Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 11,553 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
import data.padics
import for_mathlib.ideal_operations
import for_mathlib.normed_spaces
import for_mathlib.nnreal
import for_mathlib.padics
import adic_space
/-!
# The p-adics form a Huber ring
In this file we show that ℤ_[p] and ℚ_[p] are Huber rings.
They are the fundamental examples of Huber rings.
We also show that (ℚ_[p], ℤ_[p]) is a Huber pair,
and that its adic spectrum is a singleton,
consisting of the standard p-adic valuation on ℚ_[p].
-/
noncomputable theory
open_locale classical
local postfix `⁺` : 66 := λ A : Huber_pair, A.plus
open local_ring
local attribute [instance] padic_int.algebra
variables (p : ℕ) [nat.prime p]
namespace padic_int
/-- The topology on ℤ_[p] is adic with respect to the maximal ideal.-/
lemma is_adic : is_ideal_adic (nonunits_ideal ℤ_[p]) :=
begin
rw is_ideal_adic_iff,
split,
{ intro n,
show is_open (↑(_ : ideal ℤ_[p]) : set ℤ_[p]),
rw power_nonunits_ideal_eq_norm_le_pow,
simp only [norm_le_pow_iff_norm_lt_pow_succ],
rw ← ball_0_eq,
exact metric.is_open_ball },
{ intros s hs,
rcases metric.mem_nhds_iff.mp hs with ⟨ε, ε_pos, hε⟩,
obtain ⟨n, hn⟩ : ∃ n : ℕ, (p : ℝ)^-(n:ℤ) < ε,
{ have hp : (1:ℝ) < p := by exact_mod_cast nat.prime.one_lt ‹_›,
obtain ⟨n, hn⟩ : ∃ (n:ℕ), ε⁻¹ < p^n := pow_unbounded_of_one_lt ε⁻¹ hp,
use n,
have hp' : (0:ℝ) < p^n,
{ rw ← fpow_of_nat, apply fpow_pos_of_pos, exact_mod_cast nat.prime.pos ‹_› },
rw [inv_lt ε_pos hp', inv_eq_one_div] at hn,
rwa [fpow_neg, fpow_of_nat], },
use n, show (↑(_ : ideal ℤ_[p]) : set ℤ_[p]) ⊆ _,
refine set.subset.trans _ hε,
rw power_nonunits_ideal_eq_norm_le_pow,
rw ball_0_eq,
intros x hx,
rw set.mem_set_of_eq at *,
exact lt_of_le_of_lt hx hn }
end
section
open polynomial
lemma is_integrally_closed : is_integrally_closed ℤ_[p] ℚ_[p] :=
{ inj := subtype.val_injective,
closed :=
begin
rintros x ⟨f, f_monic, hf⟩,
have bleh : eval₂ (algebra_map ℚ_[p]) x ((finset.range (nat_degree f)).sum (λ (i : ℕ), C (coeff f i) * X^i)) =
((finset.range (nat_degree f)).sum (λ (i : ℕ), eval₂ (algebra_map ℚ_[p]) x $ C (coeff f i) * X^i)),
{ exact (finset.sum_hom _ _).symm },
erw subtype.val_range,
show ∥x∥ ≤ 1,
rw [f_monic.as_sum, aeval_def, eval₂_add, eval₂_pow, eval₂_X] at hf,
rw [bleh] at hf,
replace hf := congr_arg (@has_norm.norm ℚ_[p] _) hf,
contrapose! hf with H,
apply ne_of_gt,
rw [norm_zero, padic_norm_e.add_eq_max_of_ne],
{ apply lt_of_lt_of_le _ (le_max_left _ _),
rw [← fpow_of_nat, normed_field.norm_fpow],
apply fpow_pos_of_pos,
exact lt_trans zero_lt_one H, },
{ apply ne_of_gt,
apply lt_of_le_of_lt (padic.norm_sum _ _),
rw finset.fold_max_lt,
split,
{ rw [← fpow_of_nat, normed_field.norm_fpow], apply fpow_pos_of_pos, exact lt_trans zero_lt_one H },
{ intros i hi,
suffices : ∥algebra_map ℚ_[p] (coeff f i)∥ * ∥x∥ ^ i < ∥x∥ ^ nat_degree f,
by simpa [eval₂_pow],
refine lt_of_le_of_lt (mul_le_of_le_one_left _ _ : _ ≤ ∥x∥ ^ i) _,
{ rw [← fpow_of_nat], apply fpow_nonneg_of_nonneg, exact norm_nonneg _ },
{ exact (coeff f i).property },
{ rw [← fpow_of_nat, ← fpow_of_nat, (fpow_strict_mono H).lt_iff_lt],
rw finset.mem_range at hi, exact_mod_cast hi, } } }
end }
end
/-- The p-adic integers (ℤ_[p])form a Huber ring.-/
instance : Huber_ring ℤ_[p] :=
{ pod := ⟨ℤ_[p], infer_instance, infer_instance, by apply_instance,
⟨{ emb := open_embedding_id,
J := (nonunits_ideal _),
fin := nonunits_ideal_fg p,
top := is_adic p,
.. algebra.id ℤ_[p] }⟩⟩ }
end padic_int
section
--move this
variables {α : Type*} {β : Type*} [topological_space α] [topological_space β]
lemma is_open_map.image_nhds {f : α → β} (hf : is_open_map f)
{x : α} {U : set α} (hU : U ∈ nhds x) : f '' U ∈ nhds (f x) :=
begin
apply (is_open_map_iff_nhds_le).mp hf x,
change f ⁻¹' (f '' U) ∈ nhds x,
filter_upwards [hU],
exact set.subset_preimage_image f U
end
end
open local_ring set padic_int
/-- The p-adic numbers (ℚ_[p]) form a Huber ring.-/
instance padic.Huber_ring : Huber_ring ℚ_[p] :=
{ pod := ⟨ℤ_[p], infer_instance, infer_instance, by apply_instance,
⟨{ emb := coe_open_embedding,
J := (nonunits_ideal _),
fin := nonunits_ideal_fg p,
top := is_adic p,
.. padic_int.algebra }⟩⟩ }
/-- The p-adic numbers form a Huber pair (with the p-adic integers as power bounded subring).-/
@[reducible] def padic.Huber_pair : Huber_pair :=
{ plus := ℤ_[p],
carrier := ℚ_[p],
intel :=
{ is_power_bounded :=
begin
-- this entire goal ought to follow from some is_bounded.map lemma
-- but we didn't prove that.
suffices : is_bounded {x : ℚ_[p] | ∥x∥ ≤ 1},
{ rintro _ ⟨x, rfl⟩,
show is_power_bounded (x:ℚ_[p]),
refine is_bounded.subset _ this,
rintro y ⟨n, rfl⟩,
show ∥(x:ℚ_[p])^n∥ ≤ 1,
rw normed_field.norm_pow,
exact pow_le_one _ (norm_nonneg _) x.property, },
have bnd := is_adic.is_bounded ⟨_, is_adic p⟩,
intros U hU,
rcases bnd ((coe : ℤ_[p] → ℚ_[p]) ⁻¹' U) _ with ⟨V, hV, H⟩,
{ use [(coe : ℤ_[p] → ℚ_[p]) '' V,
coe_open_embedding.is_open_map.image_nhds hV],
rintros _ ⟨v, v_in, rfl⟩ b hb,
specialize H v v_in ⟨b, hb⟩ (mem_univ _),
rwa [mem_preimage, coe_mul] at H },
{ rw ← coe_zero at hU,
exact continuous_coe.continuous_at hU }
end
.. coe_open_embedding,
.. is_integrally_closed p } }
.
-- Valuations take values in a linearly ordered monoid with a minimal element 0,
-- whereas norms in mathlib are defined to take values in ℝ.
-- This is a repackaging of the p-adic norm as a valuation with values in the non-negative reals.
/-- The standard p-adic valuation. -/
def padic.bundled_valuation : valuation ℚ_[p] nnreal :=
{ to_fun := λ x, ⟨∥x∥, norm_nonneg _⟩,
map_zero' := subtype.val_injective norm_zero,
map_one' := subtype.val_injective normed_field.norm_one,
map_mul' := λ x y, subtype.val_injective $ normed_field.norm_mul _ _,
map_add' := λ x y,
begin
apply le_trans (padic_norm_e.nonarchimedean x y),
rw max_le_iff,
simp [nnreal.coe_max],
split,
{ apply le_trans (le_max_left ∥x∥ ∥y∥),
apply le_of_eq, symmetry, convert nnreal.coe_max _ _,
delta classical.DLO nnreal.decidable_linear_order real.decidable_linear_order,
congr, },
{ apply le_trans (le_max_right ∥x∥ ∥y∥),
apply le_of_eq, symmetry, convert nnreal.coe_max _ _,
delta classical.DLO nnreal.decidable_linear_order real.decidable_linear_order,
congr, },
end }
namespace valuation
variables {R : Type*} [comm_ring R]
variables {K : Type*} [discrete_field K]
variables {L : Type*} [discrete_field L] [topological_space L]
variables {Γ₀ : Type*} [linear_ordered_comm_group_with_zero Γ₀]
variables {Γ'₀ : Type*} [linear_ordered_comm_group_with_zero Γ'₀]
--move this
-- This is a hack, to avoid an fpow diamond.
lemma map_fpow_eq_one_iff {v : valuation K Γ₀} {x : K} (n : ℤ) (hn : n ≠ 0) :
v (x^n) = 1 ↔ v x = 1 :=
begin
have helper : ∀ x (n : ℕ), n ≠ 0 → (v (x^n) = 1 ↔ v x = 1),
{ clear hn n x, intros x n hn,
erw [is_monoid_hom.map_pow v.to_monoid_hom],
cases n, { contradiction, },
show (v x)^(n+1) = 1 ↔ v x = 1,
by_cases hx : x = 0, { rw [hx, v.map_zero, pow_succ, zero_mul], },
change x ≠ 0 at hx,
rw ← v.ne_zero_iff at hx,
let u : units Γ₀ := group_with_zero.mk₀ _ hx,
suffices : u^(n+1) = 1 ↔ u = 1,
{ rwa [units.ext_iff, units.ext_iff, units.coe_pow] at this, },
split; intro h,
{ exact linear_ordered_structure.eq_one_of_pow_eq_one (nat.succ_ne_zero _) h },
{ rw [h, one_pow], } },
by_cases hn' : 0 ≤ n,
{ lift n to ℕ using hn', rw [fpow_of_nat], norm_cast at hn, solve_by_elim },
{ push_neg at hn', rw ← neg_pos at hn',
lift -n to ℕ using le_of_lt hn' with m hm,
have hm' : m ≠ 0, { apply ne_of_gt, exact_mod_cast hn' },
rw [← neg_neg n, ← mul_neg_one, fpow_mul, fpow_inv, v.map_inv, ← inv_one',
inv_inj'', ← hm, inv_one'], solve_by_elim }
end
end valuation
--move this
lemma padic.not_discrete : ¬ discrete_topology ℚ_[p] :=
nondiscrete_normed_field.nondiscrete
--move this
lemma padic_int.not_discrete : ¬ discrete_topology ℤ_[p] :=
begin
assume h,
replace h := topological_add_group.discrete_iff_open_zero.mp h,
apply padic.not_discrete p,
refine topological_add_group.discrete_iff_open_zero.mpr _,
have := coe_open_embedding.is_open_map _ h,
rw image_singleton at this,
exact_mod_cast this
end
/-- The adic spectrum Spa(ℚ_p, ℤ_p) is inhabited. -/
def padic.Spa_inhabited : inhabited (Spa $ padic.Huber_pair p) :=
{ default := ⟨Spv.mk (padic.bundled_valuation p),
begin
refine mk_mem_spa.mpr _,
split,
{ rw valuation.is_continuous_iff,
rintro y,
change is_open {x : ℚ_[p] | ∥x∥ < ∥y∥ },
rw ← ball_0_eq,
exact metric.is_open_ball },
{ intro x, change ℤ_[p] at x, exact x.property },
end⟩ }
/-- The adic spectrum Spa(ℚ_p, ℤ_p) is a singleton:
the only element is the standard p-adic valuation. -/
def padic.Spa_unique : unique (Spa $ padic.Huber_pair p) :=
{ uniq :=
begin
intros v,
change spa (padic.Huber_pair p) at v,
ext,
refine valuation.is_equiv.trans _ (Spv.out_mk _).symm,
apply valuation.is_equiv_of_val_le_one,
intros x, change ℚ_[p] at x,
split; intro h,
{ by_cases hx : ∃ y : ℤ_[p], x = y,
{ rcases hx with ⟨x, rfl⟩, exact x.property },
{ push_neg at hx,
contrapose! h,
obtain ⟨y, hy⟩ : ∃ y : ℤ_[p], x⁻¹ = y,
{ refine ⟨⟨x⁻¹, _⟩, rfl⟩, rw normed_field.norm_inv, apply inv_le_one, apply le_of_lt, exact h },
refine (linear_ordered_structure.inv_lt_inv _ _).mp _,
{ rw valuation.ne_zero_iff, contrapose! hx, use [0, hx] },
{ exact one_ne_zero },
{ rw [inv_one', ← valuation.map_inv, hy],
refine lt_of_le_of_ne (v.map_plus y) _,
assume H,
apply padic.not_discrete p,
apply (valuation.is_continuous_iff_discrete_of_is_trivial _ _).mp v.is_continuous,
rw valuation.is_trivial_iff_val_le_one,
intro z,
by_cases hx' : x = 0, { contrapose! h, simp [hx'], },
rcases padic.exists_repr x hx' with ⟨u, m, rfl⟩, clear hx',
by_cases hz : z = 0, { simp [hz], },
rcases padic.exists_repr z hz with ⟨v, n, rfl⟩, clear hz,
erw [valuation.map_mul, spa.map_unit, one_mul],
by_cases hn : n = 0, { erw [hn, fpow_zero, valuation.map_one], },
erw [← hy, valuation.map_inv, valuation.map_mul, spa.map_unit,
one_mul, ← inv_one', inv_inj'',
valuation.map_fpow_eq_one_iff, ← valuation.map_fpow_eq_one_iff n hn] at H,
{ exact le_of_eq H, },
contrapose! h,
rw [h, fpow_zero, mul_one, ← nnreal.coe_le], apply le_of_eq,
erw ← padic_int.is_unit_iff, exact is_unit_unit _, } } },
{ exact spa.map_plus v ⟨x, h⟩, }
end,
.. padic.Spa_inhabited p }
|