Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 5,476 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import data.equiv.basic
import group_theory.subgroup

universes u v


section
open tactic interactive (parse loc.wildcard) interactive.types (location) lean.parser (many ident)

run_cmd mk_simp_attr `with_zero_simp

meta def tactic.with_zero_cases : list expr → tactic unit
| (h::t) := seq (induction h [] (some `with_zero.cases_on) >> skip) $ tactic.with_zero_cases t
| [] := do try (interactive.norm_cast loc.wildcard),
           try (tactic.interactive.simp_core {} assumption ff [] [`with_zero_simp] loc.wildcard),
           try (do exfalso, assumption)

/-- Case bashing for with_zero. If `x₁, ... x_n` have type `with_zero α` then
`with_zero cases x₁ ... x_n` will split according to whether each `x_i` is zero or coerced from
`α` then run `norm_cast at *`, try to simplify using the simp rules `with_zero_simp`, and try to
get a contradiction. -/
meta def tactic.interactive.with_zero_cases (l : parse $ many ident) :=
l.mmap tactic.get_local >>= tactic.with_zero_cases
end

namespace with_zero


variables {α : Type u} {β : Type v}

@[simp, with_zero_simp] lemma zero_le [preorder α] {x : with_zero α} : 0 ≤ x :=
by { intros y hy, cases hy }

@[simp, with_zero_simp] lemma zero_lt_coe [preorder α] {a : α} : (0 : with_zero α) < a :=
⟨a, rfl, λ y hy, by cases hy⟩


@[simp, with_zero_simp] lemma not_coe_eq_zero [preorder α] {x : α} : ¬ (x : with_zero α) = 0 :=
λ h, option.no_confusion h

@[elim_cast] lemma coe_le_coe [preorder α] {x y : α} :
  (x : with_zero α) ≤ (y : with_zero α) ↔ x ≤ y :=
⟨λ h, by rcases (h x rfl) with ⟨z, ⟨h2⟩, h3⟩; exact h3, λ _ _ h, ⟨y, rfl, by cases h ; assumption⟩⟩

@[elim_cast] lemma coe_lt_coe [preorder α] {x y : α} :
  (x : with_zero α) < (y : with_zero α) ↔ x < y :=
by repeat { rw [lt_iff_le_not_le, coe_le_coe] }

-- TODO: replace `coe_one` in mathlib by this one, which seems to be stated as needed by norm_cast.
-- Same remark applies to the next two lemmas.
@[elim_cast] lemma coe_one' [has_one α] : (1 : with_zero α) = ((1 : α) : with_zero α) := rfl

@[move_cast] lemma inv_coe' {α : Type*} [has_inv α] (a : α) :
 ((a⁻¹ : α) : with_zero α) = (a : with_zero α)⁻¹  := rfl

@[move_cast] lemma mul_coe' {α : Type*} [has_mul α] (a b : α) :
  ((a * b : α) : with_zero α) = (a : with_zero α) * b := rfl

attribute [elim_cast] coe_inj

@[simp] lemma le_zero_iff_eq_zero [preorder α] {x : with_zero α} : x ≤ 0 ↔ x = 0 :=
begin
  with_zero_cases x,
  intro h,
  rcases h x rfl with_, h, _⟩,
  exact option.no_confusion h,
end

@[simp] lemma not_coe_le_zero [preorder α] (x : α) : ¬ (x : with_zero α) ≤ 0 :=
begin
  intro h,
  rw le_zero_iff_eq_zero at h,
  exact not_coe_eq_zero h,
end

@[simp] lemma not_lt_zero [preorder α] (x : with_zero α) : ¬ x < 0 :=
begin
  intro h,
  with_zero_cases x,
  exact lt_irrefl _ h,
  exact not_coe_le_zero x (le_of_lt h),
end

@[simp] lemma map_zero {f : α → β} : map f 0 = 0 := option.map_none'

@[simp, elim_cast] lemma map_coe {f : α → β} {a : α} : map f (a : with_zero α) = f a :=
option.map_some'

@[simp] lemma map_id {α : Type*} : map (id : α → α) = id := option.map_id

lemma map_comp {α β γ : Type*} (f : α → β) (g : β → γ) (r : with_zero α) :
  map (g ∘ f) r = map g (map f r) :=
by cases r; refl

@[simp] lemma map_eq_zero_iff {f : α → β} {a : with_zero α} : map f a = 0 ↔ a = 0 :=
⟨λ h, by with_zero_cases a, λ h, by simp [h]⟩

lemma injective_map {f : α → β} (H : function.injective f) :
function.injective (map f) := option.injective_map H

lemma map_monotone [preorder α] [preorder β] {f : α → β} (H : monotone f) :
  monotone (map f) :=
λ x y, by { with_zero_cases x y, exact λ h, H h }

lemma map_strict_mono [linear_order α] [partial_order β] {f : α → β}
  (H : ∀ a b, a < b → f a < f b) :
  strict_mono (map f) :=
λ x y, by { with_zero_cases x y, exact λ h, H _ _ h }

lemma map_le [preorder α] [preorder β] {f : α → β}
  (H : ∀ a b : α, a ≤ b ↔ f a ≤ f b) (x y : with_zero α) :
x ≤ y ↔ map f x ≤ map f y :=
by { with_zero_cases x y, exact H x y }

@[move_cast] lemma coe_min (x y : α) [decidable_linear_order α] :
  ((min x y : α) : with_zero α) = min x y :=
begin
  by_cases h: x ≤ y,
  { simp [min_eq_left, h] },
  { simp [min_eq_right, le_of_not_le h] }
end

section group
variables [group α]

lemma mul_left_cancel : ∀ {x : with_zero α} (h : x ≠ 0) {y z : with_zero α}, x * y = x * z → y = z
| 0       h := false.elim $ h rfl
| (a : α) h := λ y z h2, begin
  have h3 : (a⁻¹ : with_zero α) * (a * y) = a⁻¹ * (a * z) := by rw h2,
  rwa [←mul_assoc, ←mul_assoc, mul_left_inv _ h, one_mul, one_mul] at h3,
end

lemma mul_right_cancel : ∀ {x : with_zero α} (h : x ≠ 0) {y z : with_zero α}, y * x = z * x → y = z
| 0       h := false.elim $ h rfl
| (a : α) h := λ y z h2, begin
  have h3 : (y * a) * a⁻¹ = (z * a) * a⁻¹ := by rw h2,
  rwa [mul_assoc, mul_assoc, mul_right_inv _ h, mul_one, mul_one] at h3,
end

lemma mul_inv_eq_of_eq_mul : ∀ {x : with_zero α} (h : x ≠ 0) {y z : with_zero α},
  y = z * x → y * x⁻¹ = z
| 0       h := false.elim $ h rfl
| (x : α) h := λ _ _ _, mul_right_cancel h (by rwa [mul_assoc, mul_left_inv _ h, mul_one])

lemma eq_mul_inv_of_mul_eq {x : with_zero α} (h : x ≠ 0) {y z : with_zero α} (h2 : z * x = y) :
  z = y * x⁻¹ := eq.symm $ mul_inv_eq_of_eq_mul h h2.symm

end group

end with_zero