Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 27,200 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 |
import tactic.abel
import topology.algebra.group
import topology.algebra.uniform_ring
import ring_theory.subring
import for_mathlib.topology
import for_mathlib.filter
import for_mathlib.data.set.basic
import algebra.pointwise
/-
open filter function
universe u
class filter_at_one (α : Type u) [group α] :=
(F : filter α)
(one_in : pure 1 ≤ F) -- we could ask instead that Z ≠ ⊥
(mul {} : tendsto (uncurry' ((*) : α → α → α)) (F.prod F) F)
(inv {} : tendsto (λ x: α, x⁻¹) F F)
(conj {} : ∀ x₀ : α, tendsto (λ x: α, x₀*x*x₀⁻¹) F F).
namespace filter_at_one
def topology (α : Type u) [group α] [filter_at_one α] : topological_space α :=
topological_space.mk_of_nhds $ λa, map (λx, a*x) (F α)
local attribute [instance] topology
lemma topological_group (α : Type u) [group α] [filter_at_one α]: topological_group α :=
sorry
end filter_at_one
Using the above setup, we get :
filter_at_one.topological_group :
∀ (α : Type u_1) [_inst_1 : group α] [_inst_2 : @filter_at_one α _inst_1],
@topological_group α (@filter_at_one.topology α _inst_1 _inst_2) _inst_1
So this lemma (which could be then turned into a local instance) is only about the
topology built by `filter_at_one.topology`. It doesn't not say anything about
a group endowed by a random topology that happens to satisfies the axioms of filter_at_one.
-/
universe u
open filter function set topological_space
local infixr ` ×ᶠ `:51 := filter.prod
local prefix 𝓝:100 := nhds
@[to_additive]
lemma topological_monoid.of_comm_of_nice_nhds_one (α : Type u) [comm_monoid α] [topological_space α]
(hmul : tendsto (uncurry' ((*) : α → α → α)) (𝓝 1 ×ᶠ 𝓝 1) 𝓝 1)
(hleft : ∀ x₀ : α, 𝓝 x₀ = map (λ x, x₀*x) 𝓝 1) : topological_monoid α :=
{ continuous_mul := begin
rw continuous_iff_continuous_at,
rintros ⟨x₀, y₀⟩,
have key : (λ (p : α × α), x₀ * p.1 * (y₀ * p.2)) =
((λ x, x₀*y₀*x) ∘ (uncurry' (*))),
{ ext,
change x₀ * x.1 * (y₀ * x.2) = x₀ * y₀ * (x.1 * x.2),
ac_refl },
calc map (λ (p : α × α), p.1 * p.2) 𝓝 (x₀, y₀)
= map (λ (p : α × α), p.1 * p.2) (𝓝 x₀ ×ᶠ 𝓝 y₀)
: by rw nhds_prod_eq
... = map (λ (p : α × α), x₀ * p.1 * (y₀ * p.2)) ((𝓝 1) ×ᶠ (𝓝 1))
: by rw [hleft x₀, hleft y₀, prod_map_map_eq, filter.map_map]
... = map ((λ x, x₀*y₀*x) ∘ (uncurry' (*))) ((𝓝 1) ×ᶠ (𝓝 1)) : by rw key
... = map (λ x, x₀*y₀*x) (map (uncurry' (*)) ((𝓝 1) ×ᶠ (𝓝 1))) : by rw filter.map_map
... ≤ map (λ x, x₀*y₀*x) (𝓝 1) : map_mono hmul
... = 𝓝 (x₀*y₀) : (hleft _).symm
end }
protected meta def prove_conj : tactic unit :=
`[ intro x₀,
convert continuous_id.continuous_at,
simpa [mul_comm, inv_mul_cancel_left]]
@[to_additive]
lemma topological_group.of_nice_nhds_one (α : Type u) [group α] [topological_space α]
(hmul : tendsto (uncurry' ((*) : α → α → α)) ((𝓝 1).prod 𝓝 1) 𝓝 1)
(hinv : tendsto (λ x : α, x⁻¹) 𝓝 1 𝓝 1)
(hleft : ∀ x₀ : α, 𝓝 x₀ = map (λ x, x₀*x) 𝓝 1)
(hconj : ∀ x₀ : α, tendsto (λ x: α, x₀*x*x₀⁻¹) 𝓝 1 𝓝 1 . prove_conj) : topological_group α :=
{ continuous_mul := begin
rw continuous_iff_continuous_at,
rintros ⟨x₀, y₀⟩,
have key : (λ (p : α × α), x₀ * p.1 * (y₀ * p.2)) =
((λ x, x₀*y₀*x) ∘ (uncurry' (*)) ∘ ((λ x, y₀⁻¹*x*y₀) ⨯ id)),
by { ext, simp [uncurry', prod.map', mul_assoc] },
specialize hconj y₀⁻¹, rw inv_inv at hconj,
calc map (λ (p : α × α), p.1 * p.2) 𝓝 (x₀, y₀)
= map (λ (p : α × α), p.1 * p.2) (𝓝 x₀ ×ᶠ 𝓝 y₀)
: by rw nhds_prod_eq
... = map (λ (p : α × α), x₀ * p.1 * (y₀ * p.2)) ((𝓝 1) ×ᶠ (𝓝 1))
: by rw [hleft x₀, hleft y₀, prod_map_map_eq, filter.map_map]
... = map (((λ x, x₀*y₀*x) ∘ (uncurry' (*))) ∘ ((λ x, y₀⁻¹*x*y₀) ⨯ id))((𝓝 1) ×ᶠ (𝓝 1))
: by rw key
... = map ((λ x, x₀*y₀*x) ∘ (uncurry' (*))) ((map (λ x, y₀⁻¹*x*y₀) 𝓝 1) ×ᶠ (𝓝 1))
: by rw [← filter.map_map, filter.map_prod_prod, map_id]
... ≤ map ((λ x, x₀*y₀*x) ∘ (uncurry' (*))) ((𝓝 1) ×ᶠ (𝓝 1))
: map_mono (filter.prod_mono hconj $ le_refl _)
... = map (λ x, x₀*y₀*x) (map (uncurry' (*)) ((𝓝 1) ×ᶠ (𝓝 1))) : by rw filter.map_map
... ≤ map (λ x, x₀*y₀*x) (𝓝 1) : map_mono hmul
... = 𝓝 (x₀*y₀) : (hleft _).symm
end,
continuous_inv := begin
rw continuous_iff_continuous_at,
rintros x₀,
have key : (λ x, (x₀*x)⁻¹) = (λ x, x₀⁻¹*x) ∘ (λ x, x₀*x*x₀⁻¹) ∘ (λ x, x⁻¹),
by {ext ; simp[mul_assoc] },
calc map (λ x, x⁻¹) (𝓝 x₀)
= map (λ x, x⁻¹) (map (λ x, x₀*x) 𝓝 1) : by rw hleft
... = map (λ x, (x₀*x)⁻¹) 𝓝 1 : by rw filter.map_map
... = map (((λ x, x₀⁻¹*x) ∘ (λ x, x₀*x*x₀⁻¹)) ∘ (λ x, x⁻¹)) 𝓝 1 : by rw key
... = map ((λ x, x₀⁻¹*x) ∘ (λ x, x₀*x*x₀⁻¹)) _ : by rw ← filter.map_map
... ≤ map ((λ x, x₀⁻¹ * x) ∘ λ x, x₀ * x * x₀⁻¹) (𝓝 1) : map_mono hinv
... = map (λ x, x₀⁻¹ * x) (map (λ x, x₀ * x * x₀⁻¹) (𝓝 1)) : filter.map_map
... ≤ map (λ x, x₀⁻¹ * x) 𝓝 1 : map_mono (hconj x₀)
... = 𝓝 x₀⁻¹ : (hleft _).symm
end }
@[to_additive]
lemma topological_group.of_comm_of_nice_nhds_one (α : Type u) [comm_group α] [topological_space α]
(hmul : tendsto (uncurry' ((*) : α → α → α)) ((𝓝 1).prod 𝓝 1) 𝓝 1)
(hinv : tendsto (λ x : α, x⁻¹) 𝓝 1 𝓝 1)
(hleft : ∀ x₀ : α, 𝓝 x₀ = map (λ x, x₀*x) 𝓝 1) : topological_group α :=
topological_group.of_nice_nhds_one α hmul hinv hleft
open set
local attribute [instance] pointwise_mul pointwise_add
class group_filter_basis (α : Type u) [group α] extends filter_basis α :=
(one : ∀ {U}, U ∈ sets → (1 : α) ∈ U)
(mul : ∀ {U}, U ∈ sets → ∃ V ∈ sets, V * V ⊆ U)
(inv : ∀ {U}, U ∈ sets → ∃ V ∈ sets, V ⊆ (λ x, x⁻¹) ⁻¹' U)
(conj : ∀ x₀, ∀ U ∈ sets, ∃ V ∈ sets, V ⊆ (λ x, x₀*x*x₀⁻¹) ⁻¹' U)
class add_group_filter_basis (α : Type u) [add_group α] extends filter_basis α :=
(zero : ∀ {U}, U ∈ sets → (0 : α) ∈ U)
(add : ∀ {U}, U ∈ sets → ∃ V ∈ sets, V + V ⊆ U)
(neg : ∀ {U}, U ∈ sets → ∃ V ∈ sets, V ⊆ (λ x, -x) ⁻¹' U)
(conj : ∀ x₀, ∀ U ∈ sets, ∃ V ∈ sets, V ⊆ (λ x, x₀+x-x₀) ⁻¹' U)
attribute [to_additive add_group_filter_basis] group_filter_basis
attribute [to_additive] group_filter_basis.one
attribute [to_additive] group_filter_basis.mul
attribute [to_additive] group_filter_basis.inv
attribute [to_additive] group_filter_basis.conj
attribute [to_additive] group_filter_basis.to_filter_basis
/- -- We didn't use class directly because we still want α to be an explicit argument of projections
attribute [class] group_filter_basis
attribute [class] add_group_filter_basis
-/
instance group_filter_basis.has_mem {α : Type*} [group α] : has_mem (set α) (group_filter_basis α) := ⟨λ s f, s ∈ f.sets⟩
instance add_group_filter_basis.has_mem {α : Type*} [add_group α] : has_mem (set α) (add_group_filter_basis α) := ⟨λ s f, s ∈ f.sets⟩
attribute [to_additive] group_filter_basis.has_mem
namespace group_filter_basis
variables {α : Type*} [group α]
@[to_additive]
lemma prod_subset_self (f : group_filter_basis α) {U : set α} (h : U ∈ f) : U ⊆ U*U :=
λ x x_in, (mul_one x) ▸ mul_mem_pointwise_mul x_in $ group_filter_basis.one h
/-- The neighborhood function of a `group_filter_basis` -/
@[to_additive]
def N (f : group_filter_basis α) : α → filter α :=
λ x, map (λ y, x*y) f.to_filter_basis.filter
@[simp, to_additive]
lemma N_one (f : group_filter_basis α) : f.N 1 = f.to_filter_basis.filter :=
by simpa [N, map_id]
@[to_additive]
lemma mem_N (f : group_filter_basis α) (x : α) (U : set α) :
U ∈ f.N x ↔ ∃ V ∈ f, (λ y, x*y) '' V ⊆ U :=
by simpa [N, mem_map, filter_basis.mem_filter, image_subset_iff]
@[to_additive]
lemma mem_N_of_mem (f : group_filter_basis α) (x : α) {U : set α} (h : U ∈ f) :
(λ y, x*y) '' U ∈ f.N x :=
by { rw mem_N, use [U, h] }
@[to_additive]
lemma N_is_nice (f : group_filter_basis α) :
(pure ≤ f.N) ∧
∀ {a s}, s ∈ f.N a → ∃ t ∈ f.N a, t ⊆ s ∧ ∀ a' ∈ t, s ∈ f.N a' :=
begin
split,
{ intros x U U_in,
rw f.mem_N at U_in,
rcases U_in with ⟨V, V_in, H⟩,
simpa using H (mem_image_of_mem _ (group_filter_basis.one V_in)) },
{ intros x U U_in,
rw f.mem_N at U_in,
rcases U_in with ⟨V, V_in, H⟩,
rcases group_filter_basis.mul V_in with ⟨W, W_in, hW⟩,
use [(λ y, x*y) '' W, image_mem_map (filter_basis.mem_filter_of_mem W_in)],
split,
{ rw image_subset_iff at H ⊢,
exact subset.trans (subset.trans (f.prod_subset_self W_in) hW) H},
{ rintros y ⟨t, tW, rfl⟩,
rw f.mem_N,
use [W, W_in],
apply subset.trans _ H, clear H,
rintros z ⟨w, wW, rfl⟩,
exact ⟨t*w, hW (mul_mem_pointwise_mul tW wW), by simp [mul_assoc]⟩ } },
end
@[to_additive]
lemma is_top_group {α : Type u} [group α] (basis : group_filter_basis α) [topological_space α]
(hnhds : ∀ x₀ : α, 𝓝 x₀ = basis.N x₀) : topological_group α :=
begin
have hnhds1 : 𝓝 1 = basis.to_filter_basis.filter, by rw [hnhds 1, N_one],
apply topological_group.of_nice_nhds_one,
{ rw [hnhds1, ← basis.to_filter_basis.prod_filter, filter_basis.tendsto_both],
intros V V_in,
rcases group_filter_basis.mul V_in with ⟨W, W_in, hW⟩,
use [set.prod W W, filter_basis.mem_prod_of_mem W_in W_in],
rwa [pointwise_mul_eq_image, image_subset_iff] at hW },
{ rw [hnhds1, basis.to_filter_basis.tendsto_both],
exact basis.inv },
{ exact hnhds1.symm ▸ hnhds },
{ intro x₀,
rw [hnhds1, basis.to_filter_basis.tendsto_both],
exact group_filter_basis.conj x₀ }
end
/-- The topological space structure coming a group filter basis. -/
@[to_additive]
def topology {α : Type u} [group α] (basis : group_filter_basis α) : topological_space α :=
topological_space.mk_of_nhds basis.N
/-- The topological space structure coming a group filter basis. Version using tc resolution -/
@[to_additive]
def to_topological_space {α : Type u} [group α] [basis : group_filter_basis α] : topological_space α :=
basis.topology
@[to_additive]
lemma nhds_eq {α : Type u} [group α] (basis : group_filter_basis α)
[t : topological_space α] (h : t = basis.topology) {x₀ : α} :
𝓝 x₀ = basis.N x₀ :=
by rw [h, nhds_mk_of_nhds _ x₀ basis.N_is_nice.1 basis.N_is_nice.2]
@[to_additive]
lemma nhds_one_eq {α : Type u} [group α] (basis : group_filter_basis α)
[t : topological_space α] (h : t = basis.topology) :
𝓝 (1 : α) = basis.to_filter_basis.filter :=
by { rw basis.nhds_eq h, simp only [N, one_mul], exact map_id }
@[to_additive]
lemma mem_nhds {α : Type u} [group α] (basis : group_filter_basis α)
[t : topological_space α] (h : t = basis.topology) {x₀ : α} {U : set α} :
U ∈ 𝓝 x₀ ↔ ∃ V ∈ basis, V ⊆ (λ x, x₀ * x) ⁻¹' U :=
begin
rw basis.nhds_eq h,
exact filter_basis.mem_filter basis.to_filter_basis
end
@[to_additive]
lemma is_topological_group {α : Type u} [group α] (basis : group_filter_basis α)
[t : topological_space α] (h : t = basis.topology) : topological_group α :=
begin
apply basis.is_top_group,
rw h,
exact λ x, nhds_mk_of_nhds _ x basis.N_is_nice.1 basis.N_is_nice.2
end
/-- The neighborhood basis on a group coming from a group filter basis -/
@[to_additive]
def nhds_basis {α : Type u} [group α] (basis : group_filter_basis α)
[t : topological_space α] (h : t = basis.topology) : nhds_basis α :=
{ B := λ x₀, filter_basis.map (λ x, x₀*x) basis.to_filter_basis,
is_nhds := λ x₀, by rw [← filter_basis.map_filter, h,
nhds_mk_of_nhds _ x₀ basis.N_is_nice.1 basis.N_is_nice.2, N] }
local attribute [instance] group_filter_basis.to_topological_space
-- The following can be made an instance when needed
@[to_additive]
def to_nhds_basis {α : Type u} [group α] [basis : group_filter_basis α]
: _root_.nhds_basis α := basis.nhds_basis rfl
local attribute [instance] group_filter_basis.to_nhds_basis add_group_filter_basis.to_nhds_basis
@[to_additive]
lemma mem_nhds_basis {α : Type u} [group α] [basis : group_filter_basis α] {s : set α} {x₀ : α} :
s ∈ nhds_basis.B x₀ ↔ (λ x, x₀*x) ⁻¹' s ∈ basis.to_filter_basis.sets :=
begin
change s ∈ filter_basis.map (λ x, x₀*x) basis.to_filter_basis ↔ _,
rw filter_basis.mem_map,
split ; intro h,
{ rcases h with ⟨U, h, rfl⟩,
rw preimage_image_eq,
exact h,
intros x y, simp },
{ use [(λ (x : α), x₀ * x) ⁻¹' s, h],
rw image_preimage_eq,
intros y,
use [x₀⁻¹*y], simp }
end
end group_filter_basis
section
variables {G : Type u} [add_comm_group G]
def add_group_with_zero_nhd.of_open_add_subgroup
(H : set G) [is_add_subgroup H] (t : topological_space H) (h : @topological_add_group H t _) :
add_group_with_zero_nhd G :=
{ Z := (nhds (0 : H)).map $ (subtype.val : H → G),
zero_Z := calc pure ((0 : H) : G) = map subtype.val (pure 0) : (filter.map_pure _ _).symm
... ≤ _ : map_mono (pure_le_nhds _),
sub_Z :=
begin
let δ_G := λ (p : G × G), p.1 - p.2,
let δ_H := λ (p : H × H), p.1 - p.2,
let ι : H → G := subtype.val,
let N := 𝓝 (0 : H),
let Z := map subtype.val N,
change map δ_G (filter.prod Z Z) ≤ Z,
have key₁: map δ_H (𝓝 (0, 0)) ≤ N,
{ rw [show N = nhds (δ_H (0, 0)), by simp [*]],
exact continuous_sub.tendsto _ },
have key₂ : δ_G ∘ ι⨯ι = ι ∘ δ_H,
{ ext p,
change (p.1 : G) - (p.2 : G) = (p.1 - p.2 : G),
simp [is_add_subgroup.coe_neg, is_add_submonoid.coe_add] },
calc map δ_G (filter.prod Z Z)
= map δ_G (map (ι ⨯ ι) $ filter.prod N N) : by rw prod_map_map_eq;refl
... = map ι (map δ_H $ filter.prod N N) : map_comm key₂ _
... = map ι (map δ_H $ 𝓝 (0, 0)) : by rw ← nhds_prod_eq
... ≤ map ι N : map_mono key₁
end,
..‹add_comm_group G› }
def of_open_add_subgroup {G : Type u} [str : add_comm_group G] (H : set G) [is_add_subgroup H]
(t : topological_space H) (h : @topological_add_group H t _) : topological_space G :=
@add_group_with_zero_nhd.topological_space G
(add_group_with_zero_nhd.of_open_add_subgroup H t h)
end
namespace add_group_with_zero_nhd
local attribute [instance] add_group_with_zero_nhd.topological_space
local notation `Z` := add_group_with_zero_nhd.Z
variables {α : Type*}
variables {G : Type*} [add_group_with_zero_nhd G]
lemma nhds_eq_comap (g : G) : nhds g = comap (λ g', g' + -g) (Z G) :=
by rw [← nhds_zero_eq_Z, nhds_translation_add_neg g]
end add_group_with_zero_nhd
namespace topological_group
variables {G : Type*} {H : Type*}
variables [group G] [topological_space G] [topological_group G]
variables [group H] [topological_space H] [topological_group H]
variables (f : G → H) [is_group_hom f]
-- TODO when PR'ing to mathlib, make sure to include _right in the name
-- of this and nhds_translation_mul_inv
@[to_additive]
lemma nhds_translation_mul (g : G) :
map (λ h, h*g) (nhds 1) = nhds g :=
begin
rw ← nhds_translation_mul_inv g,
apply map_eq_comap_of_inverse ; ext ; simp
end
@[to_additive]
lemma nhds_translation_mul_inv_left (g : G) :
comap (λ h, g⁻¹*h) (nhds 1) = nhds g :=
begin
refine comap_eq_of_inverse (λ h, g*h) _ _ _,
{ funext x; simp },
{ suffices : tendsto (λ h,g⁻¹*h) (nhds g) (nhds (g⁻¹ * g)), by simpa,
exact tendsto_const_nhds.mul tendsto_id },
{ suffices : tendsto (λ h, g*h) (nhds 1) (nhds (g*1)), by simpa,
exact tendsto_const_nhds.mul tendsto_id }
end
@[to_additive]
lemma nhds_translation_mul_left (g : G) :
map (λ h, g*h) (nhds 1) = nhds g :=
begin
rw ← nhds_translation_mul_inv_left g,
apply map_eq_comap_of_inverse ; ext ; simp
end
@[to_additive]
lemma continuous_of_continuous_at_one (h : continuous_at f 1) :
continuous f :=
begin
replace h : map f (nhds 1) ≤ nhds 1, by rw ← is_group_hom.map_one f ; exact h,
rw continuous_iff_continuous_at,
intro g,
have key : (f ∘ λ (h : G), g * h) = (λ (h : H), (f g) * h) ∘ f,
by ext ; simp [is_mul_hom.map_mul f],
change map f (nhds g) ≤ nhds (f g),
rw [← nhds_translation_mul_left g, ← nhds_translation_mul_left (f g),
filter.map_comm key],
exact map_mono h
end
@[to_additive topological_add_group.tendsto_nhds_iff']
lemma tendsto_nhds_iff {α : Type*} (f : α → H) (F : filter α) (h : H) :
tendsto f F (nhds h) ↔ ∀ V ∈ nhds (1 : H), {a | f a * h⁻¹ ∈ V} ∈ F :=
let R := λ h', h' * h⁻¹,
N := nhds (1 : H) in
calc tendsto f F (nhds h) ↔ map f F ≤ (nhds h) : iff.rfl
... ↔ map f F ≤ comap R N : by rw nhds_translation_mul_inv
... ↔ map R (map f F) ≤ N : map_le_iff_le_comap.symm
... ↔ map (λ a, f a * h⁻¹) F ≤ N : by rw filter.map_map
@[to_additive topological_add_group.tendsto_nhds_nhds_iff']
lemma tendsto_nhds_nhds_iff (f : G → H) (g : G) (h : H) :
tendsto f (nhds g) (nhds h) ↔
∀ V ∈ nhds (1 : H), ∃ U ∈ nhds (1 : G), ∀ g', g'*g⁻¹ ∈ U → f g' * h⁻¹ ∈ V :=
by rw [tendsto_nhds_iff f, ← nhds_translation_mul_inv g] ; exact iff.rfl
end topological_group
namespace topological_add_group
-- `to_additive` generates statements using `g + -h` instead of `g-h`, let's fix that
variables {G : Type*} [add_group G] [topological_space G] [topological_add_group G]
variables {H : Type*} [add_group H] [topological_space H] [topological_add_group H]
lemma tendsto_nhds_iff {α : Type*} (f : α → H) (F : filter α) (h : H) :
tendsto f F (nhds h) ↔ ∀ (V : set H), V ∈ nhds (0 : H) → {a : α | f a - h ∈ V} ∈ F :=
topological_add_group.tendsto_nhds_iff' _ _ _
lemma tendsto_nhds_nhds_iff (f : G → H) (g : G) (h : H) :
tendsto f (nhds g) (nhds h) ↔
∀ V ∈ nhds (0 : H), ∃ U ∈ nhds (0 : G), ∀ g', g' - g ∈ U → f g' - h ∈ V :=
topological_add_group.tendsto_nhds_nhds_iff' _ _ _
end topological_add_group
namespace add_group_with_zero_nhd
variables {α : Type*} [add_group_with_zero_nhd α]
open filter
lemma nhds_eq' (a : α) : nhds a = map (λx, a + x) (Z α) :=
by convert nhds_eq a ; ext ; simp
end add_group_with_zero_nhd
section
open topological_add_group
variables (G : Type u) [add_comm_group G] [topological_space G] [topological_add_group G]
local attribute [instance] topological_add_group.to_uniform_space
local attribute [instance] topological_add_group_is_uniform
lemma topological_add_group.separated_iff_zero_closed : separated G ↔ is_closed ({0} : set G) :=
begin
unfold separated,
rw ← closure_eq_iff_is_closed,
split ; intro h,
{ apply subset.antisymm,
{ intros x x_in,
have := group_separation_rel x 0,
rw sub_zero at this,
rw [← this, h] at x_in,
change x = 0 at x_in,
simp [x_in] },
{ exact subset_closure } },
{ ext p,
cases p with x y,
rw [group_separation_rel x, h, mem_singleton_iff, sub_eq_zero_iff_eq],
refl }
end
lemma topological_add_group.separated_of_zero_sep
(H : ∀ x : G, x ≠ 0 → ∃ U ∈ nhds (0 : G), x ∉ U) : separated G:=
begin
rw topological_add_group.separated_iff_zero_closed,
rw [← is_open_compl_iff, is_open_iff_mem_nhds],
intros x x_not,
have : x ≠ 0, from mem_compl_singleton_iff.mp x_not,
rcases H x this with ⟨U, U_in, xU⟩,
rw ← nhds_zero_symm G at U_in,
rcases U_in with ⟨W, W_in, UW⟩,
rw ← nhds_translation_add_neg_left x,
use [W, W_in],
rw subset_compl_comm,
suffices : -x ∉ W, by simp[this],
intro h,
exact xU (UW h)
end
lemma topological_add_group.discrete_iff_open_zero {G : Type*} [add_group G] [topological_space G]
[topological_add_group G] : discrete_topology G ↔ is_open ({0} : set G) :=
begin
rw discrete_iff_open_singletons,
split ; intro h,
{ exact h 0 },
{ intro x,
convert (continuous_add_right (-x) : continuous (λ y, y - x)) _ h,
ext z,
erw [mem_singleton_iff, mem_preimage, mem_singleton_iff, sub_eq_zero_iff_eq] },
end
-- Wedhorn Definition 5.31 page 38
definition is_complete_hausdorff : Prop := is_complete (univ : set G) ∧ is_hausdorff G
end
-- I used to think I would need the next section soon, but I no longer do.
-- I keep it because we'll want some form of this in mathlib at some point
section top_mul_equiv
variables (G : Type*) [group G] [topological_space G] [topological_group G]
variables (H : Type*) [group H] [topological_space H] [topological_group H]
structure top_mul_equiv extends homeomorph G H :=
(hom : is_group_hom to_fun)
infix ` ≃*ₜ `:50 := top_mul_equiv
instance top_mul_equiv.is_group_hom (h : G ≃*ₜ H) : is_group_hom h.to_homeomorph :=
h.hom
end top_mul_equiv
namespace top_mul_equiv
variables (G : Type*) [group G] [topological_space G] [topological_group G]
variables (H : Type*) [group H] [topological_space H] [topological_group H]
variables (K : Type*) [group K] [topological_space K] [topological_group K]
@[refl] def refl : G ≃*ₜ G :=
{ hom := is_group_hom.id,
continuous_to_fun := continuous_id,
continuous_inv_fun := continuous_id,
..equiv.refl _}
@[symm] def symm (h : G ≃*ₜ H) : H ≃*ₜ G :=
{ hom := is_group_hom.mk' $ λ n₁ n₂, function.injective_of_left_inverse h.left_inv begin
rw h.hom.map_mul, unfold equiv.symm, rw [h.right_inv, h.right_inv, h.right_inv], end,
continuous_to_fun := h.continuous_inv_fun,
continuous_inv_fun := h.continuous_to_fun,
..h.to_equiv.symm}
@[trans] def trans (h1 : G ≃*ₜ H) (h2 : H ≃*ₜ K) : (G ≃*ₜ K) :=
{ hom := is_group_hom.comp h1.to_homeomorph.to_equiv.to_fun h2.to_homeomorph.to_equiv.to_fun,
continuous_to_fun := h2.continuous_to_fun.comp h1.continuous_to_fun,
continuous_inv_fun := h1.continuous_inv_fun.comp h2.continuous_inv_fun,
..equiv.trans h1.to_equiv h2.to_equiv }
end top_mul_equiv
-- Next secton will move to topology/basic.lean
section
variables {α : Type*} {β : Type*} [topological_space β]
/-- If a function is constant on some set of a proper filter then it converges along this filter -/
lemma exists_limit_of_ultimately_const {φ : α → β} {f : filter α} (hf : f ≠ ⊥)
{U : set α} (hU : U ∈ f) (h : ∀ x y ∈ U, φ x = φ y) : ∃ b, tendsto φ f (nhds b) :=
begin
obtain ⟨x₀, x₀_in⟩ : ∃ x₀, x₀ ∈ U, from nonempty_of_mem_sets hf hU,
use φ x₀,
have : U ⊆ φ ⁻¹' {φ x₀},
{ intros x x_in,
simp [h x x₀ x_in x₀_in] },
calc
map φ f ≤ pure (φ x₀) : by { rw [le_pure_iff, mem_map], exact mem_sets_of_superset hU this}
... ≤ 𝓝 φ x₀ : pure_le_nhds _
end
end
-- The next section will be used to extend a valuation to the completion of a field (for the
-- valuation induced topology). The group Γ will be the value group, G = K^* and H = \hat{K}^*
-- (units of the completed field). φ will be the valuation restricted to K^*
section
open is_group_hom
variables {G : Type*} [group G] [topological_space G] [topological_group G]
variables {H : Type*} [group H] [topological_space H] [topological_group H]
variables {Γ : Type*} [group Γ] [topological_space Γ] [topological_group Γ] [regular_space Γ]
variables {ι : G → H} [is_group_hom ι] (dι : dense_inducing ι)
variables {φ : G → Γ} [is_group_hom φ]
-- misc missing lemma, nothing to do with extensions of stuff
lemma mul_right_nhds_one {U : set G} (U_in : U ∈ nhds (1 : G)) (g : G) :
(λ x, x*g) '' U ∈ nhds g :=
begin
have l : function.left_inverse (λ (x : G), x * g⁻¹) (λ (x : G), x * g), from λ x, by simp,
have r : function.right_inverse (λ (x : G), x * g⁻¹) (λ (x : G), x * g), from λ x, by simp,
rw image_eq_preimage_of_inverse l r,
have : continuous (λ (x : G), x * g⁻¹), from continuous_id.mul continuous_const,
apply this.tendsto g,
simpa,
end
lemma continuous_extend_of_open_kernel (op_ker : is_open (ker φ)) : continuous (dι.extend φ) :=
begin
have : ∃ V, V ∈ nhds (1 : H) ∧ ι ⁻¹' V ⊆ ker φ,
{ have : ker φ ∈ nhds (1 : G),
from mem_nhds_sets op_ker (is_submonoid.one_mem (ker φ)),
rw [dι.nhds_eq_comap, mem_comap_sets] at this,
rcases this with ⟨V, V_in, hV⟩,
rw map_one ι at V_in,
use [V, V_in, hV] },
rcases this with ⟨V, V_in, hV⟩,
have : ∃ V' ∈ nhds (1 : H), ∀ x y ∈ V', x*y⁻¹ ∈ V,
from exists_nhds_split_inv V_in,
rcases this with ⟨V', V'_in, hV'⟩,
refine dι.continuous_extend _,
intro h,
have : ι ⁻¹' ((λ x, x*h) '' V') ∈ comap ι (nhds h),
from ⟨(λ (x : H), x * h) '' V', mul_right_nhds_one V'_in h, subset.refl _⟩,
apply exists_limit_of_ultimately_const dι.comap_nhds_ne_bot this, clear this,
intros x y x_in y_in,
rw mem_preimage at x_in y_in,
rcases x_in with ⟨vₓ, vₓ_in, hx⟩,
rcases y_in with ⟨vy, vy_in, hy⟩,
change vₓ * h = ι x at hx,
change vy * h = ι y at hy,
rw inv_iff_ker φ,
apply hV,
rw [mem_preimage, is_mul_hom.map_mul ι, map_inv ι, ← hx, ← hy, mul_assoc, mul_inv_rev, mul_inv_cancel_left],
simp only [hV', *],
end
end
instance discrete_top_group {G : Type*} [group G] [topological_space G] [discrete_topology G] :
topological_group G :=
{ continuous_mul := continuous_of_discrete_topology,
continuous_inv := continuous_of_discrete_topology }
/- section top_group_extend
open is_group_hom
variables {G : Type*} [group G] [topological_space G] [topological_group G]
variables {H : Type*} [group H] [topological_space H] [topological_group H]
variables {L : Type*} [group L] [topological_space L] [topological_group L]
[t2_space L]
variables {ι : G → H} [is_group_hom ι] (de : dense_inducing ι)
variables {φ : G → L} [is_group_hom φ]
lemma topological_group.extend_is_group_hom (hφ : continuous φ) (h : continuous (de.extend φ)) :
is_group_hom (de.extend φ) :=
sorry
-- TODO: Fix is_closed_property2 in mathlib. It has nothing to do with dense embedding. Need
-- dense_range.prod etc.
/- ⟨begin
let Φ := de.extend φ,
let P := λ x y : H, Φ (x*y) = Φ x*Φ y,
have closed : is_closed { q : H × H | P q.1 q.2 } :=
have c1 : continuous (λ q : H × H, Φ (q.1 * q.2)), from h.comp continuous_mul',
have c2 : continuous (λ q : H × H, Φ q.1 * Φ q.2),
from continuous_mul (h.comp continuous_fst) (h.comp continuous_snd),
is_closed_eq c1 c2,
apply is_closed_property2 de closed,
intros x y,
dsimp [P, Φ],
rw ← is_group_hom.map_mul ι,
repeat { rw dense_embedding.extend_e_eq },
rw is_group_hom.map_mul φ
end⟩ -/
end top_group_extend
-/
|