Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 9,950 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import topology.order
import group_theory.quotient_group
import valuation.canonical

/-!
# Valuation Spectrum (Spv)

The API for the valuation spectrum of a commutative ring. Normally defined as
"the equivalence classes of valuations", there are set-theoretic issues.
These issues are easily solved by noting that two valuations are equivalent
if and only if they induce the same preorder on R, where the preorder
attached to a valuation sends (r,s) to v r ≀ v s.

## Implementation details

Our definition of Spv is currently the predicates which come from a
valuation. There is another approach though:
In the proof of Prop 2.2 of β€œContinuous Valuations” by R. Huber,
the relations that come from a valuations are classified as thoe satisfying some axioms.
See also Wedhorn 4.7.
-/

universes u uβ‚€ u₁ uβ‚‚ u₃

local attribute [instance, priority 0] classical.DLO

/-- Valuation spectrum of a ring. -/
-- Note that the valuation takes values in a group in the same universe as R.
-- This is to avoid "set-theoretic issues".
definition Spv (R : Type uβ‚€) [comm_ring R] :=
{ineq : R β†’ R β†’ Prop // βˆƒ {Ξ“β‚€ : Type uβ‚€} [linear_ordered_comm_group_with_zero Ξ“β‚€],
 by exactI βˆƒ (v : valuation R Ξ“β‚€), βˆ€ r s : R, v r ≀ v s ↔ ineq r s}

variables {R : Type uβ‚€} [comm_ring R] {v : Spv R}

local notation r `≀[`v`]` s := v.1 r s

/- Spv R is morally a quotient, so we start by giving it a quotient-like interface -/
namespace Spv
open valuation

variables {Ξ“β‚€  : Type u}   [linear_ordered_comm_group_with_zero Ξ“β‚€]
variables {Ξ“'β‚€ : Type u₁}  [linear_ordered_comm_group_with_zero Ξ“'β‚€]
variables {Ξ“''β‚€ : Type uβ‚‚} [linear_ordered_comm_group_with_zero Ξ“''β‚€]

-- The work is embedded here with `canonical_valuation_is_equiv v` etc.
-- The canonical valuation attached to v lives in R's universe.
/-- The equivalence class of a valuation. -/
definition mk (v : valuation R Ξ“β‚€) : Spv R :=
⟨λ r s, v r ≀ v s,
  ⟨value_monoid v, by apply_instance, canonical_valuation v, canonical_valuation_is_equiv v⟩⟩

@[simp] lemma mk_val (v : valuation R Ξ“β‚€) : (mk v).val = Ξ» r s, v r ≀ v s := rfl

/-- The value group attached to a term of type Spv R -/
definition out_Ξ“β‚€ (v : Spv R) : Type uβ‚€ := classical.some v.2

/-- The value group attached to a term of type Spv R
is a linearly ordered commutative group with zero. -/
noncomputable instance (v : Spv R) : linear_ordered_comm_group_with_zero (out_Ξ“β‚€ v) :=
classical.some $ classical.some_spec v.2

/-- An explicit representative of an equivalence class of valuations (a term of type Spv R). -/
noncomputable definition out (v : Spv R) : valuation R (out_Ξ“β‚€ v) :=
classical.some $ classical.some_spec $ classical.some_spec v.2

@[simp] lemma mk_out {v : Spv R} : mk (out v) = v :=
begin
  rcases v with ⟨ineq, hv⟩,
  rw subtype.ext,
  ext,
  exact classical.some_spec (classical.some_spec (classical.some_spec hv)) _ _,
end

/-- The explicit representative of the equivalence class of a valuation v is equivalent to v. -/
lemma out_mk (v : valuation R Ξ“β‚€) : (out (mk v)).is_equiv v :=
classical.some_spec (classical.some_spec (classical.some_spec (mk v).2))

/-- A function defined on all valuations of R descends to Spv R. -/
noncomputable def lift {X}
  (f : Ξ  ⦃Γ₀ : Type u₀⦄ [linear_ordered_comm_group_with_zero Ξ“β‚€], valuation R Ξ“β‚€ β†’ X) (v : Spv R) : X :=
f (out v)

/-- The computation principle for Spv:
If a function is constant on equivalence classes of valuations,
then it descends to a well-defined function on Spv R.-/
theorem lift_eq {X}
  (fβ‚€ : Ξ  ⦃Γ₀ : Type u₀⦄ [linear_ordered_comm_group_with_zero Ξ“β‚€], valuation R Ξ“β‚€ β†’ X)
  (f : Ξ  ⦃Γ₀ : Type u⦄ [linear_ordered_comm_group_with_zero Ξ“β‚€], valuation R Ξ“β‚€ β†’ X)
  (v : valuation R Ξ“β‚€)
  (h : βˆ€ ⦃Γ₀ : Type u₀⦄ [linear_ordered_comm_group_with_zero Ξ“β‚€] (vβ‚€ : valuation R Ξ“β‚€),
    vβ‚€.is_equiv v β†’ fβ‚€ vβ‚€ = f v) :
  lift fβ‚€ (mk v) = f v :=
h _ (out_mk v)

/-- Prop-valued version of the computation principle for Spv:
If a predicate is constant on equivalence classes of valuations,
then it descends to a well-defined predicate on Spv R.-/
theorem lift_eq'
  (fβ‚€ : Ξ  ⦃Γ₀ : Type u₀⦄ [linear_ordered_comm_group_with_zero Ξ“β‚€], valuation R Ξ“β‚€ β†’ Prop)
  (f : Ξ  ⦃Γ₀ : Type u⦄ [linear_ordered_comm_group_with_zero Ξ“β‚€], valuation R Ξ“β‚€ β†’ Prop)
  (v : valuation R Ξ“β‚€)
  (h : βˆ€ ⦃Γ₀ : Type u₀⦄ [linear_ordered_comm_group_with_zero Ξ“β‚€] (vβ‚€ : valuation R Ξ“β‚€),
    vβ‚€.is_equiv v β†’ (fβ‚€ vβ‚€ ↔ f v)) :
  lift fβ‚€ (mk v) ↔ f v :=
h _ (out_mk v)

/-- For every term of Spv R, there exists a valuation representing it.-/
lemma exists_rep (v : Spv R) :
  βˆƒ {Ξ“β‚€ : Type uβ‚€} [linear_ordered_comm_group_with_zero Ξ“β‚€], by exactI βˆƒ (vβ‚€ : valuation R Ξ“β‚€),
  mk vβ‚€ = v :=
⟨out_Ξ“β‚€ v, infer_instance, out v, mk_out⟩

/-- The quotient map that sends a valuation to its equivalence class is sound:
it sends equivalent valuations to the same class. -/
lemma sound {v₁ : valuation R Ξ“'β‚€} {vβ‚‚ : valuation R Ξ“''β‚€} (h : v₁.is_equiv vβ‚‚) : mk v₁ = mk vβ‚‚ :=
begin
  apply subtype.val_injective,
  ext r s,
  apply h,
end

/-- The induction principle for Spv.-/
lemma induction_on (v : Spv R) (P : Spv R β†’ Prop)
  (h : Ξ  ⦃Γ₀ : Type u₀⦄ [linear_ordered_comm_group_with_zero Ξ“β‚€] (v : valuation R Ξ“β‚€), P (Spv.mk v)) :
  P v :=
begin
  rw ← @mk_out _ _ v,
  apply h
end

/-- If two valuations are mapped to the same term of Spv R, then they are equivalent. -/
lemma is_equiv_of_eq_mk {v₁ : valuation R Ξ“'β‚€} {vβ‚‚ : valuation R Ξ“''β‚€} (h : mk v₁ = mk vβ‚‚) :
  v₁.is_equiv vβ‚‚ :=
begin
  intros r s,
  have := congr_arg subtype.val h,
  replace := congr this (rfl : r = r),
  replace := congr this (rfl : s = s),
  simp at this,
  simp [this],
end

@[ext]
lemma ext (v₁ vβ‚‚ : Spv R) (h : (Spv.out v₁).is_equiv (Spv.out vβ‚‚)) :
  v₁ = vβ‚‚ :=
by simpa only [Spv.mk_out] using Spv.sound h

lemma ext_iff  {v₁ vβ‚‚ : Spv R} :
  v₁ = vβ‚‚ ↔ ((Spv.out v₁).is_equiv (Spv.out vβ‚‚)) :=
⟨λ h, Spv.is_equiv_of_eq_mk (by simpa only [Spv.mk_out] using h), Spv.ext _ _⟩

/-- A coercion that allows to treat an element of Spv(R) as a function,
by picking a random representative of the equivalence class of valuations. -/
noncomputable instance : has_coe_to_fun (Spv R) :=
{ F := Ξ» v, R β†’ out_Ξ“β‚€ v,
  coe := Ξ» v, (out v : R β†’ out_Ξ“β‚€ v) }

section

@[simp] lemma map_zero : v 0 = 0 := valuation.map_zero _
@[simp] lemma map_one  : v 1 = 1 := valuation.map_one _
@[simp] lemma map_mul  : βˆ€ x y, v (x * y) = v x * v y := valuation.map_mul _
@[simp] lemma map_add  : βˆ€ x y, v (x + y) ≀ max (v x) (v y) := valuation.map_add _

end

section supp

/--The support of an equivalence class of valuations.-/
noncomputable def supp (v : Spv R) := v.out.supp

/--The support of an equivalence class of valuations is equal to the
support of any of its representatives.-/
@[simp] lemma supp_mk (v : valuation R Ξ“β‚€) : (mk v).supp = v.supp :=
(out_mk v).supp_eq

end supp

section comap
variables {S : Type*} [comm_ring S] {T : Type*} [comm_ring T]

/--The pullback of an equivalence class of valuations
along a ring homomorphism.-/
noncomputable def comap (f : R β†’ S) [is_ring_hom f] : Spv S β†’ Spv R :=
lift $ Ξ» Ξ“β‚€ _ v, by exactI Spv.mk (v.comap f)

/--The pullpack of an equivalence class of valuations
is the equivalence class of the pullback of any of its representatives.-/
lemma comap_mk (f : R β†’ S) [is_ring_hom f] (v : valuation S Ξ“β‚€) :
  comap f (mk v) = mk (v.comap f) :=
begin
  delta comap, rw lift_eq,
  intros Ξ“β‚€ _ v h, resetI,
  apply sound,
  exact is_equiv.comap f h
end

/--The pullback along the identity is the identity.-/
lemma comap_id_apply (v : Spv R) : comap (id : R β†’ R) v = v :=
begin
  apply induction_on v, clear v,
  intros Ξ“β‚€ _ v, resetI,
  rw [comap_mk, valuation.comap_id],
end

/--The pullback along the identity is the identity.-/
@[simp] lemma comap_id : comap (id : R β†’ R) = id :=
funext $ comap_id_apply

/--The pullback along a composition is the composition of the pullback maps.-/
@[simp] lemma comap_comp_apply (g : S β†’ T) (f : R β†’ S) [is_ring_hom g] [is_ring_hom f] (v : Spv T):
  comap (g ∘ f) v = comap f (comap g v) :=
begin
  apply induction_on v, clear v,
  intros Ξ“β‚€ _ v, resetI,
  rw [comap_mk, comap_mk, comap_mk, valuation.comap_comp],
end

/--The pullback along a composition is the composition of the pullback maps.-/
@[simp] lemma comap_comp (g : S β†’ T) (f : R β†’ S) [is_ring_hom g] [is_ring_hom f] :
  comap (g ∘ f) = comap f ∘ comap g :=
funext $ comap_comp_apply g f

/--The support of the pullback of an equivalence class of valuations
is the pullback (as ideal) of the support.-/
lemma supp_comap (f : R β†’ S) [is_ring_hom f] (v : Spv S) :
  (v.comap f).supp = v.supp.comap f :=
begin
  apply induction_on v, clear v,
  intros Ξ“β‚€ _ v, resetI,
  rw [comap_mk, supp_mk, supp_mk, valuation.comap_supp],
end

/--An element is contained in the support of the pullback of an equivalence
class of valuations if and only if its image is contained in the support.-/
lemma mem_supp_comap (f : R β†’ S) [is_ring_hom f] (v : Spv S) (r : R) :
  r ∈ (v.comap f).supp ↔ f r ∈ v.supp :=
by { rw supp_comap, exact iff.rfl }

end comap

/-- The open sets generating the topology of Spv R. See [Wedhorn, Def 4.1].-/
definition basic_open (r s : R) : set (Spv R) :=
{v | v r ≀ v s ∧ v s β‰  0}

/-- The topology on the valuation spectrum of a ring. -/
instance : topological_space (Spv R) :=
topological_space.generate_from {U : set (Spv R) | βˆƒ r s : R, U = basic_open r s}

lemma mk_mem_basic_open {r s : R} (v : valuation R Ξ“β‚€) :
  mk v ∈ basic_open r s ↔ v r ≀ v s ∧ v s β‰  0 :=
begin
  apply and_congr,
  { apply out_mk, },
  { apply (out_mk v).ne_zero, },
end

end Spv