Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 32,925 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 |
import for_mathlib.quotient_group
import valuation.localization
/-!
# The canonical valuation
The purpose of this file is to define a “canonical” valuation equivalent to
a given valuation. The whole raison d'etre for this is that there are set-theoretic
issues with the equivalence “relation” on valuations, because the target group Γ
can be arbitrary.
## Idea
The main idea is this. If v : R → Γ₀ is an arbitrary valuation,
then v extends to a valuation on K = Frac(R/supp(v)) and hence to a monoid
homomorphism K^* → units Γ₀, whose kernel is A^*, the units in the valuation ring
(or equivalently the things in K^* of norm at most 1). This embeds K^*/A^*
into Γ₀ and hence gives K^*/A^* the structure of a linearly ordered commutative group.
There is an induced map R → (K^*/A^*), and we call this the
_canonical valuation_ associated to v; this valuation is equivalent to v.
A technical advantage that this valuation has from the point of view
of Lean's type theory is that if R is in universe u₁ and Γ₀ in universe u₂,
then v : valuation R Γ₀ will be in universe `max u₁ u₂` but the canonical
valuation will just be in universe u₁. In particular, if v and v' are equivalent
then their associated canonical valuations are isomorphic and furthermore in the
same universe.
## Implementation details
All of the below names are in the `valuation` namespace.
The canonical valuation takes values in `value_monoid v`. Technically
this is not defined exactly in the way explained above.
So `value_monoid v` is not defined as `with_zero (K^* / A^*)`.
Instead, we take the equivalence relation on K^* given by A^*,
and extend it in the obvious way to K. The resulting quotient is naturally a monoid,
with an order and a zero element. Indeed, it is a linear_ordered_comm_group_with_zero.
Its unit group is canonically isomorphic to K^*/A^*. (Note that it is also
isomorphic to the subgroup of Γ₀ which Wedhorn calls the value group in [Wedhorn; 1.22]).
`value_monoid.to_Γ₀` is the monoid homomorphism to Γ₀.
`canonical_valuation v` is the canonical valuation.
`canonical_valuation.to_Γ₀ v` is the lemma that says that we can
recover v from `canonical_valuation v` using the monoid homomorphism
from (value_monoid v) to Γ₀.
-- TODO -- rewrite this when I've remembered what we proved.
We then prove some of Proposition-and-Definition 1.27 of Wedhorn,
where we note that we used (iii) for the definition, and
we're now using a different definition to Wedhorn for the value group
(because it's isomorphic so no mathematician will care, and
it's easier for us because it's in a smaller universe).
-/
local attribute [instance] classical.prop_decidable
local attribute [instance, priority 0] classical.DLO
noncomputable theory
universes u u₀ u₁ u₂ u₃
open linear_ordered_structure
variables {R : Type u₀} [comm_ring R]
/- TODO(jmc): Refactor this file to use valued_field,
instead of working explicitly with v.valuation_field. -/
namespace valuation
variables {Γ₀ : Type u} [linear_ordered_comm_group_with_zero Γ₀]
variables (v : valuation R Γ₀)
/-- The elements of `units (valuation_field v)` with norm 1. -/
definition valuation_field_norm_one :=
is_group_hom.ker (units.map (v.on_valuation_field : v.valuation_field →* Γ₀))
/-- `valuation_field_norm_one v is a normal subgroup of `units (valuation_field v)`. -/
instance (v : valuation R Γ₀) : normal_subgroup (valuation_field_norm_one v) :=
by unfold valuation_field_norm_one; apply_instance
namespace value_monoid
/-- The relation on a valuation field induced by the valuation:
a ≈ b if and only if there is a unit c of valuation 1 such that a * c = b.-/
def quotient_rel (a b : v.valuation_field) : Prop :=
∃ c : units v.valuation_field, c ∈ v.valuation_field_norm_one ∧ a * c = b
namespace quotient_rel
lemma refl (a : v.valuation_field) : quotient_rel v a a :=
⟨1, is_submonoid.one_mem _, mul_one a⟩
lemma symm (a b : v.valuation_field) : quotient_rel v a b → quotient_rel v b a :=
by { rintro ⟨c, hc, rfl⟩, exact ⟨c⁻¹, is_subgroup.inv_mem hc, c.mul_inv_cancel_right a⟩ }
lemma trans (a b c : v.valuation_field) :
quotient_rel v a b → quotient_rel v b c → quotient_rel v a c :=
begin
rintro ⟨c, hc, rfl⟩ ⟨c', hc', rfl⟩,
exact ⟨c * c', is_submonoid.mul_mem hc hc', (mul_assoc _ _ _).symm⟩
end
end quotient_rel
/-- The setoid on a valuation field induced by the valuation:
a ≈ b if and only if there is a unit c of valuation 1 such that a * c = b.-/
def setoid : setoid (v.valuation_field) :=
{ r := quotient_rel v,
iseqv := ⟨quotient_rel.refl v, quotient_rel.symm v, quotient_rel.trans v⟩ }
end value_monoid
/-- The value group of the canonical valuation.-/
def value_monoid (v : valuation R Γ₀) : Type u₀ :=
@quotient v.valuation_field (value_monoid.setoid v)
namespace value_monoid
open function
/-- The natural map from the canonical value monoid to Γ₀, for a valuation with values in Γ₀. -/
def to_Γ₀ : v.value_monoid → Γ₀ :=
λ x, quotient.lift_on' x v.on_valuation_field $
begin
rintros a b ⟨c, hc, rfl⟩,
replace hc : v.on_valuation_field c = 1 := units.ext_iff.mp (is_subgroup.mem_trivial.mp hc),
rw [v.on_valuation_field.map_mul, hc, mul_one],
end
lemma to_Γ₀_inj : injective (to_Γ₀ v) :=
begin
rintros ⟨a⟩ ⟨b⟩ h,
change v.on_valuation_field a = v.on_valuation_field b at h,
by_cases ha : a = 0,
{ subst a, rw [valuation.map_zero, eq_comm, valuation.zero_iff] at h, rw h },
{ have hb : b ≠ 0,
{ rintro rfl, rw [valuation.map_zero, valuation.zero_iff] at h, exact ha h },
refine quotient.sound' ⟨(units.mk0 a ha)⁻¹ * (units.mk0 b hb),
is_subgroup.mem_trivial.mpr _, (units.mk0 a ha).mul_inv_cancel_left _⟩,
rw ← v.on_valuation_field.ne_zero_iff at hb,
simp [units.ext_iff, h, hb] }
end
/--The linear order on the canonical value monoid associated with a valuation.-/
instance : linear_order (v.value_monoid) :=
linear_order.lift (to_Γ₀ v) (to_Γ₀_inj v) infer_instance
lemma to_Γ₀_strict_mono : strict_mono (to_Γ₀ v) := λ a b, id
@[simp] lemma triangle (a : v.valuation_field) :
to_Γ₀ v (quotient.mk' a) = v.on_valuation_field a := rfl
/--The zero element of the canonical value monoid associated with a valuation.-/
instance : has_zero (v.value_monoid) := ⟨quotient.mk' 0⟩
/--The unit element of the canonical value monoid associated with a valuation.-/
instance : has_one (v.value_monoid) := ⟨quotient.mk' 1⟩
/--The inversion function of the canonical value monoid associated with a valuation.-/
instance : has_inv (v.value_monoid) :=
⟨λ x, quotient.lift_on' x (λ a, quotient.mk' a⁻¹)
begin
rintros a b ⟨c, hc, rfl⟩,
replace hc : v.on_valuation_field c = 1 := units.ext_iff.mp (is_subgroup.mem_trivial.mp hc),
apply to_Γ₀_inj,
simp [hc],
end⟩
/--The multiplication on the canonical value monoid associated with a valuation.-/
instance : has_mul (v.value_monoid) :=
⟨λ x y, quotient.lift_on₂' x y (λ a b, quotient.mk' (a*b))
begin
rintros a₁ b₁ a₂ b₂ ⟨c₁, hc₁, rfl⟩ ⟨c₂, hc₂, rfl⟩,
replace hc₁ : v.on_valuation_field c₁ = 1 := units.ext_iff.mp (is_subgroup.mem_trivial.mp hc₁),
replace hc₂ : v.on_valuation_field c₂ = 1 := units.ext_iff.mp (is_subgroup.mem_trivial.mp hc₂),
apply to_Γ₀_inj,
simp [hc₁, hc₂],
end⟩
@[simp] lemma to_Γ₀_zero : to_Γ₀ v 0 = 0 := v.on_valuation_field.map_zero
@[simp] lemma to_Γ₀_one : to_Γ₀ v 1 = 1 := v.on_valuation_field.map_one
@[simp] lemma to_Γ₀_inv (a) : to_Γ₀ v a⁻¹ = (to_Γ₀ v a)⁻¹ :=
quotient.induction_on' a $ λ x, v.on_valuation_field.map_inv
@[simp] lemma to_Γ₀_mul (a b) : to_Γ₀ v (a*b) = (to_Γ₀ v a) * (to_Γ₀ v b) :=
quotient.induction_on₂' a b $ λ x y, v.on_valuation_field.map_mul x y
/--The canonical value monoid associated with a valuation is a group with zero.-/
instance : group_with_zero (v.value_monoid) :=
begin
refine_struct {
.. value_monoid.has_zero v,
.. value_monoid.has_one v,
.. value_monoid.has_inv v,
.. value_monoid.has_mul v, },
show decidable_eq (value_monoid v),
{ apply_instance },
show (0 : v.value_monoid) ≠ 1,
{ assume this, replace := congr_arg (to_Γ₀ v) this, simpa using this, },
all_goals { intros, apply to_Γ₀_inj, simp },
{ exact mul_assoc _ _ _ },
{ apply mul_inv_cancel', intro this, apply_assumption, apply to_Γ₀_inj, simpa }
end
/--The canonical value monoid associated with a valuation
is a linearly ordered commutative group with zero.-/
instance : linear_ordered_comm_group_with_zero (v.value_monoid) :=
{ mul_comm := λ a b, to_Γ₀_inj v $ by simpa using mul_comm _ _,
mul_le_mul_left := λ a b h c,
begin
rw ← (to_Γ₀_strict_mono v).le_iff_le at h ⊢,
simpa using linear_ordered_structure.mul_le_mul_left h _
end,
zero_le' := λ a, by { rw ← (to_Γ₀_strict_mono v).le_iff_le, simp },
.. value_monoid.group_with_zero v,
.. value_monoid.linear_order v }
/-- The natural quotient map from `units (valuation_field v)` to `value_monoid v`. -/
def mk (v : valuation R Γ₀) :
valuation_field v →* value_monoid v :=
{ to_fun := quotient.mk',
map_one' := rfl,
map_mul' := λ a b, rfl, }
end value_monoid
/-- The canonical valuation on Frac(R/supp(v)), taking values in `value_monoid v`. -/
def valuation_field.canonical_valuation :
valuation (valuation_field v) (value_monoid v) :=
{ map_zero' := rfl,
map_add' := λ a b,
begin
rw ← (value_monoid.to_Γ₀_strict_mono v).le_iff_le,
rw (value_monoid.to_Γ₀_strict_mono v).monotone.map_max,
exact v.on_valuation_field.map_add a b
end,
.. value_monoid.mk v }
-- ⟨valuation_field.canonical_valuation_v v, valuation_field.canonical_valuation_v.is_valuation v⟩
/-- The canonical valuation on R/supp(v), taking values in `value_monoid v`. -/
definition quotient.canonical_valuation :
valuation (ideal.quotient (supp v)) (value_monoid v) :=
@comap _ _ _ _ _ _ (localization.of)
(by apply_instance) (valuation_field.canonical_valuation v)
/-- The canonical valuation on R, taking values in `value_monoid v`. -/
definition canonical_valuation :
valuation R (value_monoid v) :=
(quotient.canonical_valuation v).comap (ideal.quotient.mk (supp v))
/-- The relation between `v.canonical_valuation r` and `v r`. -/
lemma canonical_valuation_eq (r : R) :
v.canonical_valuation r = value_monoid.mk v (v.valuation_field_mk r) := rfl
namespace canonical_valuation
-- This looks handy to know but we never actually use it.
/-- Every element of `value_monoid v` is a ratio of things in the image of `canonical_valuation v`.-/
lemma value_monoid.is_ratio (v : valuation R Γ₀) (g : value_monoid v) :
∃ r s : R, s ∉ v.supp ∧ v.canonical_valuation s * g = v.canonical_valuation r :=
begin
apply quotient.induction_on' g, clear g,
rintros ⟨⟨r⟩, ⟨s⟩, h⟩,
change ideal.quotient.mk _ s ∈ _ at h,
use [r, s],
split,
{ show s ∉ supp v,
assume mem_supp,
erw [localization.fraction_ring.mem_non_zero_divisors_iff_ne_zero,
(ideal.quotient.eq_zero_iff_mem).2 mem_supp] at h,
contradiction },
show value_monoid.mk v _ * value_monoid.mk v _ = value_monoid.mk v _,
rw ← monoid_hom.map_mul,
refine congr_arg _ _,
let rq := ideal.quotient.mk (supp v) r,
let sq := ideal.quotient.mk (supp v) s,
show (localization.of sq : valuation_field v) * (localization.mk rq ⟨sq, h⟩) = localization.of rq,
erw [localization.mk_eq, mul_comm, mul_assoc, units.inv_val _, mul_one],
refl
end
/-- v can be reconstructed from `canonical_valuation v` by pushing forward along
the map `value_monoid v → Γ₀`. -/
lemma to_Γ₀ :
(canonical_valuation v).map (monoid_hom.mk (value_monoid.to_Γ₀ v) (value_monoid.to_Γ₀_one v) (value_monoid.to_Γ₀_mul v))
(value_monoid.to_Γ₀_zero v) (value_monoid.to_Γ₀_strict_mono v).monotone = v :=
ext $ λ r, show v r * (v 1)⁻¹ = v r, by simp
end canonical_valuation -- end of namespace
end valuation -- end of namespace
namespace valuation
variables {Γ₀ : Type u} [linear_ordered_comm_group_with_zero Γ₀]
variables {Γ'₀ : Type u₁} [linear_ordered_comm_group_with_zero Γ'₀]
variables {Γ''₀ : Type u₂} [linear_ordered_comm_group_with_zero Γ''₀]
variables {Γ₀₃ : Type u₃} [linear_ordered_comm_group_with_zero Γ₀₃]
/-- A valuation is equivalent to its canonical valuation -/
lemma canonical_valuation_is_equiv (v : valuation R Γ₀) :
v.canonical_valuation.is_equiv v :=
begin
have h := is_equiv.of_eq (canonical_valuation.to_Γ₀ v),
symmetry,
refine h.symm.trans _,
exact is_equiv_of_map_strict_mono _ _ _,
end
namespace is_equiv
-- Various lemmas about valuations being equivalent.
variables {v : valuation R Γ₀} {v₁ : valuation R Γ'₀} {v₂ : valuation R Γ''₀} {v₃ : valuation R Γ₀₃}
/-- If J ⊆ supp(v) then pulling back the induced valuation on R / J back to R gives a
valuation equivalent to v. -/
lemma on_quot_comap_self {J : ideal R} (hJ : J ≤ supp v) :
is_equiv ((v.on_quot hJ).comap (ideal.quotient.mk J)) v :=
of_eq (on_quot_comap_eq _ _)
/-- Two valuations on R/J are equivalent iff their pullbacks to R are equivalent. -/
lemma comap_on_quot (J : ideal R) (v₁ : valuation J.quotient Γ'₀) (v₂ : valuation J.quotient Γ''₀) :
(v₁.comap (ideal.quotient.mk J)).is_equiv (v₂.comap (ideal.quotient.mk J)) ↔ v₁.is_equiv v₂ :=
{ mp := begin rintros h ⟨x⟩ ⟨y⟩, exact h x y end,
mpr := λ h, comap _ h }
open localization
/-- If supp(v)=0 then v is equivalent to the pullback of the extension of v to Frac(R). -/
lemma on_frac_comap_self {R : Type u₀} [integral_domain R] (v : valuation R Γ₀) (hv : supp v = 0) :
is_equiv ((v.on_frac hv).comap of) v :=
of_eq (on_frac_comap_eq v hv)
/-- If R is an ID then two valuations on R are equivalent iff their extensions to Frac(R) are
equivalent. -/
lemma comap_on_frac {R : Type u₀} [integral_domain R]
(v₁ : valuation (fraction_ring R) Γ'₀) (v₂ : valuation (fraction_ring R) Γ''₀) :
(v₁.comap of).is_equiv (v₂.comap of) ↔ is_equiv v₁ v₂ :=
{ mp := begin
rintros h ⟨x⟩ ⟨y⟩,
erw [← comap_on_frac_eq v₁, ← comap_on_frac_eq v₂],
show _ * _ ≤ _ * _ ↔ _ * _ ≤ _ * _,
erw div_le_div', erw div_le_div',
{ repeat {erw ← valuation.map_mul},
exact h _ _ },
all_goals { intro H,
erw [← mem_supp_iff, comap_supp, (supp _).eq_bot_of_prime] at H,
simp at H,
replace H := fraction_ring.eq_zero_of _ H,
refine fraction_ring.mem_non_zero_divisors_iff_ne_zero.mp _ H,
apply subtype.val_prop _,
apply_instance },
end,
mpr := λ h, h.comap _ }
/-- [Wed 1.27] (iii) -> first part of (ii). -/
lemma supp_eq (h : v₁.is_equiv v₂) : supp v₁ = supp v₂ :=
ideal.ext $ λ r,
calc r ∈ supp v₁ ↔ v₁ r = 0 : iff.rfl
... ↔ v₁ r ≤ v₁ 0 : by simp
... ↔ v₂ r ≤ v₂ 0 : h r 0
... ↔ v₂ r = 0 : by simp
... ↔ r ∈ supp v₂ : iff.rfl
/-- If v₁ and v₂ are equivalent then v₁(r)=1 → v₂(r)=1. -/
lemma v_eq_one_of_v_eq_one (h : v₁.is_equiv v₂) {r : R} : v₁ r = 1 → v₂ r = 1 :=
begin
rw [←v₁.map_one, ←v₂.map_one],
intro hr,
exact le_antisymm ((h r 1).1 (le_of_eq hr)) ((h 1 r).1 (le_of_eq hr.symm)),
end
/-- If v₁ and v₂ are equivalent then v₁(r)=1 ↔ v₂(r)=1. -/
lemma v_eq_one (h : v₁.is_equiv v₂) (r : R) : v₁ r = 1 ↔ v₂ r = 1 :=
⟨v_eq_one_of_v_eq_one h,v_eq_one_of_v_eq_one h.symm⟩
/-- If v₁ and v₂ are equivalent then their canonical valuations are too. -/
lemma canonical_equiv_of_is_equiv (h : v₁.is_equiv v₂) :
(canonical_valuation v₁).is_equiv (canonical_valuation v₂) :=
begin
refine is_equiv.trans v₁.canonical_valuation_is_equiv _,
refine is_equiv.trans h _,
apply is_equiv.symm,
exact v₂.canonical_valuation_is_equiv
end
end is_equiv -- end of namespace
/-- The supports of v and v.canonical_valuation are equal. -/
lemma canonical_valuation_supp (v : valuation R Γ₀) :
supp (v.canonical_valuation) = supp v := (canonical_valuation_is_equiv v).supp_eq
/-- The canonical valuation of a valuation on a field is surjective. -/
lemma canonical_valuation.surjective {K : Type*} [discrete_field K] (v : valuation K Γ₀) :
function.surjective (v.canonical_valuation) :=
begin
rintro ⟨⟨⟨r⟩,⟨⟨s⟩,h⟩⟩⟩,
refine ⟨s⁻¹ * r, _⟩,
apply quotient.sound,
refine ⟨1, is_submonoid.one_mem _, _⟩,
rw [units.coe_one, mul_one],
apply quotient.sound,
refine ⟨_, h, _⟩,
dsimp only [-sub_eq_add_neg],
convert zero_mul _, rw [sub_eq_zero],
dsimp, rw ← mul_assoc,
congr, symmetry,
show ideal.quotient.mk (supp v) _ * ideal.quotient.mk (supp v) _ = 1,
rw ← is_ring_hom.map_mul (ideal.quotient.mk (supp v)),
convert is_ring_hom.map_one (ideal.quotient.mk (supp v)),
apply mul_inv_cancel,
contrapose! h, subst s,
refine (not_iff_not_of_iff localization.fraction_ring.mem_non_zero_divisors_iff_ne_zero).mpr _,
exact not_not.mpr rfl
end
section Wedhorn1_27_equivalences
variables {v : valuation R Γ₀} {v₁ : valuation R Γ'₀} {v₂ : valuation R Γ''₀} {v₃ : valuation R Γ₀₃}
open is_group_hom quotient_group function
-- We now start on the equivalences of Wedhorn 1.27. The first one is easy.
/-- Wedhorn 1.27 (i) → (iii) : An ordered isomorphism of value groups which commutes with
canonical valuations implies that valuations are equivalent. -/
lemma of_inj_value_monoid (f : v₁.value_monoid →* v₂.value_monoid) (h₀ : f 0 = 0) (hf : strict_mono f)
(H : v₂.canonical_valuation = v₁.canonical_valuation.map f h₀ (hf.monotone)) :
v₁.is_equiv v₂ :=
begin
refine (v₁.canonical_valuation_is_equiv.symm).trans _,
refine (is_equiv.trans _ (v₂.canonical_valuation_is_equiv)),
rw H,
symmetry,
exact is_equiv_of_map_strict_mono _ _ _
end
-- These lemmas look slightly ridiculous to a mathematician but they are avoiding equality of
-- types and instead defining and reasoning about maps which mathematicians would call
-- "the identiy map".
/-- Natural map R/supp(v₁) → R/supp(v₂) induced by equality supp(v₁)=supp(v₂). -/
def quot_of_quot_of_eq_supp (h : supp v₁ = supp v₂) : valuation_ID v₁ → valuation_ID v₂ :=
ideal.quotient.lift _ (ideal.quotient.mk _)
(λ r hr, ideal.quotient.eq_zero_iff_mem.2 $ h ▸ hr)
lemma quot_of_quot_of_eq_supp.id (r : valuation_ID v) : quot_of_quot_of_eq_supp (rfl) r = r :=
by rcases r;refl
lemma quot_of_quot_of_eq_supp.comp (h12 : supp v₁ = supp v₂) (h23 : supp v₂ = supp v₃)
(r : valuation_ID v₁) : quot_of_quot_of_eq_supp h23 (quot_of_quot_of_eq_supp h12 r) =
quot_of_quot_of_eq_supp (h23 ▸ h12 : supp v₁ = supp v₃) r :=
by rcases r;refl
/-- If supp(v₁)=supp(v₂) then R/supp(v₁) is isomorphic to R/supp(v₂). -/
def valuation_ID.equiv (h : supp v₁ = supp v₂) : valuation_ID v₁ ≃ valuation_ID v₂ :=
{ to_fun := quot_of_quot_of_eq_supp h,
inv_fun := quot_of_quot_of_eq_supp (h.symm),
left_inv := λ r, by rw quot_of_quot_of_eq_supp.comp h h.symm; exact quot_of_quot_of_eq_supp.id r,
right_inv := λ r, by rw quot_of_quot_of_eq_supp.comp h.symm h; exact quot_of_quot_of_eq_supp.id r
}
@[simp] lemma quot_of_quot_of_eq_supp_quotient_mk (h : supp v₁ = supp v₂) :
quot_of_quot_of_eq_supp h ∘ ideal.quotient.mk _ = ideal.quotient.mk _ :=
funext $ λ x, ideal.quotient.lift_mk
lemma quot_of_quot_of_eq_supp_quotient_mk' (h : supp v₁ = supp v₂) (r : R) :
quot_of_quot_of_eq_supp h (ideal.quotient.mk _ r) = ideal.quotient.mk _ r :=
by rw ←quot_of_quot_of_eq_supp_quotient_mk h
/-- If supp(v₁)=supp(v₂) then the identity map R/supp(v₁) → R/supp(v₂) is a ring homomorphism. -/
instance quot_of_quot_of_eq_supp.is_ring_hom (h : supp v₁ = supp v₂) :
is_ring_hom (quot_of_quot_of_eq_supp h) :=
by delta quot_of_quot_of_eq_supp; apply_instance
/-- If supp(v₁)=supp(v₂) then R/supp(v₁) and R/supp(v₂) are isomorphic rings. -/
def quot_equiv_quot_of_eq_supp (h : supp v₁ = supp v₂) : valuation_ID v₁ ≃+* valuation_ID v₂ :=
{ .. ring_hom.of (quot_of_quot_of_eq_supp h),
.. valuation_ID.equiv h }
/-- If supp(v₁)=supp(v₂) then the triangle R → R/supp(v₁) → R/supp(v₂) commutes. -/
lemma quot_equiv_quot_mk_eq_mk (h : supp v₁ = supp v₂) (r : R) :
(quot_equiv_quot_of_eq_supp h).to_equiv (ideal.quotient.mk _ r) = ideal.quotient.mk _ r :=
quot_of_quot_of_eq_supp_quotient_mk' h r
lemma quot_of_quot_of_eq_supp_inj (h : supp v₁ = supp v₂) : injective (quot_of_quot_of_eq_supp h) :=
injective_of_left_inverse (quot_equiv_quot_of_eq_supp h).left_inv
lemma valuation_ID_le_of_le_of_equiv (h : v₁.is_equiv v₂) (a b : valuation_ID v₁) :
(a ≤ b) ↔
quot_of_quot_of_eq_supp (is_equiv.supp_eq h) a ≤ quot_of_quot_of_eq_supp (is_equiv.supp_eq h) b :=
by rcases a; rcases b; exact (h a b)
/-- If v₁ and v₂ are equivalent, then the associated preorders on
R/supp(v₁)=R/supp(v₂) are equivalent. -/
def valuation_ID.preorder_equiv (h : v₁.is_equiv v₂) :
preorder_equiv (valuation_ID v₁) (valuation_ID v₂) :=
{ le_map := valuation_ID_le_of_le_of_equiv h,
..valuation_ID.equiv h.supp_eq
}
section valuation_field
open localization
/-- The natural map Frac(R/supp(v₁)) → Frac(R/supp(v₂)) if supp(v₁) = supp(v₂). -/
def valfield_of_valfield_of_eq_supp (h : supp v₁ = supp v₂) :
valuation_field v₁ → valuation_field v₂ :=
fraction_ring.map (quot_of_quot_of_eq_supp h) (quot_of_quot_of_eq_supp_inj h)
/-- The triangle R → Frac(R/supp(v₁)) → Frac(R/supp(v₂)) commutes if supp(v₁)=supp(v₂). -/
lemma valfield_of_valfield_of_eq_supp_quotient_mk (h : supp v₁ = supp v₂) (r : R) :
valfield_of_valfield_of_eq_supp h (of $ ideal.quotient.mk _ r) = of (ideal.quotient.mk _ r) :=
begin
unfold valfield_of_valfield_of_eq_supp,
rw fraction_ring.map_of,
rw quot_of_quot_of_eq_supp_quotient_mk',
end
/-- If supp(v₁)=supp(v₂) then the natural map Frac(R/supp(v₁)) → Frac(R/supp(v₂)) is a
homomorphism of fields. -/
instance is_ring_hom_of_supp (h : supp v₁ = supp v₂) : is_ring_hom (valfield_of_valfield_of_eq_supp h) :=
by delta valfield_of_valfield_of_eq_supp; apply_instance
-- This should be possible using type class inference but there are max class
-- instance issues.
/-- If supp(v₁)=supp(v₂) then the natural map Frac(R/supp(v₁)) → Frac(R/supp(v₂)) is a
homomorphism of monoids. -/
instance (h : supp v₁ = supp v₂) : is_monoid_hom (valfield_of_valfield_of_eq_supp h) :=
is_semiring_hom.is_monoid_hom (valfield_of_valfield_of_eq_supp h)
/-- If supp(v₁)=supp(v₂) then the natural map Frac(R/supp(v₁)) → Frac(R/supp(v₂)) is an
isomorphism of rings. -/
def valfield_equiv_valfield_of_eq_supp (h : supp v₁ = supp v₂) :
valuation_field v₁ ≃+* valuation_field v₂ :=
fraction_ring.equiv_of_equiv (quot_equiv_quot_of_eq_supp h)
lemma valfield_equiv_eq_valfield_of_valfield (h : supp v₁ = supp v₂) (q : valuation_field v₁) :
(valfield_equiv_valfield_of_eq_supp h).to_equiv q = valfield_of_valfield_of_eq_supp h q := rfl
lemma valfield_equiv_valfield_mk_eq_mk (h : supp v₁ = supp v₂) (r : R) :
(valfield_equiv_valfield_of_eq_supp h).to_equiv (of $ ideal.quotient.mk _ r)
= of (ideal.quotient.mk _ r) :=
valfield_of_valfield_of_eq_supp_quotient_mk h r
/-- If v₁ and v₂ are equivalent then the induced valuations on R/supp(v₁) and R/supp(v₂)
(pulled back to R/supp(v₁) are equivalent. -/
lemma is_equiv.comap_quot_of_quot (h : v₁.is_equiv v₂) :
(v₁.on_quot (set.subset.refl _)).is_equiv
((v₂.on_quot (set.subset.refl _)).comap (quot_of_quot_of_eq_supp h.supp_eq)) :=
begin
rw [← is_equiv.comap_on_quot, ← comap_comp],
simp [h],
end
/-- If v₁ and v₂ are equivalent then the induced valuations on Frac(R/supp(v₁)) and
Frac(R/supp(v₂)) [pulled back] are equivalent. -/
lemma is_equiv.on_valuation_field_is_equiv (h : v₁.is_equiv v₂) :
v₁.on_valuation_field.is_equiv
(v₂.on_valuation_field.comap (valfield_of_valfield_of_eq_supp h.supp_eq)) :=
begin
delta valfield_of_valfield_of_eq_supp, delta on_valuation_field,
erw [← is_equiv.comap_on_frac, ← comap_comp, on_frac_comap_eq],
simp [comap_comp, h.comap_quot_of_quot],
end
/-- The valuation rings of two equivalent valuations are isomorphic (as types). -/
def val_ring_equiv_of_is_equiv_aux (h : v₁.is_equiv v₂) :
v₁.valuation_ring ≃ v₂.valuation_ring :=
equiv.subtype_congr (valfield_equiv_valfield_of_eq_supp h.supp_eq).to_equiv $
begin
intro x,
show _ ≤ _ ↔ _ ≤ _,
erw [← v₁.on_valuation_field.map_one, h.on_valuation_field_is_equiv],
convert iff.refl _,
symmetry,
exact valuation.map_one _,
end
/-- The valuation rings of two equivalent valuations are isomorphic as rings. -/
def val_ring_equiv_of_is_equiv (h : v₁.is_equiv v₂) : v₁.valuation_ring ≃+* v₂.valuation_ring :=
{ map_add' := λ x y, subtype.val_injective $
(valfield_equiv_valfield_of_eq_supp h.supp_eq).map_add x y,
map_mul' := λ x y, subtype.val_injective $
(valfield_equiv_valfield_of_eq_supp h.supp_eq).map_mul x y,
.. val_ring_equiv_of_is_equiv_aux h, }
-- we omit the proof that the diagram {r | v₁ r ≤ 1} → v₁.valuation_ring → v₂.valuation_ring
-- commutes.
lemma valfield_le_of_le_of_equiv (h : v₁.is_equiv v₂) (a b : valuation_field v₁) :
(a ≤ b) ↔ valfield_of_valfield_of_eq_supp (h.supp_eq) a ≤
valfield_of_valfield_of_eq_supp (h.supp_eq) b :=
calc a ≤ b ↔ v₁.on_valuation_field a ≤ v₁.on_valuation_field b : iff.rfl
... ↔ _ : h.on_valuation_field_is_equiv a b
def valfield.preorder_equiv (h : v₁.is_equiv v₂) :
preorder_equiv (valuation_field v₁) (valuation_field v₂) :=
{ le_map := valfield_le_of_le_of_equiv h,
..(valfield_equiv_valfield_of_eq_supp h.supp_eq).to_equiv
}
-- units
/-- The induced map between the unit groups of the valuation fields of
two valuations with the same support.-/
def valfield_units_of_valfield_units_of_eq_supp (h : supp v₁ = supp v₂) :
units (valuation_field v₁) → units (valuation_field v₂) :=
units.map' $ valfield_of_valfield_of_eq_supp h
/-- The induced map between the unit groups of the valuation fields of
two valuations with the same support is a group homomorphism.-/
instance valfield_units.is_group_hom (h : supp v₁ = supp v₂) :
is_group_hom (valfield_units_of_valfield_units_of_eq_supp h) :=
by unfold valfield_units_of_valfield_units_of_eq_supp; apply_instance
lemma units_valfield_of_units_valfield_of_eq_supp_mk
(h : supp v₁ = supp v₂) (r : R) (hr : r ∉ supp v₁) :
valfield_units_of_valfield_units_of_eq_supp h (units_valfield_mk v₁ r hr)
= units_valfield_mk v₂ r (h ▸ hr) := units.ext $ valfield_equiv_valfield_mk_eq_mk h r
def valfield_units_equiv_units_of_eq_supp (h : supp v₁ = supp v₂) :
(units (valuation_field v₁)) ≃* (units (valuation_field v₂)) :=
units.map_equiv { .. valfield_equiv_valfield_of_eq_supp h }
end valuation_field -- section
lemma valfield_units_equiv_units_mk_eq_mk (h : supp v₁ = supp v₂) (r : R) (hr : r ∉ supp v₁):
(valfield_units_equiv_units_of_eq_supp h).to_equiv (units_valfield_mk v₁ r hr) =
units_valfield_mk v₂ r (h ▸ hr) := units_valfield_of_units_valfield_of_eq_supp_mk h r hr
def valfield_units_preorder_equiv (h : v₁.is_equiv v₂) :
preorder_equiv (units (valuation_field v₁)) (units (valuation_field v₂)) :=
{ le_map := λ u v, @le_equiv.le_map _ _ _ _ (valfield.preorder_equiv h) u.val v.val,
..valfield_units_equiv_units_of_eq_supp (h.supp_eq) }
lemma val_one_iff_unit_val_one (x : units (valuation_field v)) :
x ∈ valuation_field_norm_one v ↔ v.on_valuation_field x = 1 :=
calc x ∈ valuation_field_norm_one v ↔
(units.map (v.on_valuation_field : v.valuation_field →* Γ₀) x = 1) : is_subgroup.mem_trivial
... ↔ v.on_valuation_field x = 1 : units.ext_iff
lemma is_equiv.norm_one_eq_norm_one (h : is_equiv v₁ v₂) :
valfield_units_of_valfield_units_of_eq_supp (is_equiv.supp_eq h) ⁻¹' valuation_field_norm_one v₂
= valuation_field_norm_one v₁ :=
begin
ext x,
rw [set.mem_preimage, val_one_iff_unit_val_one x,
is_equiv.v_eq_one (is_equiv.on_valuation_field_is_equiv h) x, val_one_iff_unit_val_one],
refl,
end
/-- Two equivalent valuations have isomorphic canonical value monoids.
This is part of the statement of [Wedhorn, 1.27 (iii) -> (i)]. -/
def is_equiv.value_mul_equiv (h : is_equiv v₁ v₂) :
(value_monoid v₁) ≃* (value_monoid v₂) :=
{ to_fun := λ x, quotient.lift_on' x ((valuation_field.canonical_valuation v₂).comap (valfield_of_valfield_of_eq_supp h.supp_eq))
begin
rintros a b ⟨c, hc, rfl⟩,
rw valuation.map_mul,
convert (mul_one _).symm,
rw val_one_iff_unit_val_one at hc,
rw h.on_valuation_field_is_equiv.v_eq_one c at hc,
suffices : v₂.on_valuation_field.is_equiv (valuation_field.canonical_valuation v₂),
{ have tmp := (this.comap (valfield_of_valfield_of_eq_supp _)),
rwa tmp.v_eq_one at hc, },
intros a b, exact iff.rfl
end,
inv_fun := λ x, quotient.lift_on' x ((valuation_field.canonical_valuation v₁).comap (valfield_of_valfield_of_eq_supp h.symm.supp_eq))
begin
rintros a b ⟨c, hc, rfl⟩,
rw valuation.map_mul,
convert (mul_one _).symm,
rw val_one_iff_unit_val_one at hc,
rw h.symm.on_valuation_field_is_equiv.v_eq_one c at hc,
suffices : v₁.on_valuation_field.is_equiv (valuation_field.canonical_valuation v₁),
{ have tmp := (this.comap (valfield_of_valfield_of_eq_supp _)),
rwa tmp.v_eq_one at hc, },
intros a b, exact iff.rfl
end,
left_inv := by { rintro ⟨a⟩, apply quotient.sound',
refine ⟨1, is_submonoid.one_mem _, _⟩,
rw [units.coe_one, mul_one],
exact (valfield_equiv_valfield_of_eq_supp h.supp_eq).to_equiv.left_inv a },
right_inv := by { rintro ⟨a⟩, apply quotient.sound',
refine ⟨1, is_submonoid.one_mem _, _⟩,
rw [units.coe_one, mul_one],
exact (valfield_equiv_valfield_of_eq_supp h.symm.supp_eq).to_equiv.left_inv a },
map_mul' :=
begin
rintro ⟨a⟩ ⟨b⟩, apply quotient.sound',
refine ⟨1, is_submonoid.one_mem _, _⟩,
rw [units.coe_one, mul_one],
exact is_ring_hom.map_mul _,
end }
-- ordering part of 1.27 (iii) -> (i)
lemma is_equiv.value_monoid_order_equiv_aux (h : is_equiv v₁ v₂) (x y : value_monoid v₁) (h2 : x ≤ y) :
h.value_mul_equiv x ≤ h.value_mul_equiv y :=
begin
induction x with x, induction y, swap, refl, swap, refl,
exact (is_equiv.on_valuation_field_is_equiv h x y).1 h2,
end
/-- The canonical value monoids of two equivalent valuations are order equivalent.-/
def is_equiv.value_monoid_le_equiv (h : is_equiv v₁ v₂) :
(value_monoid v₁) ≃≤ (value_monoid v₂) :=
{ le_map := λ x y, linear_order_le_iff_of_monotone_injective
(h.value_mul_equiv.to_equiv.bijective.1)
(is_equiv.value_monoid_order_equiv_aux h) x y
..h.value_mul_equiv}
lemma is_equiv.value_mul_equiv_monotone (h : is_equiv v₁ v₂) :
monotone (h.value_mul_equiv) := λ x y,
(@@le_equiv.le_map _ _ (is_equiv.value_monoid_le_equiv h)).1
lemma is_equiv.value_mul_equiv_map_zero (h : is_equiv v₁ v₂) :
h.value_mul_equiv 0 = 0 :=
begin
apply quotient.sound',
refine ⟨1, is_submonoid.one_mem _, _⟩,
rw [units.coe_one, mul_one],
exact is_ring_hom.map_zero _,
end
lemma is_equiv.with_zero_value_mul_equiv_mk_eq_mk (h : v₁.is_equiv v₂) :
(canonical_valuation v₁).map
h.value_mul_equiv.to_monoid_hom h.value_mul_equiv_map_zero h.value_mul_equiv_monotone =
canonical_valuation v₂ :=
begin
ext r, apply quotient.sound',
refine ⟨1, is_submonoid.one_mem _, _⟩,
rw [units.coe_one, mul_one],
apply valfield_of_valfield_of_eq_supp_quotient_mk,
end
end Wedhorn1_27_equivalences -- section
end valuation
|