Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 5,476 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import data.equiv.basic
import group_theory.subgroup
universes u v
section
open tactic interactive (parse loc.wildcard) interactive.types (location) lean.parser (many ident)
run_cmd mk_simp_attr `with_zero_simp
meta def tactic.with_zero_cases : list expr → tactic unit
| (h::t) := seq (induction h [] (some `with_zero.cases_on) >> skip) $ tactic.with_zero_cases t
| [] := do try (interactive.norm_cast loc.wildcard),
try (tactic.interactive.simp_core {} assumption ff [] [`with_zero_simp] loc.wildcard),
try (do exfalso, assumption)
/-- Case bashing for with_zero. If `x₁, ... x_n` have type `with_zero α` then
`with_zero cases x₁ ... x_n` will split according to whether each `x_i` is zero or coerced from
`α` then run `norm_cast at *`, try to simplify using the simp rules `with_zero_simp`, and try to
get a contradiction. -/
meta def tactic.interactive.with_zero_cases (l : parse $ many ident) :=
l.mmap tactic.get_local >>= tactic.with_zero_cases
end
namespace with_zero
variables {α : Type u} {β : Type v}
@[simp, with_zero_simp] lemma zero_le [preorder α] {x : with_zero α} : 0 ≤ x :=
by { intros y hy, cases hy }
@[simp, with_zero_simp] lemma zero_lt_coe [preorder α] {a : α} : (0 : with_zero α) < a :=
⟨a, rfl, λ y hy, by cases hy⟩
@[simp, with_zero_simp] lemma not_coe_eq_zero [preorder α] {x : α} : ¬ (x : with_zero α) = 0 :=
λ h, option.no_confusion h
@[elim_cast] lemma coe_le_coe [preorder α] {x y : α} :
(x : with_zero α) ≤ (y : with_zero α) ↔ x ≤ y :=
⟨λ h, by rcases (h x rfl) with ⟨z, ⟨h2⟩, h3⟩; exact h3, λ _ _ h, ⟨y, rfl, by cases h ; assumption⟩⟩
@[elim_cast] lemma coe_lt_coe [preorder α] {x y : α} :
(x : with_zero α) < (y : with_zero α) ↔ x < y :=
by repeat { rw [lt_iff_le_not_le, coe_le_coe] }
-- TODO: replace `coe_one` in mathlib by this one, which seems to be stated as needed by norm_cast.
-- Same remark applies to the next two lemmas.
@[elim_cast] lemma coe_one' [has_one α] : (1 : with_zero α) = ((1 : α) : with_zero α) := rfl
@[move_cast] lemma inv_coe' {α : Type*} [has_inv α] (a : α) :
((a⁻¹ : α) : with_zero α) = (a : with_zero α)⁻¹ := rfl
@[move_cast] lemma mul_coe' {α : Type*} [has_mul α] (a b : α) :
((a * b : α) : with_zero α) = (a : with_zero α) * b := rfl
attribute [elim_cast] coe_inj
@[simp] lemma le_zero_iff_eq_zero [preorder α] {x : with_zero α} : x ≤ 0 ↔ x = 0 :=
begin
with_zero_cases x,
intro h,
rcases h x rfl with ⟨_, h, _⟩,
exact option.no_confusion h,
end
@[simp] lemma not_coe_le_zero [preorder α] (x : α) : ¬ (x : with_zero α) ≤ 0 :=
begin
intro h,
rw le_zero_iff_eq_zero at h,
exact not_coe_eq_zero h,
end
@[simp] lemma not_lt_zero [preorder α] (x : with_zero α) : ¬ x < 0 :=
begin
intro h,
with_zero_cases x,
exact lt_irrefl _ h,
exact not_coe_le_zero x (le_of_lt h),
end
@[simp] lemma map_zero {f : α → β} : map f 0 = 0 := option.map_none'
@[simp, elim_cast] lemma map_coe {f : α → β} {a : α} : map f (a : with_zero α) = f a :=
option.map_some'
@[simp] lemma map_id {α : Type*} : map (id : α → α) = id := option.map_id
lemma map_comp {α β γ : Type*} (f : α → β) (g : β → γ) (r : with_zero α) :
map (g ∘ f) r = map g (map f r) :=
by cases r; refl
@[simp] lemma map_eq_zero_iff {f : α → β} {a : with_zero α} : map f a = 0 ↔ a = 0 :=
⟨λ h, by with_zero_cases a, λ h, by simp [h]⟩
lemma injective_map {f : α → β} (H : function.injective f) :
function.injective (map f) := option.injective_map H
lemma map_monotone [preorder α] [preorder β] {f : α → β} (H : monotone f) :
monotone (map f) :=
λ x y, by { with_zero_cases x y, exact λ h, H h }
lemma map_strict_mono [linear_order α] [partial_order β] {f : α → β}
(H : ∀ a b, a < b → f a < f b) :
strict_mono (map f) :=
λ x y, by { with_zero_cases x y, exact λ h, H _ _ h }
lemma map_le [preorder α] [preorder β] {f : α → β}
(H : ∀ a b : α, a ≤ b ↔ f a ≤ f b) (x y : with_zero α) :
x ≤ y ↔ map f x ≤ map f y :=
by { with_zero_cases x y, exact H x y }
@[move_cast] lemma coe_min (x y : α) [decidable_linear_order α] :
((min x y : α) : with_zero α) = min x y :=
begin
by_cases h: x ≤ y,
{ simp [min_eq_left, h] },
{ simp [min_eq_right, le_of_not_le h] }
end
section group
variables [group α]
lemma mul_left_cancel : ∀ {x : with_zero α} (h : x ≠ 0) {y z : with_zero α}, x * y = x * z → y = z
| 0 h := false.elim $ h rfl
| (a : α) h := λ y z h2, begin
have h3 : (a⁻¹ : with_zero α) * (a * y) = a⁻¹ * (a * z) := by rw h2,
rwa [←mul_assoc, ←mul_assoc, mul_left_inv _ h, one_mul, one_mul] at h3,
end
lemma mul_right_cancel : ∀ {x : with_zero α} (h : x ≠ 0) {y z : with_zero α}, y * x = z * x → y = z
| 0 h := false.elim $ h rfl
| (a : α) h := λ y z h2, begin
have h3 : (y * a) * a⁻¹ = (z * a) * a⁻¹ := by rw h2,
rwa [mul_assoc, mul_assoc, mul_right_inv _ h, mul_one, mul_one] at h3,
end
lemma mul_inv_eq_of_eq_mul : ∀ {x : with_zero α} (h : x ≠ 0) {y z : with_zero α},
y = z * x → y * x⁻¹ = z
| 0 h := false.elim $ h rfl
| (x : α) h := λ _ _ _, mul_right_cancel h (by rwa [mul_assoc, mul_left_inv _ h, mul_one])
lemma eq_mul_inv_of_mul_eq {x : with_zero α} (h : x ≠ 0) {y z : with_zero α} (h2 : z * x = y) :
z = y * x⁻¹ := eq.symm $ mul_inv_eq_of_eq_mul h h2.symm
end group
end with_zero
|