Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 10,901 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import algebra.group_power
import topology.algebra.ring
import topology.opens
import category_theory.category
import category_theory.full_subcategory

import for_mathlib.open_embeddings
import for_mathlib.topological_groups

import sheaves.f_map

import Spa.stalk_valuation

/-!
# Adic spaces

Adic spaces were introduced by Huber in [Huber]. They form a very general category of objects
suitable for p-adic geometry.

In this file we define the category of adic spaces. The category of schemes (from algebraic
geometry) may provide some useful intuition for the definition.
One defines the category of “ringed spaces”, and for every commutative ring R
a ringed space Spec(R). A scheme is a ringed space that admits a cover by subspaces that
are isomorphic to spaces of the form Spec(R) for some ring R.

Similarly, for adic spaces we need two ingredients: a category CLVRS,
and the so-called ”adic spectrum” Spa(_), which is defined in Spa.lean.
An adic space is an object of CLVRS is that admits a cover by subspaces of the form Spa(A).

The main bulk of this file consists in setting up the category that we called CLVRS,
and that never got a proper name in the literature. (For example, Wedhorn calls this category `𝒱`.)

CLVRS (complete locally valued ringed space) is the category of topological spaces endowed
with a sheaf of complete topological rings and (an equivalence class of) valuations on the stalks
(which are required to be local rings; moreover the support of the valuation must be
the maximal ideal of the stalk).

Once we have the category CLVRS in place, the definition of adic spaces is made in
a couple of lines.
-/

universe u

open nat function
open topological_space
open spa

open_locale classical

/-- A convenient auxiliary category whose objects are topological spaces equipped with
a presheaf of topological rings and on each stalk (considered as abstract ring) an
equivalence class of valuations. The point of this category is that the local isomorphism
between a general adic space and an affinoid model Spa(A) can be checked in this category.
-/
structure PreValuedRingedSpace :=
(space : Type u)
[top   : topological_space space]
(presheaf : presheaf_of_topological_rings.{u u} space)
(valuation : ∀ x : space, Spv (stalk_of_rings presheaf.to_presheaf_of_rings x))

namespace PreValuedRingedSpace

variables (X : PreValuedRingedSpace.{u})

/-- Coercion from a PreValuedRingedSpace to the underlying topological space.-/
instance : has_coe_to_sort PreValuedRingedSpace.{u} :=
{ S := Type u,
  coe := λ X, X.space }

/-- The topology on the underlying space of a PreValuedRingedSpace.-/
instance : topological_space X := X.top

end PreValuedRingedSpace

/- Remainder of this file:

* Morphisms and isomorphisms in PreValuedRingedSpace.
* Open set in X -> restrict structure to obtain object of PreValuedRingedSpace
* Definition of adic space

* A morphism in PreValuedRingedSpace is a map of topological spaces,
  and an f-map of presheaves, such that the induced
  map on the stalks pulls one valuation back to the other.
-/


namespace PreValuedRingedSpace
open category_theory

/-- A morphism of pre-valued ringed spaces is a morphism of the structure presheaves
(of topological rings, hence *continuous* on sections),
such that for every point x in the domain the induced map on stalks pulls valuation on the stalk
back to the valuation of the stalk on the image of x.-/
structure hom (X Y : PreValuedRingedSpace.{u}) :=
(fmap : presheaf_of_topological_rings.f_map X.presheaf Y.presheaf)
(stalk : ∀ x : X,
  Spv.comap (stalk_map fmap.to_presheaf_of_rings_f_map x) (X.valuation x) = Y.valuation (fmap.f x))

attribute [simp] hom.stalk

/-- A morphism of pre-valued ringed spaces is determined by the data
of the morphism of the structure presheaves.-/
@[ext]
lemma hom_ext {X Y : PreValuedRingedSpace.{u}} (f g : hom X Y) :
  f.fmap = g.fmap → f = g :=
by { cases f, cases g, tidy }

/--The identity morphism of a pre-valued ringed space.-/
def id (X : PreValuedRingedSpace.{u}) : hom X X :=
{ fmap := presheaf_of_topological_rings.f_map_id _,
  stalk := λ x, by { dsimp, simp, } }

@[simp] lemma id_fmap {X : PreValuedRingedSpace} :
  (id X).fmap = presheaf_of_topological_rings.f_map_id _ := rfl

/--The composition of morphisms of pre-valued ringed spaces.-/
def comp {X Y Z : PreValuedRingedSpace.{u}} (f : hom X Y) (g : hom Y Z) : hom X Z :=
{ fmap := f.fmap.comp g.fmap,
  stalk := λ x,
  begin
    dsimp, simp only [comp_app, stalk_map.stalk_map_comp', hom.stalk, Spv.comap_comp],
    dsimp, simp only [hom.stalk],
  end }

/--Pre-valued ringed spaces form a large category.-/
instance large_category : large_category (PreValuedRingedSpace.{u}) :=
{ hom  := hom,
  id   := id,
  comp := λ X Y Z f g, comp f g,
  id_comp' :=
  begin
    intros X Y f, ext, dsimp [comp],
    exact presheaf_of_rings.f_map.id_comp _,
  end,
  comp_id' :=
  begin
    intros X Y f, ext, dsimp [comp],
    exact presheaf_of_rings.f_map.comp_id _,
  end }

end PreValuedRingedSpace

/--If U is an open subset of a pre-valued ringed space X, then there is a natural way
to view U as a pre-valued ringed space by restricting the structure presheaf from X.-/
noncomputable instance PreValuedRingedSpace.restrict {X : PreValuedRingedSpace.{u}} :
  has_coe (opens X) PreValuedRingedSpace :=
{ coe := λ U,
  { space := U,
    top := by apply_instance,
    presheaf := presheaf_of_topological_rings.restrict U X.presheaf,
    valuation :=
      λ u, Spv.mk (valuation.comap (presheaf_of_rings.restrict_stalk_map _ _) (X.valuation u).out) } }

namespace sheaf_of_topological_rings

/-- The sections of a sheaf of topological rings form a uniform space.
When this is made an instance, beware of diamonds.-/
def uniform_space {X : Type u} [topological_space X] (𝒪X : sheaf_of_topological_rings X)
  (U : opens X) : uniform_space (𝒪X.F.F U) :=
topological_add_group.to_uniform_space (𝒪X.F.F U)

end sheaf_of_topological_rings

section
local attribute [instance] sheaf_of_topological_rings.uniform_space

/--Category of topological spaces endowed with a sheaf of complete topological rings
and (an equivalence class of) valuations on the stalks (which are required to be local
rings; moreover the support of the valuation must be the maximal ideal of the stalk).
Wedhorn calls this category `𝒱`.-/
structure CLVRS :=
(space : Type) -- change this to (Type u) to enable universes
[top   : topological_space space]
(sheaf' : sheaf_of_topological_rings.{0 0} space)
(complete : ∀ U : opens space, complete_space (sheaf'.F.F U))
(valuation : ∀ x : space, Spv (stalk_of_rings sheaf'.to_presheaf_of_topological_rings.to_presheaf_of_rings x))
(local_stalks : ∀ x : space, is_local_ring (stalk_of_rings sheaf'.to_presheaf_of_rings x))
(supp_maximal : ∀ x : space, ideal.is_maximal (valuation x).supp)

end

namespace CLVRS
open category_theory

attribute [instance] top

/--A CLVRS is naturally a pre-valued ringed space.-/
def to_PreValuedRingedSpace (X : CLVRS) : PreValuedRingedSpace.{0} :=
{ presheaf := sheaf_of_topological_rings.to_presheaf_of_topological_rings X.sheaf',
  ..X }

/--The coercion from a CLVRS to a pre-valued ringed space.-/
instance : has_coe CLVRS PreValuedRingedSpace.{0} :=
⟨to_PreValuedRingedSpace⟩

/-- The topology on the underlying space of a CLVRS. -/
instance (X : CLVRS) : topological_space X := X.top

/-- The structure sheaf of a CLVRS. -/
def sheaf (X : CLVRS) : sheaf_of_topological_rings X := X.sheaf'

/--CLVRS is a full subcategory of PreValuedRingedSpace.-/
instance : large_category CLVRS := induced_category.category to_PreValuedRingedSpace

variables {X Y : CLVRS} (f : X ⟶ Y) (x : X)

/-- The underlying morphism of structure presheaves of a morphism of CLVRSs.-/
def fmap : presheaf_of_rings.f_map _ _:=
  (PreValuedRingedSpace.hom.fmap f).to_presheaf_of_rings_f_map

/-- The coercion of a morphims of CLVRSs to the map between the underlying topological spaces.-/
instance : has_coe_to_fun (X ⟶ Y) :=
{ F := λ f, X → Y,
  coe := λ f, (fmap f).f }

/-- The stalk of the structure sheaf at a point of a CLVRS.-/
def stalk (X : CLVRS) := stalk_of_rings (X.sheaf.to_presheaf_of_rings)

/-- The ring structure on the stalk of the structure sheaf of a CLVRS. -/
instance stalk.comm_ring : comm_ring (X.stalk x) := stalk_of_rings_is_comm_ring _ _

/-- The stalk of the structure sheaf of a CLVRS is a local ring. -/
instance stalk.is_local_ring : local_ring (X.stalk x) :=
local_of_is_local_ring $ X.local_stalks x

/-- The ring homomorphism on the stalks induced by a morphism of CLVRSs.-/
noncomputable def stalk_map : Y.stalk (f x) → X.stalk x :=
stalk_map (fmap f) x

/-- The map on the stalks induced by a morphism of CLVRSs is a ring homomorphism.-/
instance : is_ring_hom (stalk_map f x) := stalk_map.is_ring_hom _ _

section local_ring
open local_ring

/-- For every point in a CLVRS,
the support of the valuation on a stalk is the maximal ideal of the stalk.-/
lemma nonunits_eq_supp : nonunits_ideal (X.stalk x) = (X.valuation x).supp :=
unique_of_exists_unique (max_ideal_unique _) (nonunits_ideal.is_maximal _) (X.supp_maximal x)

/-- The map on stalks induced by a morphism of CLVRSs is compatible with the valuations
on the stalks: the pullback of the valuation on the source is the valuation on the target. -/
lemma comap_valuation :
  Spv.comap (stalk_map f x) (X.valuation x) = Y.valuation (f x) :=
PreValuedRingedSpace.hom.stalk _ _

/-- The map on stalks induced by a morphism of CLVRSs is a morphism of local rings. -/
lemma is_local_ring_hom :
  is_local_ring_hom (stalk_map f x) :=
{ map_nonunit :=
  begin
    intros s h,
    contrapose! h,
    rw [← mem_nonunits_iff, ← mem_nonunits_ideal, nonunits_eq_supp] at h ⊢,
    rwa [← comap_valuation, Spv.supp_comap] at h,
  end }

end local_ring

end CLVRS

/--The adic spectrum of a Huber pair.-/
noncomputable def Spa (A : Huber_pair) : PreValuedRingedSpace :=
{ space     := spa A,
  presheaf  := spa.presheaf_of_topological_rings A,
  valuation := λ x, Spv.mk (spa.presheaf.stalk_valuation x) }

open lattice

-- Notation for the proposition that an isomorphism exists between A and B
notation A `≊` B := nonempty (A ≅ B)

namespace CLVRS

/--A CLVRS is an adic space if every point has an open neighbourhood that is isomorphic
to the adic spectrum of a Huber pair.-/
def is_adic_space (X : CLVRS) : Prop :=
∀ x : X, ∃ (U : opens X) (R : Huber_pair), x ∈ U ∧ (Spa R ≊ U)

end CLVRS

/--A CLVRS is an adic space if every point has an open neighbourhood that is isomorphic
to the adic spectrum of a Huber pair.-/
def AdicSpace := {X : CLVRS // X.is_adic_space}

namespace AdicSpace
open category_theory

/--The category of adic spaces is the full subcategory of CLVRS that
consists of the objects that are adic spaces.-/
instance : large_category AdicSpace := category_theory.full_subcategory _

end AdicSpace