Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 10,901 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
import algebra.group_power
import topology.algebra.ring
import topology.opens
import category_theory.category
import category_theory.full_subcategory
import for_mathlib.open_embeddings
import for_mathlib.topological_groups
import sheaves.f_map
import Spa.stalk_valuation
/-!
# Adic spaces
Adic spaces were introduced by Huber in [Huber]. They form a very general category of objects
suitable for p-adic geometry.
In this file we define the category of adic spaces. The category of schemes (from algebraic
geometry) may provide some useful intuition for the definition.
One defines the category of “ringed spaces”, and for every commutative ring R
a ringed space Spec(R). A scheme is a ringed space that admits a cover by subspaces that
are isomorphic to spaces of the form Spec(R) for some ring R.
Similarly, for adic spaces we need two ingredients: a category CLVRS,
and the so-called ”adic spectrum” Spa(_), which is defined in Spa.lean.
An adic space is an object of CLVRS is that admits a cover by subspaces of the form Spa(A).
The main bulk of this file consists in setting up the category that we called CLVRS,
and that never got a proper name in the literature. (For example, Wedhorn calls this category `𝒱`.)
CLVRS (complete locally valued ringed space) is the category of topological spaces endowed
with a sheaf of complete topological rings and (an equivalence class of) valuations on the stalks
(which are required to be local rings; moreover the support of the valuation must be
the maximal ideal of the stalk).
Once we have the category CLVRS in place, the definition of adic spaces is made in
a couple of lines.
-/
universe u
open nat function
open topological_space
open spa
open_locale classical
/-- A convenient auxiliary category whose objects are topological spaces equipped with
a presheaf of topological rings and on each stalk (considered as abstract ring) an
equivalence class of valuations. The point of this category is that the local isomorphism
between a general adic space and an affinoid model Spa(A) can be checked in this category.
-/
structure PreValuedRingedSpace :=
(space : Type u)
[top : topological_space space]
(presheaf : presheaf_of_topological_rings.{u u} space)
(valuation : ∀ x : space, Spv (stalk_of_rings presheaf.to_presheaf_of_rings x))
namespace PreValuedRingedSpace
variables (X : PreValuedRingedSpace.{u})
/-- Coercion from a PreValuedRingedSpace to the underlying topological space.-/
instance : has_coe_to_sort PreValuedRingedSpace.{u} :=
{ S := Type u,
coe := λ X, X.space }
/-- The topology on the underlying space of a PreValuedRingedSpace.-/
instance : topological_space X := X.top
end PreValuedRingedSpace
/- Remainder of this file:
* Morphisms and isomorphisms in PreValuedRingedSpace.
* Open set in X -> restrict structure to obtain object of PreValuedRingedSpace
* Definition of adic space
* A morphism in PreValuedRingedSpace is a map of topological spaces,
and an f-map of presheaves, such that the induced
map on the stalks pulls one valuation back to the other.
-/
namespace PreValuedRingedSpace
open category_theory
/-- A morphism of pre-valued ringed spaces is a morphism of the structure presheaves
(of topological rings, hence *continuous* on sections),
such that for every point x in the domain the induced map on stalks pulls valuation on the stalk
back to the valuation of the stalk on the image of x.-/
structure hom (X Y : PreValuedRingedSpace.{u}) :=
(fmap : presheaf_of_topological_rings.f_map X.presheaf Y.presheaf)
(stalk : ∀ x : X,
Spv.comap (stalk_map fmap.to_presheaf_of_rings_f_map x) (X.valuation x) = Y.valuation (fmap.f x))
attribute [simp] hom.stalk
/-- A morphism of pre-valued ringed spaces is determined by the data
of the morphism of the structure presheaves.-/
@[ext]
lemma hom_ext {X Y : PreValuedRingedSpace.{u}} (f g : hom X Y) :
f.fmap = g.fmap → f = g :=
by { cases f, cases g, tidy }
/--The identity morphism of a pre-valued ringed space.-/
def id (X : PreValuedRingedSpace.{u}) : hom X X :=
{ fmap := presheaf_of_topological_rings.f_map_id _,
stalk := λ x, by { dsimp, simp, } }
@[simp] lemma id_fmap {X : PreValuedRingedSpace} :
(id X).fmap = presheaf_of_topological_rings.f_map_id _ := rfl
/--The composition of morphisms of pre-valued ringed spaces.-/
def comp {X Y Z : PreValuedRingedSpace.{u}} (f : hom X Y) (g : hom Y Z) : hom X Z :=
{ fmap := f.fmap.comp g.fmap,
stalk := λ x,
begin
dsimp, simp only [comp_app, stalk_map.stalk_map_comp', hom.stalk, Spv.comap_comp],
dsimp, simp only [hom.stalk],
end }
/--Pre-valued ringed spaces form a large category.-/
instance large_category : large_category (PreValuedRingedSpace.{u}) :=
{ hom := hom,
id := id,
comp := λ X Y Z f g, comp f g,
id_comp' :=
begin
intros X Y f, ext, dsimp [comp],
exact presheaf_of_rings.f_map.id_comp _,
end,
comp_id' :=
begin
intros X Y f, ext, dsimp [comp],
exact presheaf_of_rings.f_map.comp_id _,
end }
end PreValuedRingedSpace
/--If U is an open subset of a pre-valued ringed space X, then there is a natural way
to view U as a pre-valued ringed space by restricting the structure presheaf from X.-/
noncomputable instance PreValuedRingedSpace.restrict {X : PreValuedRingedSpace.{u}} :
has_coe (opens X) PreValuedRingedSpace :=
{ coe := λ U,
{ space := U,
top := by apply_instance,
presheaf := presheaf_of_topological_rings.restrict U X.presheaf,
valuation :=
λ u, Spv.mk (valuation.comap (presheaf_of_rings.restrict_stalk_map _ _) (X.valuation u).out) } }
namespace sheaf_of_topological_rings
/-- The sections of a sheaf of topological rings form a uniform space.
When this is made an instance, beware of diamonds.-/
def uniform_space {X : Type u} [topological_space X] (𝒪X : sheaf_of_topological_rings X)
(U : opens X) : uniform_space (𝒪X.F.F U) :=
topological_add_group.to_uniform_space (𝒪X.F.F U)
end sheaf_of_topological_rings
section
local attribute [instance] sheaf_of_topological_rings.uniform_space
/--Category of topological spaces endowed with a sheaf of complete topological rings
and (an equivalence class of) valuations on the stalks (which are required to be local
rings; moreover the support of the valuation must be the maximal ideal of the stalk).
Wedhorn calls this category `𝒱`.-/
structure CLVRS :=
(space : Type) -- change this to (Type u) to enable universes
[top : topological_space space]
(sheaf' : sheaf_of_topological_rings.{0 0} space)
(complete : ∀ U : opens space, complete_space (sheaf'.F.F U))
(valuation : ∀ x : space, Spv (stalk_of_rings sheaf'.to_presheaf_of_topological_rings.to_presheaf_of_rings x))
(local_stalks : ∀ x : space, is_local_ring (stalk_of_rings sheaf'.to_presheaf_of_rings x))
(supp_maximal : ∀ x : space, ideal.is_maximal (valuation x).supp)
end
namespace CLVRS
open category_theory
attribute [instance] top
/--A CLVRS is naturally a pre-valued ringed space.-/
def to_PreValuedRingedSpace (X : CLVRS) : PreValuedRingedSpace.{0} :=
{ presheaf := sheaf_of_topological_rings.to_presheaf_of_topological_rings X.sheaf',
..X }
/--The coercion from a CLVRS to a pre-valued ringed space.-/
instance : has_coe CLVRS PreValuedRingedSpace.{0} :=
⟨to_PreValuedRingedSpace⟩
/-- The topology on the underlying space of a CLVRS. -/
instance (X : CLVRS) : topological_space X := X.top
/-- The structure sheaf of a CLVRS. -/
def sheaf (X : CLVRS) : sheaf_of_topological_rings X := X.sheaf'
/--CLVRS is a full subcategory of PreValuedRingedSpace.-/
instance : large_category CLVRS := induced_category.category to_PreValuedRingedSpace
variables {X Y : CLVRS} (f : X ⟶ Y) (x : X)
/-- The underlying morphism of structure presheaves of a morphism of CLVRSs.-/
def fmap : presheaf_of_rings.f_map _ _:=
(PreValuedRingedSpace.hom.fmap f).to_presheaf_of_rings_f_map
/-- The coercion of a morphims of CLVRSs to the map between the underlying topological spaces.-/
instance : has_coe_to_fun (X ⟶ Y) :=
{ F := λ f, X → Y,
coe := λ f, (fmap f).f }
/-- The stalk of the structure sheaf at a point of a CLVRS.-/
def stalk (X : CLVRS) := stalk_of_rings (X.sheaf.to_presheaf_of_rings)
/-- The ring structure on the stalk of the structure sheaf of a CLVRS. -/
instance stalk.comm_ring : comm_ring (X.stalk x) := stalk_of_rings_is_comm_ring _ _
/-- The stalk of the structure sheaf of a CLVRS is a local ring. -/
instance stalk.is_local_ring : local_ring (X.stalk x) :=
local_of_is_local_ring $ X.local_stalks x
/-- The ring homomorphism on the stalks induced by a morphism of CLVRSs.-/
noncomputable def stalk_map : Y.stalk (f x) → X.stalk x :=
stalk_map (fmap f) x
/-- The map on the stalks induced by a morphism of CLVRSs is a ring homomorphism.-/
instance : is_ring_hom (stalk_map f x) := stalk_map.is_ring_hom _ _
section local_ring
open local_ring
/-- For every point in a CLVRS,
the support of the valuation on a stalk is the maximal ideal of the stalk.-/
lemma nonunits_eq_supp : nonunits_ideal (X.stalk x) = (X.valuation x).supp :=
unique_of_exists_unique (max_ideal_unique _) (nonunits_ideal.is_maximal _) (X.supp_maximal x)
/-- The map on stalks induced by a morphism of CLVRSs is compatible with the valuations
on the stalks: the pullback of the valuation on the source is the valuation on the target. -/
lemma comap_valuation :
Spv.comap (stalk_map f x) (X.valuation x) = Y.valuation (f x) :=
PreValuedRingedSpace.hom.stalk _ _
/-- The map on stalks induced by a morphism of CLVRSs is a morphism of local rings. -/
lemma is_local_ring_hom :
is_local_ring_hom (stalk_map f x) :=
{ map_nonunit :=
begin
intros s h,
contrapose! h,
rw [← mem_nonunits_iff, ← mem_nonunits_ideal, nonunits_eq_supp] at h ⊢,
rwa [← comap_valuation, Spv.supp_comap] at h,
end }
end local_ring
end CLVRS
/--The adic spectrum of a Huber pair.-/
noncomputable def Spa (A : Huber_pair) : PreValuedRingedSpace :=
{ space := spa A,
presheaf := spa.presheaf_of_topological_rings A,
valuation := λ x, Spv.mk (spa.presheaf.stalk_valuation x) }
open lattice
-- Notation for the proposition that an isomorphism exists between A and B
notation A `≊` B := nonempty (A ≅ B)
namespace CLVRS
/--A CLVRS is an adic space if every point has an open neighbourhood that is isomorphic
to the adic spectrum of a Huber pair.-/
def is_adic_space (X : CLVRS) : Prop :=
∀ x : X, ∃ (U : opens X) (R : Huber_pair), x ∈ U ∧ (Spa R ≊ U)
end CLVRS
/--A CLVRS is an adic space if every point has an open neighbourhood that is isomorphic
to the adic spectrum of a Huber pair.-/
def AdicSpace := {X : CLVRS // X.is_adic_space}
namespace AdicSpace
open category_theory
/--The category of adic spaces is the full subcategory of CLVRS that
consists of the objects that are adic spaces.-/
instance : large_category AdicSpace := category_theory.full_subcategory _
end AdicSpace
|