Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 9,950 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import topology.order
import group_theory.quotient_group
import valuation.canonical
/-!
# Valuation Spectrum (Spv)
The API for the valuation spectrum of a commutative ring. Normally defined as
"the equivalence classes of valuations", there are set-theoretic issues.
These issues are easily solved by noting that two valuations are equivalent
if and only if they induce the same preorder on R, where the preorder
attached to a valuation sends (r,s) to v r β€ v s.
## Implementation details
Our definition of Spv is currently the predicates which come from a
valuation. There is another approach though:
In the proof of Prop 2.2 of βContinuous Valuationsβ by R. Huber,
the relations that come from a valuations are classified as thoe satisfying some axioms.
See also Wedhorn 4.7.
-/
universes u uβ uβ uβ uβ
local attribute [instance, priority 0] classical.DLO
/-- Valuation spectrum of a ring. -/
-- Note that the valuation takes values in a group in the same universe as R.
-- This is to avoid "set-theoretic issues".
definition Spv (R : Type uβ) [comm_ring R] :=
{ineq : R β R β Prop // β {Ξβ : Type uβ} [linear_ordered_comm_group_with_zero Ξβ],
by exactI β (v : valuation R Ξβ), β r s : R, v r β€ v s β ineq r s}
variables {R : Type uβ} [comm_ring R] {v : Spv R}
local notation r `β€[`v`]` s := v.1 r s
/- Spv R is morally a quotient, so we start by giving it a quotient-like interface -/
namespace Spv
open valuation
variables {Ξβ : Type u} [linear_ordered_comm_group_with_zero Ξβ]
variables {Ξ'β : Type uβ} [linear_ordered_comm_group_with_zero Ξ'β]
variables {Ξ''β : Type uβ} [linear_ordered_comm_group_with_zero Ξ''β]
-- The work is embedded here with `canonical_valuation_is_equiv v` etc.
-- The canonical valuation attached to v lives in R's universe.
/-- The equivalence class of a valuation. -/
definition mk (v : valuation R Ξβ) : Spv R :=
β¨Ξ» r s, v r β€ v s,
β¨value_monoid v, by apply_instance, canonical_valuation v, canonical_valuation_is_equiv vβ©β©
@[simp] lemma mk_val (v : valuation R Ξβ) : (mk v).val = Ξ» r s, v r β€ v s := rfl
/-- The value group attached to a term of type Spv R -/
definition out_Ξβ (v : Spv R) : Type uβ := classical.some v.2
/-- The value group attached to a term of type Spv R
is a linearly ordered commutative group with zero. -/
noncomputable instance (v : Spv R) : linear_ordered_comm_group_with_zero (out_Ξβ v) :=
classical.some $ classical.some_spec v.2
/-- An explicit representative of an equivalence class of valuations (a term of type Spv R). -/
noncomputable definition out (v : Spv R) : valuation R (out_Ξβ v) :=
classical.some $ classical.some_spec $ classical.some_spec v.2
@[simp] lemma mk_out {v : Spv R} : mk (out v) = v :=
begin
rcases v with β¨ineq, hvβ©,
rw subtype.ext,
ext,
exact classical.some_spec (classical.some_spec (classical.some_spec hv)) _ _,
end
/-- The explicit representative of the equivalence class of a valuation v is equivalent to v. -/
lemma out_mk (v : valuation R Ξβ) : (out (mk v)).is_equiv v :=
classical.some_spec (classical.some_spec (classical.some_spec (mk v).2))
/-- A function defined on all valuations of R descends to Spv R. -/
noncomputable def lift {X}
(f : Ξ β¦Ξβ : Type uββ¦ [linear_ordered_comm_group_with_zero Ξβ], valuation R Ξβ β X) (v : Spv R) : X :=
f (out v)
/-- The computation principle for Spv:
If a function is constant on equivalence classes of valuations,
then it descends to a well-defined function on Spv R.-/
theorem lift_eq {X}
(fβ : Ξ β¦Ξβ : Type uββ¦ [linear_ordered_comm_group_with_zero Ξβ], valuation R Ξβ β X)
(f : Ξ β¦Ξβ : Type uβ¦ [linear_ordered_comm_group_with_zero Ξβ], valuation R Ξβ β X)
(v : valuation R Ξβ)
(h : β β¦Ξβ : Type uββ¦ [linear_ordered_comm_group_with_zero Ξβ] (vβ : valuation R Ξβ),
vβ.is_equiv v β fβ vβ = f v) :
lift fβ (mk v) = f v :=
h _ (out_mk v)
/-- Prop-valued version of the computation principle for Spv:
If a predicate is constant on equivalence classes of valuations,
then it descends to a well-defined predicate on Spv R.-/
theorem lift_eq'
(fβ : Ξ β¦Ξβ : Type uββ¦ [linear_ordered_comm_group_with_zero Ξβ], valuation R Ξβ β Prop)
(f : Ξ β¦Ξβ : Type uβ¦ [linear_ordered_comm_group_with_zero Ξβ], valuation R Ξβ β Prop)
(v : valuation R Ξβ)
(h : β β¦Ξβ : Type uββ¦ [linear_ordered_comm_group_with_zero Ξβ] (vβ : valuation R Ξβ),
vβ.is_equiv v β (fβ vβ β f v)) :
lift fβ (mk v) β f v :=
h _ (out_mk v)
/-- For every term of Spv R, there exists a valuation representing it.-/
lemma exists_rep (v : Spv R) :
β {Ξβ : Type uβ} [linear_ordered_comm_group_with_zero Ξβ], by exactI β (vβ : valuation R Ξβ),
mk vβ = v :=
β¨out_Ξβ v, infer_instance, out v, mk_outβ©
/-- The quotient map that sends a valuation to its equivalence class is sound:
it sends equivalent valuations to the same class. -/
lemma sound {vβ : valuation R Ξ'β} {vβ : valuation R Ξ''β} (h : vβ.is_equiv vβ) : mk vβ = mk vβ :=
begin
apply subtype.val_injective,
ext r s,
apply h,
end
/-- The induction principle for Spv.-/
lemma induction_on (v : Spv R) (P : Spv R β Prop)
(h : Ξ β¦Ξβ : Type uββ¦ [linear_ordered_comm_group_with_zero Ξβ] (v : valuation R Ξβ), P (Spv.mk v)) :
P v :=
begin
rw β @mk_out _ _ v,
apply h
end
/-- If two valuations are mapped to the same term of Spv R, then they are equivalent. -/
lemma is_equiv_of_eq_mk {vβ : valuation R Ξ'β} {vβ : valuation R Ξ''β} (h : mk vβ = mk vβ) :
vβ.is_equiv vβ :=
begin
intros r s,
have := congr_arg subtype.val h,
replace := congr this (rfl : r = r),
replace := congr this (rfl : s = s),
simp at this,
simp [this],
end
@[ext]
lemma ext (vβ vβ : Spv R) (h : (Spv.out vβ).is_equiv (Spv.out vβ)) :
vβ = vβ :=
by simpa only [Spv.mk_out] using Spv.sound h
lemma ext_iff {vβ vβ : Spv R} :
vβ = vβ β ((Spv.out vβ).is_equiv (Spv.out vβ)) :=
β¨Ξ» h, Spv.is_equiv_of_eq_mk (by simpa only [Spv.mk_out] using h), Spv.ext _ _β©
/-- A coercion that allows to treat an element of Spv(R) as a function,
by picking a random representative of the equivalence class of valuations. -/
noncomputable instance : has_coe_to_fun (Spv R) :=
{ F := Ξ» v, R β out_Ξβ v,
coe := Ξ» v, (out v : R β out_Ξβ v) }
section
@[simp] lemma map_zero : v 0 = 0 := valuation.map_zero _
@[simp] lemma map_one : v 1 = 1 := valuation.map_one _
@[simp] lemma map_mul : β x y, v (x * y) = v x * v y := valuation.map_mul _
@[simp] lemma map_add : β x y, v (x + y) β€ max (v x) (v y) := valuation.map_add _
end
section supp
/--The support of an equivalence class of valuations.-/
noncomputable def supp (v : Spv R) := v.out.supp
/--The support of an equivalence class of valuations is equal to the
support of any of its representatives.-/
@[simp] lemma supp_mk (v : valuation R Ξβ) : (mk v).supp = v.supp :=
(out_mk v).supp_eq
end supp
section comap
variables {S : Type*} [comm_ring S] {T : Type*} [comm_ring T]
/--The pullback of an equivalence class of valuations
along a ring homomorphism.-/
noncomputable def comap (f : R β S) [is_ring_hom f] : Spv S β Spv R :=
lift $ Ξ» Ξβ _ v, by exactI Spv.mk (v.comap f)
/--The pullpack of an equivalence class of valuations
is the equivalence class of the pullback of any of its representatives.-/
lemma comap_mk (f : R β S) [is_ring_hom f] (v : valuation S Ξβ) :
comap f (mk v) = mk (v.comap f) :=
begin
delta comap, rw lift_eq,
intros Ξβ _ v h, resetI,
apply sound,
exact is_equiv.comap f h
end
/--The pullback along the identity is the identity.-/
lemma comap_id_apply (v : Spv R) : comap (id : R β R) v = v :=
begin
apply induction_on v, clear v,
intros Ξβ _ v, resetI,
rw [comap_mk, valuation.comap_id],
end
/--The pullback along the identity is the identity.-/
@[simp] lemma comap_id : comap (id : R β R) = id :=
funext $ comap_id_apply
/--The pullback along a composition is the composition of the pullback maps.-/
@[simp] lemma comap_comp_apply (g : S β T) (f : R β S) [is_ring_hom g] [is_ring_hom f] (v : Spv T):
comap (g β f) v = comap f (comap g v) :=
begin
apply induction_on v, clear v,
intros Ξβ _ v, resetI,
rw [comap_mk, comap_mk, comap_mk, valuation.comap_comp],
end
/--The pullback along a composition is the composition of the pullback maps.-/
@[simp] lemma comap_comp (g : S β T) (f : R β S) [is_ring_hom g] [is_ring_hom f] :
comap (g β f) = comap f β comap g :=
funext $ comap_comp_apply g f
/--The support of the pullback of an equivalence class of valuations
is the pullback (as ideal) of the support.-/
lemma supp_comap (f : R β S) [is_ring_hom f] (v : Spv S) :
(v.comap f).supp = v.supp.comap f :=
begin
apply induction_on v, clear v,
intros Ξβ _ v, resetI,
rw [comap_mk, supp_mk, supp_mk, valuation.comap_supp],
end
/--An element is contained in the support of the pullback of an equivalence
class of valuations if and only if its image is contained in the support.-/
lemma mem_supp_comap (f : R β S) [is_ring_hom f] (v : Spv S) (r : R) :
r β (v.comap f).supp β f r β v.supp :=
by { rw supp_comap, exact iff.rfl }
end comap
/-- The open sets generating the topology of Spv R. See [Wedhorn, Def 4.1].-/
definition basic_open (r s : R) : set (Spv R) :=
{v | v r β€ v s β§ v s β 0}
/-- The topology on the valuation spectrum of a ring. -/
instance : topological_space (Spv R) :=
topological_space.generate_from {U : set (Spv R) | β r s : R, U = basic_open r s}
lemma mk_mem_basic_open {r s : R} (v : valuation R Ξβ) :
mk v β basic_open r s β v r β€ v s β§ v s β 0 :=
begin
apply and_congr,
{ apply out_mk, },
{ apply (out_mk v).ne_zero, },
end
end Spv
|