Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 27,200 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
import tactic.abel

import topology.algebra.group
import topology.algebra.uniform_ring
import ring_theory.subring

import for_mathlib.topology
import for_mathlib.filter
import for_mathlib.data.set.basic
import algebra.pointwise

/-
open filter function

universe u

class filter_at_one (α : Type u) [group α] :=
(F : filter α)
(one_in : pure 1 ≤ F) -- we could ask instead that Z ≠ ⊥
(mul {} : tendsto (uncurry' ((*) : α → α → α)) (F.prod F) F)
(inv {} : tendstox: α, x⁻¹) F F)
(conj {} : ∀ x₀ : α, tendstox: α, x₀*x*x₀⁻¹) F F).

namespace filter_at_one

def topology (α : Type u) [group α] [filter_at_one α] : topological_space α :=
topological_space.mk_of_nhds $ λa, map (λx, a*x) (F α)

local attribute [instance] topology
lemma topological_group (α : Type u) [group α] [filter_at_one α]: topological_group α :=
sorry

end filter_at_one

Using the above setup, we get :

filter_at_one.topological_group :
  ∀ (α : Type u_1) [_inst_1 : group α] [_inst_2 : @filter_at_one α _inst_1],
    @topological_group α (@filter_at_one.topology α _inst_1 _inst_2) _inst_1

So this lemma (which could be then turned into a local instance) is only about the
topology built by `filter_at_one.topology`. It doesn't not say anything about
a group endowed by a random topology that happens to satisfies the axioms of filter_at_one.
-/
universe u
open filter function set topological_space
local infixr ` ×ᶠ `:51 := filter.prod
local prefix 𝓝:100 := nhds

@[to_additive]
lemma topological_monoid.of_comm_of_nice_nhds_one (α : Type u) [comm_monoid α] [topological_space α]
  (hmul : tendsto (uncurry' ((*) : α → α → α)) (𝓝 1 ×ᶠ 𝓝 1) 𝓝 1)
  (hleft : ∀ x₀ : α, 𝓝 x₀ = mapx, x₀*x) 𝓝 1) : topological_monoid α :=
{ continuous_mul := begin
    rw continuous_iff_continuous_at,
    rintros ⟨x₀, y₀⟩,
    have key : (λ (p : α × α), x₀ * p.1 * (y₀ * p.2)) =
      ((λ x, x₀*y₀*x) ∘ (uncurry' (*))),
    { ext,
      change x₀ * x.1 * (y₀ * x.2) = x₀ * y₀ * (x.1 *  x.2),
      ac_refl },

    calc map (λ (p : α × α), p.1 * p.2) 𝓝 (x₀, y₀)
        = map (λ (p : α × α), p.1 * p.2) (𝓝 x₀ ×ᶠ 𝓝 y₀)
            : by rw nhds_prod_eq
    ... = map (λ (p : α × α), x₀ * p.1 * (y₀ * p.2)) ((𝓝 1) ×ᶠ (𝓝 1))
            : by rw [hleft x₀, hleft y₀, prod_map_map_eq, filter.map_map]
    ... = map ((λ x, x₀*y₀*x) ∘ (uncurry' (*))) ((𝓝 1) ×ᶠ (𝓝 1)) : by rw key
    ... = map (λ x, x₀*y₀*x) (map (uncurry' (*)) ((𝓝 1) ×ᶠ (𝓝 1)))   : by rw filter.map_map
    ... ≤ map (λ x, x₀*y₀*x) (𝓝 1)   : map_mono hmul
    ... = 𝓝 (x₀*y₀)   : (hleft _).symm
  end }

protected meta def prove_conj : tactic unit :=
`[ intro x₀,
   convert continuous_id.continuous_at,
   simpa [mul_comm, inv_mul_cancel_left]]

@[to_additive]
lemma topological_group.of_nice_nhds_one (α : Type u) [group α] [topological_space α]
  (hmul : tendsto (uncurry' ((*) : α → α → α)) ((𝓝 1).prod 𝓝 1) 𝓝 1)
  (hinv : tendstox : α, x⁻¹) 𝓝 1 𝓝 1)
  (hleft : ∀ x₀ : α, 𝓝 x₀ = mapx, x₀*x) 𝓝 1)
  (hconj : ∀ x₀ : α, tendstox: α, x₀*x*x₀⁻¹) 𝓝 1 𝓝 1 . prove_conj) : topological_group α :=
{ continuous_mul := begin
    rw continuous_iff_continuous_at,
    rintros ⟨x₀, y₀⟩,
    have key : (λ (p : α × α), x₀ * p.1 * (y₀ * p.2)) =
      ((λ x, x₀*y₀*x) ∘ (uncurry' (*)) ∘ ((λ x, y₀⁻¹*x*y₀) ⨯ id)),
      by { ext, simp [uncurry', prod.map', mul_assoc] },
    specialize hconj y₀⁻¹, rw inv_inv at hconj,
    calc map (λ (p : α × α), p.1 * p.2) 𝓝 (x₀, y₀)
        = map (λ (p : α × α), p.1 * p.2) (𝓝 x₀ ×ᶠ 𝓝 y₀)
            : by rw nhds_prod_eq
    ... = map (λ (p : α × α), x₀ * p.1 * (y₀ * p.2)) ((𝓝 1) ×ᶠ (𝓝 1))
            : by rw [hleft x₀, hleft y₀, prod_map_map_eq, filter.map_map]
    ... = map (((λ x, x₀*y₀*x) ∘ (uncurry' (*))) ∘ ((λ x, y₀⁻¹*x*y₀) ⨯ id))((𝓝 1) ×ᶠ (𝓝 1))
            : by rw key
    ... = map ((λ x, x₀*y₀*x) ∘ (uncurry' (*))) ((mapx, y₀⁻¹*x*y₀) 𝓝 1) ×ᶠ (𝓝 1))
            : by rw [← filter.map_map, filter.map_prod_prod, map_id]
    ... ≤ map ((λ x, x₀*y₀*x) ∘ (uncurry' (*))) ((𝓝 1) ×ᶠ (𝓝 1))
            : map_mono (filter.prod_mono hconj $ le_refl _)
    ... = map (λ x, x₀*y₀*x) (map (uncurry' (*)) ((𝓝 1) ×ᶠ (𝓝 1)))   : by rw filter.map_map
    ... ≤ map (λ x, x₀*y₀*x) (𝓝 1)   : map_mono hmul
    ... = 𝓝 (x₀*y₀)   : (hleft _).symm
  end,
  continuous_inv := begin
    rw continuous_iff_continuous_at,
    rintros x₀,
    have key : (λ x, (x₀*x)⁻¹) = (λ x, x₀⁻¹*x) ∘ (λ x, x₀*x*x₀⁻¹) ∘ (λ x, x⁻¹),
      by {ext ; simp[mul_assoc] },
    calc map (λ x, x⁻¹) (𝓝 x₀)
        = map (λ x, x⁻¹) (mapx, x₀*x) 𝓝 1) : by rw hleft
    ... = map (λ x, (x₀*x)⁻¹) 𝓝 1 : by rw filter.map_map
    ... = map (((λ x, x₀⁻¹*x) ∘ (λ x, x₀*x*x₀⁻¹)) ∘ (λ x, x⁻¹)) 𝓝 1 : by rw key
    ... = map ((λ x, x₀⁻¹*x) ∘ (λ x, x₀*x*x₀⁻¹)) _ : by rw ← filter.map_map
    ... ≤ map ((λ x, x₀⁻¹ * x) ∘ λ x, x₀ * x * x₀⁻¹) (𝓝 1) : map_mono hinv
    ... = map (λ x, x₀⁻¹ * x) (mapx, x₀ * x * x₀⁻¹) (𝓝 1)) : filter.map_map
    ... ≤ map (λ x, x₀⁻¹ * x) 𝓝 1 : map_mono (hconj x₀)
    ... = 𝓝 x₀⁻¹ : (hleft _).symm
  end }


@[to_additive]
lemma topological_group.of_comm_of_nice_nhds_one (α : Type u) [comm_group α] [topological_space α]
  (hmul : tendsto (uncurry' ((*) : α → α → α)) ((𝓝 1).prod 𝓝 1) 𝓝 1)
  (hinv : tendstox : α, x⁻¹) 𝓝 1 𝓝 1)
  (hleft : ∀ x₀ : α, 𝓝 x₀ = mapx, x₀*x) 𝓝 1) : topological_group α :=
topological_group.of_nice_nhds_one α hmul hinv hleft

open set
local attribute [instance] pointwise_mul pointwise_add

class group_filter_basis (α : Type u) [group α] extends filter_basis α :=
(one : ∀ {U}, Usets → (1 : α) ∈ U)
(mul : ∀ {U}, Usets → ∃ Vsets, V * VU)
(inv : ∀ {U}, Usets → ∃ Vsets, V ⊆ (λ x, x⁻¹) ⁻¹' U)
(conj : ∀ x₀, ∀ Usets, ∃ Vsets, V ⊆ (λ x, x₀*x*x₀⁻¹) ⁻¹' U)

class add_group_filter_basis (α : Type u) [add_group α] extends filter_basis α :=
(zero : ∀ {U}, Usets → (0 : α) ∈ U)
(add : ∀ {U}, Usets → ∃ Vsets, V + VU)
(neg : ∀ {U}, Usets → ∃ Vsets, V ⊆ (λ x, -x) ⁻¹' U)
(conj : ∀ x₀, ∀ Usets, ∃ Vsets, V ⊆ (λ x, x₀+x-x₀) ⁻¹' U)

attribute [to_additive add_group_filter_basis] group_filter_basis
attribute [to_additive] group_filter_basis.one
attribute [to_additive] group_filter_basis.mul
attribute [to_additive] group_filter_basis.inv
attribute [to_additive] group_filter_basis.conj
attribute [to_additive] group_filter_basis.to_filter_basis


/- -- We didn't use class directly because we still want α to be an explicit argument of projections
attribute [class] group_filter_basis
attribute [class] add_group_filter_basis
 -/
instance group_filter_basis.has_mem {α : Type*} [group α] : has_mem (set α) (group_filter_basis α) := ⟨λ s f, s ∈ f.sets⟩
instance add_group_filter_basis.has_mem {α : Type*} [add_group α] : has_mem (set α) (add_group_filter_basis α) := ⟨λ s f, s ∈ f.sets⟩

attribute [to_additive] group_filter_basis.has_mem

namespace group_filter_basis
variables {α : Type*} [group α]

@[to_additive]
lemma prod_subset_self (f : group_filter_basis α) {U : set α} (h : Uf) : UU*U :=
λ x x_in, (mul_one x) ▸ mul_mem_pointwise_mul x_in $ group_filter_basis.one h

/-- The neighborhood function of a `group_filter_basis` -/
@[to_additive]
def N (f : group_filter_basis α) : α → filter α :=
λ x, map (λ y, x*y) f.to_filter_basis.filter

@[simp, to_additive]
lemma N_one (f : group_filter_basis α) : f.N 1 = f.to_filter_basis.filter :=
by simpa [N, map_id]

@[to_additive]
lemma mem_N (f : group_filter_basis α) (x : α) (U : set α) :
  U ∈ f.N x ↔ ∃ V ∈ f, (λ y, x*y) '' VU :=
by simpa [N, mem_map, filter_basis.mem_filter, image_subset_iff]

@[to_additive]
lemma mem_N_of_mem (f : group_filter_basis α) (x : α) {U : set α} (h : Uf) :
y, x*y) '' U ∈ f.N x :=
by { rw mem_N, use [U, h] }

@[to_additive]
lemma N_is_nice (f : group_filter_basis α) :
  (puref.N) ∧
  ∀ {a s}, s ∈ f.N a → ∃ t ∈ f.N a, t ⊆ s ∧ ∀ a' ∈ t, s ∈ f.N a' :=
begin
  split,
  { intros x U U_in,
    rw f.mem_N at U_in,
    rcases U_in with ⟨V, V_in, H⟩,
    simpa using H (mem_image_of_mem _ (group_filter_basis.one V_in)) },
  { intros x U U_in,
    rw f.mem_N at U_in,
    rcases U_in with ⟨V, V_in, H⟩,
    rcases group_filter_basis.mul V_in with ⟨W, W_in, hW⟩,
    use [(λ y, x*y) '' W, image_mem_map (filter_basis.mem_filter_of_mem W_in)],
    split,
    { rw image_subset_iff at H ⊢,
      exact subset.trans (subset.trans (f.prod_subset_self W_in) hW) H},
    { rintros y ⟨t, tW, rfl⟩,
      rw f.mem_N,
      use [W, W_in],
      apply subset.trans _ H, clear H,
      rintros z ⟨w, wW, rfl⟩,
      exact ⟨t*w, hW (mul_mem_pointwise_mul tW wW), by simp [mul_assoc]⟩ } },
end

@[to_additive]
lemma is_top_group {α : Type u} [group α] (basis : group_filter_basis α) [topological_space α]
  (hnhds : ∀ x₀ : α, 𝓝 x₀ = basis.N x₀) : topological_group α :=
begin
  have hnhds1 : 𝓝 1 = basis.to_filter_basis.filter, by rw [hnhds 1, N_one],
  apply topological_group.of_nice_nhds_one,
  { rw [hnhds1, ← basis.to_filter_basis.prod_filter, filter_basis.tendsto_both],
    intros V V_in,
    rcases group_filter_basis.mul V_in with ⟨W, W_in, hW⟩,
    use [set.prod W W, filter_basis.mem_prod_of_mem W_in W_in],
    rwa [pointwise_mul_eq_image, image_subset_iff] at hW },
  { rw [hnhds1, basis.to_filter_basis.tendsto_both],
    exact basis.inv },
  { exact hnhds1.symm ▸ hnhds },
  { intro x₀,
    rw [hnhds1, basis.to_filter_basis.tendsto_both],
    exact  group_filter_basis.conj x₀ }
end

/-- The topological space structure coming a group filter basis. -/
@[to_additive]
def topology {α : Type u} [group α] (basis : group_filter_basis α) : topological_space α :=
topological_space.mk_of_nhds basis.N

/-- The topological space structure coming a group filter basis. Version using tc resolution -/
@[to_additive]
def to_topological_space {α : Type u} [group α] [basis : group_filter_basis α] : topological_space α :=
basis.topology

@[to_additive]
lemma nhds_eq {α : Type u} [group α] (basis : group_filter_basis α)
  [t : topological_space α] (h : t = basis.topology) {x₀ : α} :
  𝓝 x₀ = basis.N x₀ :=
by rw [h, nhds_mk_of_nhds _ x₀ basis.N_is_nice.1 basis.N_is_nice.2]

@[to_additive]
lemma nhds_one_eq {α : Type u} [group α] (basis : group_filter_basis α)
  [t : topological_space α] (h : t = basis.topology) :
  𝓝 (1 : α) = basis.to_filter_basis.filter :=
by { rw basis.nhds_eq h, simp only [N, one_mul], exact map_id }

@[to_additive]
lemma mem_nhds {α : Type u} [group α] (basis : group_filter_basis α)
  [t : topological_space α] (h : t = basis.topology) {x₀ : α} {U : set α} :
  U ∈ 𝓝 x₀ ↔ ∃ V ∈ basis, V ⊆ (λ x, x₀ * x) ⁻¹' U :=
begin
  rw basis.nhds_eq h,
  exact filter_basis.mem_filter basis.to_filter_basis
end

@[to_additive]
lemma is_topological_group {α : Type u} [group α] (basis : group_filter_basis α)
  [t : topological_space α] (h : t = basis.topology) : topological_group α :=
begin
  apply basis.is_top_group,
  rw h,
  exact λ x, nhds_mk_of_nhds _ x basis.N_is_nice.1 basis.N_is_nice.2
end


/-- The neighborhood basis on a group coming from a group filter basis -/
@[to_additive]
def nhds_basis {α : Type u} [group α] (basis : group_filter_basis α)
  [t : topological_space α] (h : t = basis.topology) : nhds_basis α :=
{ B := λ x₀, filter_basis.map (λ x, x₀*x) basis.to_filter_basis,
  is_nhds := λ x₀, by rw [← filter_basis.map_filter, h,
                          nhds_mk_of_nhds _ x₀ basis.N_is_nice.1 basis.N_is_nice.2, N] }


local attribute [instance] group_filter_basis.to_topological_space

-- The following can be made an instance when needed
@[to_additive]
def to_nhds_basis {α : Type u} [group α] [basis : group_filter_basis α]
   : _root_.nhds_basis α := basis.nhds_basis rfl


local attribute [instance] group_filter_basis.to_nhds_basis add_group_filter_basis.to_nhds_basis

@[to_additive]
lemma mem_nhds_basis {α : Type u} [group α] [basis : group_filter_basis α] {s : set α} {x₀ : α} :
s ∈ nhds_basis.B x₀ ↔ (λ x, x₀*x) ⁻¹' s ∈ basis.to_filter_basis.sets :=
begin
  change s ∈ filter_basis.map (λ x, x₀*x) basis.to_filter_basis ↔ _,
  rw filter_basis.mem_map,
  split ; intro h,
  { rcases h with ⟨U, h, rfl⟩,
    rw preimage_image_eq,
    exact h,
    intros x y, simp },
  { use [(λ (x : α), x₀ * x) ⁻¹' s, h],
    rw image_preimage_eq,
    intros y,
    use [x₀⁻¹*y], simp }
end
end group_filter_basis



section
variables {G : Type u} [add_comm_group G]

def add_group_with_zero_nhd.of_open_add_subgroup
  (H : set G) [is_add_subgroup H] (t : topological_space H) (h : @topological_add_group H t _) :
  add_group_with_zero_nhd G :=
{ Z := (nhds (0 : H)).map $ (subtype.val : HG),
  zero_Z := calc pure ((0 : H) : G) = map subtype.val (pure 0) : (filter.map_pure _ _).symm
                                ... ≤ _ : map_mono (pure_le_nhds _),
  sub_Z :=
  begin
    let δ_G := λ (p : G × G), p.1 - p.2,
    let δ_H := λ (p : H × H), p.1 - p.2,
    let ι : HG := subtype.val,
    let N := 𝓝 (0 : H),
    let Z := map subtype.val N,
    change map δ_G (filter.prod Z Z) ≤ Z,
    have key₁: map δ_H (𝓝 (0, 0)) ≤ N,
    { rw [show N = nhds (δ_H (0, 0)), by simp [*]],
      exact continuous_sub.tendsto _ },
    have key₂ : δ_G ∘ ι⨯ι = ι ∘ δ_H,
    { ext p,
      change (p.1 : G) - (p.2 : G) = (p.1 - p.2 : G),
      simp [is_add_subgroup.coe_neg, is_add_submonoid.coe_add] },

    calc map δ_G (filter.prod Z Z)
          = map δ_G (map (ι ⨯ ι) $ filter.prod N N) : by rw prod_map_map_eq;refl
      ... = map ι (map δ_H $ filter.prod N N)       : map_comm key₂ _
      ... = map ι (map δ_H $ 𝓝 (0, 0))           : by rw ← nhds_prod_eq
      ... ≤ map ι N : map_mono key₁
  end,
  ..‹add_comm_group G› }

def of_open_add_subgroup {G : Type u} [str : add_comm_group G] (H : set G) [is_add_subgroup H]
  (t : topological_space H) (h : @topological_add_group H t _) : topological_space G :=
@add_group_with_zero_nhd.topological_space G
  (add_group_with_zero_nhd.of_open_add_subgroup H t h)

end

namespace add_group_with_zero_nhd

local attribute [instance] add_group_with_zero_nhd.topological_space
local notation `Z` := add_group_with_zero_nhd.Z

variables {α : Type*}
variables {G : Type*} [add_group_with_zero_nhd G]

lemma nhds_eq_comap (g : G) : nhds g = comap (λ g', g' + -g) (Z G) :=
by rw [← nhds_zero_eq_Z, nhds_translation_add_neg g]
end add_group_with_zero_nhd

namespace topological_group
variables {G : Type*} {H : Type*}
variables [group G] [topological_space G] [topological_group G]
variables [group H] [topological_space H] [topological_group H]
variables (f : GH) [is_group_hom f]


-- TODO when PR'ing to mathlib, make sure to include _right in the name
-- of this and nhds_translation_mul_inv
@[to_additive]
lemma nhds_translation_mul (g : G) :
  map (λ h, h*g) (nhds 1) = nhds g :=
begin
  rw ← nhds_translation_mul_inv g,
  apply map_eq_comap_of_inverse ; ext ; simp
end


@[to_additive]
lemma nhds_translation_mul_inv_left (g : G) :
  comap (λ h, g⁻¹*h) (nhds 1) = nhds g :=
begin
  refine comap_eq_of_inverse (λ h, g*h) _ _ _,
  { funext x; simp },
  { suffices : tendsto (λ h,g⁻¹*h) (nhds g) (nhds (g⁻¹ * g)), by simpa,
    exact tendsto_const_nhds.mul tendsto_id },
  { suffices : tendsto (λ h, g*h) (nhds 1) (nhds (g*1)), by simpa,
    exact tendsto_const_nhds.mul tendsto_id }
end

@[to_additive]
lemma nhds_translation_mul_left (g : G) :
  map (λ h, g*h) (nhds 1) = nhds g :=
begin
  rw ← nhds_translation_mul_inv_left g,
  apply map_eq_comap_of_inverse ; ext ; simp
end

@[to_additive]
lemma continuous_of_continuous_at_one (h : continuous_at f 1) :
  continuous f :=
begin
  replace h : map f (nhds 1) ≤ nhds 1, by rw ← is_group_hom.map_one f ; exact h,
  rw continuous_iff_continuous_at,
  intro g,
  have key : (f ∘ λ (h : G), g * h) = (λ (h : H), (f g) * h) ∘ f,
    by ext ; simp [is_mul_hom.map_mul f],
  change map f (nhds g) ≤ nhds (f g),
  rw [← nhds_translation_mul_left g, ← nhds_translation_mul_left (f g),
      filter.map_comm key],
  exact map_mono h
end

@[to_additive topological_add_group.tendsto_nhds_iff']
lemma tendsto_nhds_iff {α : Type*} (f : α → H) (F : filter α) (h : H) :
  tendsto f F (nhds h) ↔ ∀ V ∈ nhds (1 : H), {a | f a * h⁻¹ ∈ V} ∈ F :=
let R := λ h', h' * h⁻¹,
    N := nhds (1 : H) in
calc tendsto f F (nhds h) ↔ map f F ≤ (nhds h) : iff.rfl
  ... ↔ map f F ≤ comap R N : by rw nhds_translation_mul_inv
  ... ↔ map R (map f F) ≤ N : map_le_iff_le_comap.symm
  ... ↔ map (λ a, f a * h⁻¹) FN : by rw filter.map_map

@[to_additive topological_add_group.tendsto_nhds_nhds_iff']
lemma tendsto_nhds_nhds_iff (f : GH) (g : G) (h : H) :
  tendsto f (nhds g) (nhds h) ↔
V ∈ nhds (1 : H), ∃ U ∈ nhds (1 : G), ∀ g', g'*g⁻¹ ∈ U → f g' * h⁻¹ ∈ V :=
by rw [tendsto_nhds_iff f, ← nhds_translation_mul_inv g] ; exact iff.rfl
end topological_group

namespace topological_add_group
-- `to_additive` generates statements using `g + -h` instead of `g-h`, let's fix that

variables {G : Type*} [add_group G] [topological_space G] [topological_add_group G]
variables {H : Type*} [add_group H] [topological_space H] [topological_add_group H]

lemma tendsto_nhds_iff {α : Type*} (f : α → H) (F : filter α) (h : H) :
    tendsto f F (nhds h) ↔ ∀ (V : set H), V ∈ nhds (0 : H) → {a : α | f a - h ∈ V} ∈ F :=
topological_add_group.tendsto_nhds_iff' _ _ _

lemma tendsto_nhds_nhds_iff (f : GH) (g : G) (h : H) :
  tendsto f (nhds g) (nhds h) ↔
V ∈ nhds (0 : H), ∃ U ∈ nhds (0 : G), ∀ g', g' - g ∈ U → f g' - h ∈ V :=
topological_add_group.tendsto_nhds_nhds_iff' _ _ _
end topological_add_group

namespace add_group_with_zero_nhd
variables {α : Type*} [add_group_with_zero_nhd α]
open filter

lemma nhds_eq' (a : α) : nhds a = map (λx, a + x) (Z α) :=
by convert nhds_eq a ; ext ; simp

end add_group_with_zero_nhd



section
open topological_add_group
variables (G : Type u) [add_comm_group G] [topological_space G] [topological_add_group G]

local attribute [instance] topological_add_group.to_uniform_space
local attribute [instance] topological_add_group_is_uniform

lemma topological_add_group.separated_iff_zero_closed : separated G ↔ is_closed ({0} : set G) :=
begin
  unfold separated,
  rw ← closure_eq_iff_is_closed,
  split ; intro h,
  { apply subset.antisymm,
    { intros x x_in,
      have := group_separation_rel x 0,
      rw sub_zero at this,
      rw [← this, h] at x_in,
      change x = 0 at x_in,
      simp [x_in] },
    { exact subset_closure  } },
  { ext p,
    cases p with x y,
    rw [group_separation_rel x, h, mem_singleton_iff, sub_eq_zero_iff_eq],
    refl }
end

lemma topological_add_group.separated_of_zero_sep
  (H : ∀ x : G, x ≠ 0 → ∃ Unhds (0 : G), x ∉ U) : separated G:=
begin
  rw topological_add_group.separated_iff_zero_closed,
  rw [← is_open_compl_iff, is_open_iff_mem_nhds],
  intros x x_not,
  have : x ≠ 0, from mem_compl_singleton_iff.mp x_not,
  rcases H x this with ⟨U, U_in, xU⟩,
  rw ← nhds_zero_symm G at U_in,
  rcases U_in with ⟨W, W_in, UW⟩,
  rw ← nhds_translation_add_neg_left x,
  use [W, W_in],
  rw subset_compl_comm,
  suffices : -x ∉ W, by simp[this],
  intro h,
  exact xU (UW h)
end

lemma topological_add_group.discrete_iff_open_zero {G : Type*} [add_group G] [topological_space G]
  [topological_add_group G] : discrete_topology G ↔ is_open ({0} : set G) :=
begin
  rw discrete_iff_open_singletons,
  split ; intro h,
  { exact h 0 },
  { intro x,
    convert (continuous_add_right (-x) : continuous (λ y, y - x)) _ h,
    ext z,
    erw [mem_singleton_iff, mem_preimage, mem_singleton_iff, sub_eq_zero_iff_eq] },
end

-- Wedhorn Definition 5.31 page 38
definition is_complete_hausdorff : Prop := is_complete (univ : set G) ∧ is_hausdorff G
end


-- I used to think I would need the next section soon, but I no longer do.
-- I keep it because we'll want some form of this in mathlib at some point
section top_mul_equiv
variables (G : Type*) [group G] [topological_space G] [topological_group G]
variables (H : Type*) [group H] [topological_space H] [topological_group H]

structure top_mul_equiv extends homeomorph G H :=
(hom : is_group_hom to_fun)

infix ` ≃*ₜ `:50 := top_mul_equiv

instance top_mul_equiv.is_group_hom (h : G ≃*ₜ H) : is_group_hom h.to_homeomorph :=
h.hom
end top_mul_equiv

namespace top_mul_equiv
variables (G : Type*) [group G] [topological_space G] [topological_group G]
variables (H : Type*) [group H] [topological_space H] [topological_group H]
variables (K : Type*) [group K] [topological_space K] [topological_group K]

@[refl] def refl : G ≃*ₜ G :=
{ hom := is_group_hom.id,
  continuous_to_fun := continuous_id,
  continuous_inv_fun := continuous_id,
  ..equiv.refl _}

@[symm] def symm (h : G ≃*ₜ H) : H ≃*ₜ G :=
{ hom := is_group_hom.mk' $ λ n₁ n₂, function.injective_of_left_inverse h.left_inv begin
   rw h.hom.map_mul, unfold equiv.symm, rw [h.right_inv, h.right_inv, h.right_inv], end,
  continuous_to_fun := h.continuous_inv_fun,
  continuous_inv_fun := h.continuous_to_fun,
  ..h.to_equiv.symm}

@[trans] def trans (h1 : G ≃*ₜ H) (h2 : H ≃*ₜ K) : (G ≃*ₜ K) :=
{ hom := is_group_hom.comp h1.to_homeomorph.to_equiv.to_fun h2.to_homeomorph.to_equiv.to_fun,
  continuous_to_fun := h2.continuous_to_fun.comp h1.continuous_to_fun,
  continuous_inv_fun := h1.continuous_inv_fun.comp h2.continuous_inv_fun,
  ..equiv.trans h1.to_equiv h2.to_equiv }

end top_mul_equiv

-- Next secton will move to topology/basic.lean
section
variables {α : Type*} {β : Type*} [topological_space β]

/-- If a function is constant on some set of a proper filter then it converges along this filter -/
lemma exists_limit_of_ultimately_const {φ : α → β} {f : filter α} (hf : f ≠ ⊥)
{U : set α} (hU : Uf) (h : ∀ x yU,  φ x = φ y) : ∃ b, tendsto φ f (nhds b) :=
begin
  obtain ⟨x₀, x₀_in⟩ : ∃ x₀, x₀ ∈ U, from nonempty_of_mem_sets hf hU,
  use φ x₀,
  have : U ⊆ φ ⁻¹' {φ x₀},
  { intros x x_in,
    simp [h x x₀ x_in x₀_in] },
  calc
   map φ f ≤ pure (φ x₀) : by { rw [le_pure_iff, mem_map], exact mem_sets_of_superset hU this}
       ... ≤ 𝓝 φ x₀ : pure_le_nhds _
end
end

-- The next section will be used to extend a valuation to the completion of a field (for the
-- valuation induced topology). The group Γ will be the value group, G = K^* and H = \hat{K}^*
-- (units of the completed field). φ will be the valuation restricted to K^*
section
open is_group_hom
variables {G : Type*} [group G] [topological_space G] [topological_group G]
variables {H : Type*} [group H] [topological_space H] [topological_group H]
variables {Γ : Type*} [group Γ] [topological_space Γ] [topological_group Γ] [regular_space Γ]

variables {ι : GH} [is_group_hom ι] (dι : dense_inducing ι)
variables {φ : G → Γ} [is_group_hom φ]

-- misc missing lemma, nothing to do with extensions of stuff

lemma mul_right_nhds_one {U : set G} (U_in : Unhds (1 : G)) (g : G) :
x, x*g) '' U ∈ nhds g :=
begin
  have l : function.left_inverse (λ (x : G), x * g⁻¹) (λ (x : G), x * g), from λ x, by simp,
  have r : function.right_inverse (λ (x : G), x * g⁻¹) (λ (x : G), x * g), from λ x, by simp,
  rw image_eq_preimage_of_inverse l r,
  have : continuous (λ (x : G), x * g⁻¹), from continuous_id.mul continuous_const,
  apply this.tendsto g,
  simpa,
end


lemma continuous_extend_of_open_kernel (op_ker : is_open (ker φ)) : continuous (dι.extend φ) :=
begin
  have : ∃ V, V ∈ nhds (1 : H) ∧ ι ⁻¹' V ⊆ ker φ,
  { have : ker φ ∈ nhds (1 : G),
      from mem_nhds_sets op_ker (is_submonoid.one_mem (ker φ)),
    rw [dι.nhds_eq_comap, mem_comap_sets] at this,
    rcases this with ⟨V, V_in, hV⟩,
    rw map_one ι at V_in,
    use [V, V_in, hV] },
  rcases this with ⟨V, V_in, hV⟩,
  have : ∃ V' ∈ nhds (1 : H), ∀ x y ∈ V', x*y⁻¹ ∈ V,
    from exists_nhds_split_inv V_in,
  rcases this with ⟨V', V'_in, hV'⟩,
  refine dι.continuous_extend _,
  intro h,
  have : ι ⁻¹' ((λ x, x*h) '' V') ∈ comap ι (nhds h),
    from ⟨(λ (x : H), x * h) '' V', mul_right_nhds_one V'_in h, subset.refl _⟩,
  apply exists_limit_of_ultimately_const dι.comap_nhds_ne_bot this, clear this,
  intros x y x_in y_in,
  rw mem_preimage at x_in y_in,
  rcases x_in with ⟨vₓ, vₓ_in, hx⟩,
  rcases y_in with ⟨vy, vy_in, hy⟩,
  change vₓ * h = ι x at hx,
  change vy * h = ι y at hy,
  rw inv_iff_ker φ,
  apply hV,
  rw [mem_preimage, is_mul_hom.map_mul ι, map_inv ι, ← hx, ← hy, mul_assoc, mul_inv_rev, mul_inv_cancel_left],
  simp only [hV', *],
end
end

instance discrete_top_group {G : Type*} [group G] [topological_space G] [discrete_topology G] :
  topological_group G :=
{ continuous_mul := continuous_of_discrete_topology,
  continuous_inv := continuous_of_discrete_topology }

/- section top_group_extend
open is_group_hom
variables {G : Type*} [group G] [topological_space G] [topological_group G]
variables {H : Type*} [group H] [topological_space H] [topological_group H]
variables {L : Type*} [group L] [topological_space L] [topological_group L]
[t2_space L]

variables {ι : GH} [is_group_hom ι] (de : dense_inducing ι)
variables {φ : GL} [is_group_hom φ]

lemma topological_group.extend_is_group_hom (hφ : continuous φ) (h : continuous (de.extend φ)) :
  is_group_hom (de.extend φ) :=
sorry
-- TODO: Fix is_closed_property2 in mathlib. It has nothing to do with dense embedding. Need
-- dense_range.prod etc.
/- ⟨begin
  let Φ := de.extend φ,
  let P := λ x y : H, Φ (x*y) = Φ x*Φ y,
  have closed : is_closed { q : H × H | P q.1 q.2 } :=
    have c1 : continuous (λ q : H × H, Φ (q.1 * q.2)), from h.comp continuous_mul',
    have c2 : continuous (λ q : H × H, Φ q.1 * Φ q.2),
      from continuous_mul (h.comp continuous_fst) (h.comp continuous_snd),
  is_closed_eq c1 c2,

  apply is_closed_property2 de closed,
  intros x y,
  dsimp [P, Φ],
  rw ← is_group_hom.map_mul ι,
  repeat { rw dense_embedding.extend_e_eq },
  rw is_group_hom.map_mul φ
end⟩ -/
end top_group_extend
 -/