2 = rng s21 \/ rng s22 by A21,FINSEQ_1:31;
    then
A23: rng s22 c= rng s2 by XBOOLE_1:7;
A24: b = s2.1 by A18,A21,FINSEQ_1:41
      .= a by A11,A12,A15,A20,FINSEQ_1:def 7;
    then a in rng s21 by A19,TARSKI:def 1;
    then
A25: a in rng s2 by A22,XBOOLE_0:def 3;
    s1 ast t = tt by A11,A12,A13,A15,Th36;
    then
A26: s1 ast t = a ast (s1 ast t) by A10,Th24
      .= s21 ast (s1 ast t) by A18,A24,Th31;
    s2 is_properly_applicable_to s1 ast t by A3,A12,Th60;
    then s22 is_properly_applicable_to s1 ast t by A21,A26,Th60;
    then
A27: s1^s22 is_properly_applicable_to t by A14,Th61;
    reconsider B = rng (s1^s22) as Subset of the adjectives of T;
A28: B = rng s1 \/ rng s22 by FINSEQ_1:31;
A29: A = rng s1 \/ rng s2 by A2,A12,FINSEQ_1:31;
    s ast t = s2 ast (s1 ast t) by A12,Th37
      .= s22 ast (s1 ast t) by A21,A26,Th37
      .= s1^s22 ast t by Th37;
    then
A30: A ast t = s1^s22 ast t by A2,A3,Th56,Th57
      .= B ast t by A27,Th56,Th57;
    B is_properly_applicable_to t by A27;
    then B = A by A1,A30,A28,A29,A23,XBOOLE_1:9;
    then
A31: a in B by A29,A25,XBOOLE_0:def 3;
    per cases by A28,A31,XBOOLE_0:def 3;
    suppose
      a in rng s1;
      then consider x being object such that
A32:  x in dom s1 and
A33:  a = s1.x by FUNCT_1:def 3;
      reconsider x as Element of NAT by A32;
      x <= len s1 by A32,FINSEQ_3:25;
      then
A34:  x < j by A11,A15,NAT_1:13;
A35:  dom s1 c= dom s by A12,FINSEQ_1:26;
      s.x = a by A12,A32,A33,FINSEQ_1:def 7;
      hence contradiction by A7,A32,A35,A34,FUNCT_1:def 4;
    end;
    suppose
      a in rng s22;
      then consider x being object such that
A36:  x in dom s22 and
A37:  a = s22.x by FUNCT_1:def 3;
      reconsider x as Element of NAT by A36;
A38:  1+x in dom s2 by A17,A21,A36,FINSEQ_1:28;
      x >= 0+1 by A36,FINSEQ_3:25;
      then
A39:  j+x > j+0 by XREAL_1:6;
      s2.(1+x) = a by A17,A21,A36,A37,FINSEQ_1:def 7;
      then
A40:  s.(i+(1+x)) = a by A12,A15,A38,FINSEQ_1:def 7;
      i+(1+x) in dom s by A12,A15,A38,FINSEQ_1:28;
      hence contradiction by A7,A11,A39,A40,FUNCT_1:def 4;
    end;
  end;
  a is_properly_applicable_to tt by A3,A7;
  hence thesis by A8,A9,Def31;
end;

theorem Th71:
  for T being Noetherian adj-structured reflexive transitive
  antisymmetric with_suprema non void TAS-structure for t being type of T, A
  being finite Subset of the adjectives of T st for C being Subset of the
  adjectives of T st C c= A & C is_properly_applicable_to t & A ast t = C ast t
holds C = A for s being one-to-one FinSequence of the adjectives of T st rng s
  = A & s is_properly_applicable_to t holds Rev apply(s, t) is RedSequence of T
  @-->
proof
  let T be Noetherian adj-structured reflexive transitive antisymmetric
  with_suprema non void TAS-structure;
  let t be type of T, A be finite Subset of the adjectives of T such that
A1: for C being Subset of the adjectives of T st C c= A & C
  is_properly_applicable_to t & A ast t = C ast t holds C = A;
  let s be one-to-one FinSequence of the adjectives of T such that
A2: rng s = A and
A3: s is_properly_applicable_to t;
A4: len Rev apply(s, t) = len apply(s, t) by FINSEQ_5:def 3;
  hence len Rev apply(s, t) > 0;
  let i be Nat;
  assume that
A5: i in dom Rev apply(s, t) and
A6: i+1 in dom Rev apply(s, t);
A7: len apply(s, t) = len s+1 by Def19;
  then
A8: (Rev apply(s, t)).i = apply(s, t).(len s+1 -i +1) by A5,FINSEQ_5:def 3;
  i+1 <= len s+1 by A4,A7,A6,FINSEQ_3:25;
  then consider j being Nat such that
A9: len s+1 = i+1+j by NAT_1:10;
A10: (Rev apply(s, t)).(i+1) = apply(s, t).(len s+1-(i+1)+1) by A7,A6,
FINSEQ_5:def 3;
A11: i >= 1 by A5,FINSEQ_3:25;
  len s = i+j by A9;
  then
A12: j+1 <= len s by A11,XREAL_1:6;
  j+1 >= 1 by NAT_1:11;
  hence thesis by A1,A2,A3,A8,A10,A9,A12,Th70;
end;

theorem Th72:
  for T being Noetherian adj-structured reflexive transitive
  antisymmetric with_suprema non void TAS-structure for t being type of T, A
  being finite Subset of the adjectives of T st A is_properly_applicable_to t
  holds T@--> reduces A ast t, t
proof
  let T be Noetherian adj-structured reflexive transitive antisymmetric
  with_suprema non void TAS-structure;
  set R = T@-->;
  let t be type of T, A be finite Subset of the adjectives of T;
  assume A is_properly_applicable_to t;
  then consider A9 being Subset of the adjectives of T such that
  A9 c= A and
A1: A9 is_properly_applicable_to t and
A2: A ast t = A9 ast t and
A3: for C being Subset of the adjectives of T st C c= A9 & C
  is_properly_applicable_to t & A ast t = C ast t holds C = A9 by Th64;
  consider s being one-to-one FinSequence of the adjectives of T such that
A4: rng s = A9 and
A5: s is_properly_applicable_to t by A1,Th65;
  reconsider p = Rev apply(s, t) as RedSequence of R by A2,A3,A4,A5,Th71;
  take p;
  thus p.1 = apply(s, t).len apply(s, t) by FINSEQ_5:62
    .= s ast t by Def19
    .= A ast t by A2,A4,A5,Th56,Th57;
  thus p.len p = p.len apply(s, t) by FINSEQ_5:def 3
    .= apply(s, t).1 by FINSEQ_5:62
    .= t by Def19;
end;

theorem Th73:
  for X being non empty set for R being Relation of X for r being
  RedSequence of R st r.1 in X holds r is FinSequence of X
proof
  let X be non empty set;
  let R be Relation of X;
  let p be RedSequence of R such that
A1: p.1 in X;
  let x be object;
  assume x in rng p;
  then consider i being object such that
A2: i in dom p and
A3: x = p.i by FUNCT_1:def 3;
  reconsider i as Element of NAT by A2;
A4: i >= 1 by A2,FINSEQ_3:25;
  per cases by A4,XXREAL_0:1;
  suppose
    i = 1;
    hence thesis by A1,A3;
  end;
  suppose
    i > 1;
    then i >= 1+1 by NAT_1:13;
    then consider j being Nat such that
A5: i = 1+1+j by NAT_1:10;
A6: i = j+1+1 by A5;
A7: j+1 >= 1 by NAT_1:11;
    i <= len p by A2,FINSEQ_3:25;
    then j+1 < len p by A6,NAT_1:13;
    then j+1 in dom p by A7,FINSEQ_3:25;
    then [p.(j+1), x] in R by A2,A3,A6,REWRITE1:def 2;
    hence thesis by ZFMISC_1:87;
  end;
end;

theorem Th74:
  for X being non empty set for R being Relation of X for x be
  Element of X, y being set st R reduces x,y holds y in X
proof
  let X be non empty set;
  let R be Relation of X;
  let x be Element of X, y be set;
  given p being RedSequence of R such that
A1: p.1 = x and
A2: p.len p = y;
  len p >= 0+1 by NAT_1:13;
  then len p in dom p by FINSEQ_3:25;
  then
A3: y in rng p by A2,FUNCT_1:3;
  p is FinSequence of X by A1,Th73;
  then rng p c= X by FINSEQ_1:def 4;
  hence thesis by A3;
end;

theorem Th75:
  for X being non empty set for R being Relation of X st R is
  with_UN_property weakly-normalizing for x be Element of X holds nf(x, R) in X
proof
  let X be non empty set;
  let R be Relation of X such that
A1: R is with_UN_property weakly-normalizing;
  let x be Element of X;
  nf(x,R) is_a_normal_form_of x, R by A1,REWRITE1:54;
  then R reduces x, nf(x,R);
  hence thesis by Th74;
end;

theorem Th76:
  for T being Noetherian adj-structured reflexive transitive
  antisymmetric with_suprema non void TAS-structure for t1, t2 being type of T
  st T@--> reduces t1, t2 ex A being finite Subset of the adjectives of T st A
  is_properly_applicable_to t2 & t1 = A ast t2
proof
  let T be Noetherian adj-structured reflexive transitive antisymmetric
  with_suprema non void TAS-structure;
  let t1,t2 be type of T;
  set R = T@-->;
  given p being RedSequence of R such that
A1: p.1 = t1 and
A2: t2 = p.len p;
  defpred P[object,object] means
ex j being Element of NAT, a being adjective of T,
  t being type of T st $2 = a & $1 = j & a ast t = p.j & t = p.(j+1) & a
  is_properly_applicable_to t;
A3: len Rev p = len p by FINSEQ_5:def 3;
A4: len p-1+1 = len p;
A5: len p >= 0+1 by NAT_1:13;
  then consider i being Nat such that
A6: len p = 1+i by NAT_1:10;
  reconsider i as Element of NAT by ORDINAL1:def 12;
A7: now
    let x be object;
    assume
A8: x in Seg i;
    then reconsider j = x as Element of NAT;
A9: j >= 1 by A8,FINSEQ_1:1;
    then
A10: 1 <= j+1 by NAT_1:13;
A11: j <= i by A8,FINSEQ_1:1;
    then j < len p by A6,NAT_1:13;
    then
A12: j in dom p by A9,FINSEQ_3:25;
    j+1 <= len p by A6,A11,XREAL_1:6;
    then j+1 in dom p by A10,FINSEQ_3:25;
    then
A13: [p.j, p.(j+1)] in R by A12,REWRITE1:def 2;
    then reconsider q1 = p.j, q2 = p.(j+1) as type of T by ZFMISC_1:87;
    ex a being adjective of T st not a in adjs q2 & a
    is_properly_applicable_to q2 & a ast q2 = q1 by A13,Def31;
    hence ex y being object st y in the adjectives of T & P[x,y];
  end;
  consider f being Function such that
A14: dom f = Seg i & rng f c= the adjectives of T and
A15: for x being object st x in Seg i holds P[x,f.x] from FUNCT_1:sch 6(A7);
  f is FinSequence by A14,FINSEQ_1:def 2;
  then reconsider f as FinSequence of the adjectives of T by A14,FINSEQ_1:def 4
  ;
A16: len f = i by A14,FINSEQ_1:def 3;
  set r = Rev f;
  defpred P[Nat] means 1+$1 <= len p implies (Rev p).(1+$1) = apply
  (r, t2).(1+$1);
A17: len r = len f by FINSEQ_5:def 3;
A18: now
    let j be Nat such that
A19: P[j];
    now
A20:  j+1 >= 1 by NAT_1:11;
      assume
A21:  1+(j+1) <= len p;
      then j+1 <= i by A6,XREAL_1:6;
      then consider x being Nat such that
A22:  i = j+1+x by NAT_1:10;
      reconsider x as Element of NAT by ORDINAL1:def 12;
A23:  i+1-(j+1) = x+1 by A22;
      j+1 < len p by A21,NAT_1:13;
      then j+1 in dom Rev p by A3,A20,FINSEQ_3:25;
      then
A24:  (Rev p).(j+1) = p.(x+1+1) by A6,A23,FINSEQ_5:def 3;
A25:  i+1-(1+(j+1)) = x by A22;
      1+(j+1) >= 1 by NAT_1:11;
      then 1+(j+1) in dom Rev p by A3,A21,FINSEQ_3:25;
      then
A26:  (Rev p).(1+(j+1)) = p.(x+1) by A6,A25,FINSEQ_5:def 3;
      i = x+1+j by A22;
      then
A27:  i >= x+1 by NAT_1:11;
      x+1 >= 1 by NAT_1:11;
      then x+1 in Seg i by A27;
      then consider
      k being Element of NAT, a being adjective of T, t being type of
      T such that
A28:  f.(x+1) = a and
A29:  x+1 = k and
A30:  a ast t = p.k and
A31:  t = p.(k+1) and
      a is_properly_applicable_to t by A15;
A32:  j+1 >= 1 by NAT_1:11;
      j+1 <= i by A22,NAT_1:11;
      then
A33:  j+1 in dom r by A17,A16,A32,FINSEQ_3:25;
      then r.(j+1) = f.(len f-(j+1)+1) by FINSEQ_5:def 3
        .= a by A16,A22,A28;
      hence (Rev p).(1+(j+1)) = apply(r, t2).(1+(j+1)) by A19,A21,A29,A30,A31
,A33,A24,A26,Def19,NAT_1:13;
    end;
    hence P[j+1];
  end;
  reconsider A = rng f as finite Subset of the adjectives of T;
  take A;
A34: len apply(r, t2) = len r+1 by Def19;
  1 in dom Rev p by A5,A3,FINSEQ_3:25;
  then (Rev p).1 = t2 by A2,A4,FINSEQ_5:def 3;
  then
A35: P[0] by Def19;
A36: for j being Nat holds P[j] from NAT_1:sch 2(A35,A18);
  now
    let j be Nat;
    assume 1 <= j;
    then consider k being Nat such that
A37: j = 1+k by NAT_1:10;
    thus j <= len p implies (Rev p).j = apply(r, t2).j by A36,A37;
  end;
  then
A38: Rev p = apply(r, t2) by A6,A17,A34,A16,A3;
  then
A39: p = Rev apply(r, t2);
A40: r is_properly_applicable_to t2
  proof
    let j be Nat, a be adjective of T, s be type of T;
    assume that
A41: j in dom r and
A42: a = r.j and
A43: s = apply(r,t2).j;
    j <= len r by A41,FINSEQ_3:25;
    then consider k being Nat such that
A44: len r = j+k by NAT_1:10;
A45: len r = len f by FINSEQ_5:def 3;
    reconsider k as Element of NAT by ORDINAL1:def 12;
A46: k+1 >= 1 by NAT_1:11;
A47: j >= 1 by A41,FINSEQ_3:25;
    then k+1 <= i by A16,A44,A45,XREAL_1:6;
    then len f-j+1 in Seg i by A44,A45,A46;
    then consider
    o being Element of NAT, b being adjective of T, u being type of T
    such that
A48: f.(len f-j+1) = b and
A49: len f-j+1 = o and
    b ast u = p.o and
A50: u = p.(o+1) and
A51: b is_properly_applicable_to u by A15;
A52: o+1 >= 1 by NAT_1:11;
    i+1 = k+1+j by A17,A16,A44;
    then o+1 <= len p by A6,A44,A45,A47,A49,XREAL_1:6;
    then
A53: o+1 in dom p by A52,FINSEQ_3:25;
A54: a = b by A41,A42,A48,FINSEQ_5:def 3;
    len (apply(r, t2))-(o+1)+1 = j by A17,A34,A49;
    hence thesis by A39,A43,A50,A51,A53,A54,FINSEQ_5:def 3;
  end;
  thus A is_properly_applicable_to t2
  proof
    take r;
    thus thesis by A40,FINSEQ_5:57;
  end;
  rng r = A by FINSEQ_5:57;
  then A ast t2 = r ast t2 by A40,Th56,Th57
    .= apply(r, t2).(len r+1);
  hence thesis by A1,A34,A3,A38,FINSEQ_5:62;
end;

theorem Th77:
  for T being adj-structured antisymmetric commutative non void
  reflexive transitive with_suprema Noetherian TAS-structure holds T@--> is
  with_Church-Rosser_property with_UN_property
proof
  let T be adj-structured with_suprema antisymmetric commutative non empty
  non void reflexive transitive Noetherian TAS-structure;
  set R = T@-->;
  R is locally-confluent
  proof
    let a,b,c be object;
    assume that
A1: [a,b] in R and
A2: [a,c] in R;
    reconsider t = a, t1 = b, t2 = c as type of T by A1,A2,ZFMISC_1:87;
    consider a2 being adjective of T such that
    not a2 in adjs t1 and
A3: a2 is_properly_applicable_to t1 and
A4: a2 ast t1 = t by A1,Def31;
    set tt = t1 "\/" t2;
    take tt;
    consider a3 being adjective of T such that
    not a3 in adjs t2 and
A5: a3 is_properly_applicable_to t2 and
A6: a3 ast t2 = t by A2,Def31;
    a3 is_applicable_to t2 by A5;
    then t <= t2 by A6,Th20;
    then
A7: ex B being finite Subset of the adjectives of T st B
    is_properly_applicable_to t1 "\/" t2 & B ast (t1 "\/" t2) = t2 by A3,A4
,Def30;
    a2 is_applicable_to t1 by A3;
    then t <= t1 by A4,Th20;
    then ex A being finite Subset of the adjectives of T st A
    is_properly_applicable_to t1 "\/" t2 & A ast (t1 "\/" t2) = t1 by A5,A6
,Def30;
    hence thesis by A7,Th72;
  end;
  then R is strongly-normalizing locally-confluent Relation by Th69;
  hence thesis;
end;

begin :: Radix types

definition
  let T be adj-structured with_suprema antisymmetric commutative non empty
  non void reflexive transitive Noetherian TAS-structure;
  let t be type of T;
  func radix t -> type of T equals
  nf(t, T@-->);
  coherence
  proof
    T@--> is with_Church-Rosser_property with_UN_property
    strongly-normalizing Relation by Th69,Th77;
    hence thesis by Th75;
  end;
end;

theorem Th78:
  for T being adj-structured with_suprema antisymmetric
commutative non empty non void reflexive transitive Noetherian TAS-structure
  for t being type of T holds T@--> reduces t, radix t
proof
  let T be adj-structured with_suprema antisymmetric commutative non empty
  non void reflexive transitive Noetherian TAS-structure;
  let t be type of T;
  set R = T@-->;
  R is with_Church-Rosser_property with_UN_property strongly-normalizing
  Relation by Th69,Th77;
  then nf(t, R) is_a_normal_form_of t, R by REWRITE1:54;
  hence thesis;
end;

theorem
  for T being adj-structured with_suprema antisymmetric commutative non
empty non void reflexive transitive Noetherian TAS-structure for t being type
  of T holds t <= radix t by Th67,Th78;

theorem Th80:
  for T being adj-structured with_suprema antisymmetric
commutative non empty non void reflexive transitive Noetherian TAS-structure
  for t being type of T for X being set st X = {t9 where t9 is type of T: ex A
being finite Subset of the adjectives of T st A is_properly_applicable_to t9 &
  A ast t9 = t} holds ex_sup_of X, T & radix t = "\/"(X, T)
proof
  let T be adj-structured with_suprema antisymmetric commutative non empty
  non void reflexive transitive Noetherian TAS-structure;
  let t be type of T;
  set R = T@-->;
  set AA = {t9 where t9 is type of T: ex A being finite Subset of the
  adjectives of T st A is_properly_applicable_to t9 & A ast t9 = t};
A1: R is with_Church-Rosser_property with_UN_property strongly-normalizing
  Relation by Th69,Th77;
A2: radix t is_>=_than AA
  proof
    let tt be type of T;
    assume tt in AA;
    then ex t9 being type of T st tt = t9 & ex A being finite Subset of the
    adjectives of T st A is_properly_applicable_to t9 & A ast t9 = t;
    then R reduces t, tt by Th72;
    then t, tt are_convertible_wrt R by REWRITE1:25;
    then nf(t, R) = nf(tt, R) by A1,REWRITE1:55;
    then nf(t, R) is_a_normal_form_of tt, R by A1,REWRITE1:54;
    then R reduces tt, nf(t,R);
    hence thesis by Th67;
  end;
  ex A being finite Subset of the adjectives of T st A
  is_properly_applicable_to radix t & A ast radix t = t by Th76,Th78;
  then radix t in AA;
  then for t9 being type of T st t9 is_>=_than AA holds radix t <= t9;
  hence thesis by A2,YELLOW_0:30;
end;

theorem Th81:
  for T being adj-structured with_suprema antisymmetric
commutative non empty non void reflexive transitive Noetherian TAS-structure
  for t1,t2 being type of T, a being adjective of T st a
  is_properly_applicable_to t1 & a ast t1 <= radix t2 holds t1 <= radix t2
proof
  let T be adj-structured with_suprema antisymmetric commutative non empty
  non void reflexive transitive Noetherian TAS-structure;
  let t1,t2 be type of T, a be adjective of T;
  set R = T@-->;
  set AA = {t9 where t9 is type of T: ex A being finite Subset of the
  adjectives of T st A is_properly_applicable_to t9 & A ast t9 = t2};
  assume that
A1: a is_properly_applicable_to t1 and
A2: a ast t1 <= radix t2;
  consider A being finite Subset of the adjectives of T such that
A3: A is_properly_applicable_to t1 "\/" radix t2 and
A4: A ast (t1 "\/" radix t2) = radix t2 by A1,A2,Def30;
  consider v1 being FinSequence of the adjectives of T such that
A5: rng v1 = A and
A6: v1 is_properly_applicable_to t1 "\/" radix t2 by A3;
  R is with_Church-Rosser_property with_UN_property strongly-normalizing
  Relation by Th69,Th77;
  then nf(t2, R) is_a_normal_form_of t2, R by REWRITE1:54;
  then R reduces t2, nf(t2,R);
  then consider B being finite Subset of the adjectives of T such that
A7: B is_properly_applicable_to radix t2 and
A8: t2 = B ast radix t2 by Th76;
  consider v2 being FinSequence of the adjectives of T such that
A9: rng v2 = B and
A10: v2 is_properly_applicable_to radix t2 by A7;
A11: rng (v1^v2) = A \/ B by A5,A9,FINSEQ_1:31;
A12: radix t2 = v1 ast (t1 "\/" radix t2) by A4,A5,A6,Th56,Th57;
  then
A13: v1^v2 is_properly_applicable_to t1 "\/" radix t2 by A6,A10,Th61;
  then
A14: A \/ B is_properly_applicable_to t1 "\/" radix t2 by A11;
  (A \/ B) ast (t1 "\/" radix t2) = v1^v2 ast (t1 "\/" radix t2) by A11,A13
,Th56,Th57
    .= v2 ast radix t2 by A12,Th37
    .= t2 by A8,A9,A10,Th56,Th57;
  then t1 "\/" radix t2 in AA by A14;
  then t1 "\/" radix t2 <= "\/"(AA, T) by Th80,YELLOW_4:1;
  then
A15: t1 "\/" radix t2 <= radix t2 by Th80;
  t1 "\/" radix t2 >= t1 by YELLOW_0:22;
  hence thesis by A15,YELLOW_0:def 2;
end;

theorem
  for T being adj-structured with_suprema antisymmetric commutative non
  empty non void reflexive transitive Noetherian TAS-structure for t1,t2 being
  type of T st t1 <= t2 holds radix t1 <= radix t2
proof
  let T be adj-structured with_suprema antisymmetric commutative non empty
  non void reflexive transitive Noetherian TAS-structure;
  set R = T@-->;
  let t1, t2 be type of T such that
A1: t1 <= t2;
  t2 <= radix t2 by Th67,Th78;
  then
A2: t1 <= radix t2 by A1,YELLOW_0:def 2;
  set X = the carrier of T;
  defpred P[Element of X, Element of X] means $1 <= radix t2 implies $2 <=
  radix t2;
A3: for x,y,z being Element of X st P[x,y] & P[y,z] holds P[x,z];
A4: now
    let x,y be Element of X;
    reconsider t1 = x, t2 = y as type of T;
    assume [x,y] in R;
    then ex a being adjective of T st not a in adjs t2 & a
    is_properly_applicable_to t2 & a ast t2 = t1 by Def31;
    hence P[x,y] by Th81;
  end;
A5: for x being Element of X holds P[x,x];
  for x,y being Element of T st R reduces x,y holds P[x,y] from RedInd(A4,
  A5,A3);
  hence thesis by A2,Th78;
end;

theorem
  for T being adj-structured with_suprema antisymmetric commutative non
empty non void reflexive transitive Noetherian TAS-structure for t being type
  of T, a being adjective of T st a is_properly_applicable_to t holds radix (a
  ast t) = radix t
proof
  let T be adj-structured with_suprema antisymmetric commutative non empty
  non void reflexive transitive Noetherian TAS-structure;
  let t be type of T, a be adjective of T;
A1: a in adjs t or not a in adjs t;
  assume a is_properly_applicable_to t;
  then a ast t = t or [a ast t, t] in T@--> by A1,Def31,Th24;
  then T@--> reduces a ast t,t by REWRITE1:12,15;
  then
A2: a ast t, t are_convertible_wrt T@--> by REWRITE1:25;
  T@--> is with_Church-Rosser_property with_UN_property
  strongly-normalizing Relation by Th69,Th77;
  hence thesis by A2,REWRITE1:55;
end;