Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 11,357 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro, Floris van Doorn
-/
import order.hom.complete_lattice
import topology.bases
import topology.homeomorph
import topology.continuous_function.basic
import order.compactly_generated
/-!
# Open sets
## Summary
We define the subtype of open sets in a topological space.
## Main Definitions
- `opens α` is the type of open subsets of a topological space `α`.
- `open_nhds_of x` is the type of open subsets of a topological space `α` containing `x : α`.
-/
open filter function order set
variables {ι α β γ : Type*} [topological_space α] [topological_space β] [topological_space γ]
namespace topological_space
variable (α)
/-- The type of open subsets of a topological space. -/
def opens := {s : set α // is_open s}
variable {α}
namespace opens
instance : has_coe (opens α) (set α) := { coe := subtype.val }
lemma val_eq_coe (U : opens α) : U.1 = ↑U := rfl
/-- the coercion `opens α → set α` applied to a pair is the same as taking the first component -/
lemma coe_mk {α : Type*} [topological_space α] {U : set α} {hU : is_open U} :
↑(⟨U, hU⟩ : opens α) = U := rfl
instance : has_subset (opens α) :=
{ subset := λ U V, (U : set α) ⊆ V }
instance : has_mem α (opens α) :=
{ mem := λ a U, a ∈ (U : set α) }
@[simp] lemma subset_coe {U V : opens α} : ((U : set α) ⊆ (V : set α)) = (U ⊆ V) := rfl
@[simp] lemma mem_coe {x : α} {U : opens α} : (x ∈ (U : set α)) = (x ∈ U) := rfl
@[simp] lemma mem_mk {x : α} {U : set α} {h : is_open U} :
@has_mem.mem _ _ opens.has_mem x ⟨U, h⟩ ↔ x ∈ U := iff.rfl
@[ext] lemma ext {U V : opens α} (h : (U : set α) = V) : U = V := subtype.ext h
@[ext] lemma ext_iff {U V : opens α} : (U : set α) = V ↔ U = V := subtype.ext_iff.symm
instance : partial_order (opens α) := subtype.partial_order _
/-- The interior of a set, as an element of `opens`. -/
def interior (s : set α) : opens α := ⟨interior s, is_open_interior⟩
lemma gc : galois_connection (coe : opens α → set α) interior :=
λ U s, ⟨λ h, interior_maximal h U.property, λ h, le_trans h interior_subset⟩
open order_dual (of_dual to_dual)
/-- The galois coinsertion between sets and opens. -/
def gi : galois_coinsertion subtype.val (@interior α _) :=
{ choice := λ s hs, ⟨s, interior_eq_iff_open.mp $ le_antisymm interior_subset hs⟩,
gc := gc,
u_l_le := λ _, interior_subset,
choice_eq := λ s hs, le_antisymm hs interior_subset }
instance : complete_lattice (opens α) :=
complete_lattice.copy (galois_coinsertion.lift_complete_lattice gi)
/- le -/ (λ U V, U ⊆ V) rfl
/- top -/ ⟨univ, is_open_univ⟩ (ext interior_univ.symm)
/- bot -/ ⟨∅, is_open_empty⟩ rfl
/- sup -/ (λ U V, ⟨↑U ∪ ↑V, U.2.union V.2⟩) rfl
/- inf -/ (λ U V, ⟨↑U ∩ ↑V, U.2.inter V.2⟩)
(funext $ λ U, funext $ λ V, ext (U.2.inter V.2).interior_eq.symm)
/- Sup -/ (λ S, ⟨⋃ s ∈ S, ↑s, is_open_bUnion $ λ s _, s.2⟩) (funext $ λ S, ext Sup_image.symm)
/- Inf -/ _ rfl
lemma le_def {U V : opens α} : U ≤ V ↔ (U : set α) ≤ (V : set α) := iff.rfl
@[simp] lemma mk_inf_mk {U V : set α} {hU : is_open U} {hV : is_open V} :
(⟨U, hU⟩ ⊓ ⟨V, hV⟩ : opens α) = ⟨U ⊓ V, is_open.inter hU hV⟩ := rfl
@[simp, norm_cast] lemma coe_inf (s t : opens α) : (↑(s ⊓ t) : set α) = s ∩ t := rfl
@[simp, norm_cast] lemma coe_sup (s t : opens α) : (↑(s ⊔ t) : set α) = s ∪ t := rfl
@[simp, norm_cast] lemma coe_bot : ((⊥ : opens α) : set α) = ∅ := rfl
@[simp, norm_cast] lemma coe_top : ((⊤ : opens α) : set α) = set.univ := rfl
@[simp, norm_cast] lemma coe_Sup {S : set (opens α)} : (↑(Sup S) : set α) = ⋃ i ∈ S, ↑i := rfl
@[simp, norm_cast] lemma coe_finset_sup (f : ι → opens α) (s : finset ι) :
(↑(s.sup f) : set α) = s.sup (coe ∘ f) :=
map_finset_sup (⟨⟨coe, coe_sup⟩, coe_bot⟩ : sup_bot_hom (opens α) (set α)) _ _
@[simp, norm_cast] lemma coe_finset_inf (f : ι → opens α) (s : finset ι) :
(↑(s.inf f) : set α) = s.inf (coe ∘ f) :=
map_finset_inf (⟨⟨coe, coe_inf⟩, coe_top⟩ : inf_top_hom (opens α) (set α)) _ _
instance : has_inter (opens α) := ⟨λ U V, U ⊓ V⟩
instance : has_union (opens α) := ⟨λ U V, U ⊔ V⟩
instance : has_emptyc (opens α) := ⟨⊥⟩
instance : inhabited (opens α) := ⟨∅⟩
@[simp] lemma inter_eq (U V : opens α) : U ∩ V = U ⊓ V := rfl
@[simp] lemma union_eq (U V : opens α) : U ∪ V = U ⊔ V := rfl
@[simp] lemma empty_eq : (∅ : opens α) = ⊥ := rfl
lemma supr_def {ι} (s : ι → opens α) : (⨆ i, s i) = ⟨⋃ i, s i, is_open_Union $ λ i, (s i).2⟩ :=
by { ext, simp only [supr, coe_Sup, bUnion_range], refl }
@[simp] lemma supr_mk {ι} (s : ι → set α) (h : Π i, is_open (s i)) :
(⨆ i, ⟨s i, h i⟩ : opens α) = ⟨⋃ i, s i, is_open_Union h⟩ :=
by { rw supr_def, simp }
@[simp, norm_cast] lemma coe_supr {ι} (s : ι → opens α) :
((⨆ i, s i : opens α) : set α) = ⋃ i, s i :=
by simp [supr_def]
@[simp] theorem mem_supr {ι} {x : α} {s : ι → opens α} : x ∈ supr s ↔ ∃ i, x ∈ s i :=
by { rw [←mem_coe], simp, }
@[simp] lemma mem_Sup {Us : set (opens α)} {x : α} : x ∈ Sup Us ↔ ∃ u ∈ Us, x ∈ u :=
by simp_rw [Sup_eq_supr, mem_supr]
instance : frame (opens α) :=
{ Sup := Sup,
inf_Sup_le_supr_inf := λ a s,
(ext $ by simp only [coe_inf, coe_supr, coe_Sup, set.inter_Union₂]).le,
..opens.complete_lattice }
lemma open_embedding_of_le {U V : opens α} (i : U ≤ V) :
open_embedding (set.inclusion i) :=
{ inj := set.inclusion_injective i,
induced := (@induced_compose _ _ _ _ (set.inclusion i) coe).symm,
open_range :=
begin
rw set.range_inclusion i,
exact U.property.preimage continuous_subtype_val
end, }
lemma not_nonempty_iff_eq_bot (U : opens α) : ¬ set.nonempty (U : set α) ↔ U = ⊥ :=
by rw [← subtype.coe_injective.eq_iff, opens.coe_bot, ← set.not_nonempty_iff_eq_empty]
lemma ne_bot_iff_nonempty (U : opens α) : U ≠ ⊥ ↔ set.nonempty (U : set α) :=
by rw [ne.def, ← opens.not_nonempty_iff_eq_bot, not_not]
/-- A set of `opens α` is a basis if the set of corresponding sets is a topological basis. -/
def is_basis (B : set (opens α)) : Prop := is_topological_basis ((coe : _ → set α) '' B)
lemma is_basis_iff_nbhd {B : set (opens α)} :
is_basis B ↔ ∀ {U : opens α} {x}, x ∈ U → ∃ U' ∈ B, x ∈ U' ∧ U' ⊆ U :=
begin
split; intro h,
{ rintros ⟨sU, hU⟩ x hx,
rcases h.mem_nhds_iff.mp (is_open.mem_nhds hU hx)
with ⟨sV, ⟨⟨V, H₁, H₂⟩, hsV⟩⟩,
refine ⟨V, H₁, _⟩,
cases V, dsimp at H₂, subst H₂, exact hsV },
{ refine is_topological_basis_of_open_of_nhds _ _,
{ rintros sU ⟨U, ⟨H₁, rfl⟩⟩, exact U.property },
{ intros x sU hx hsU,
rcases @h (⟨sU, hsU⟩ : opens α) x hx with ⟨V, hV, H⟩,
exact ⟨V, ⟨V, hV, rfl⟩, H⟩ } }
end
lemma is_basis_iff_cover {B : set (opens α)} :
is_basis B ↔ ∀ U : opens α, ∃ Us ⊆ B, U = Sup Us :=
begin
split,
{ intros hB U,
refine ⟨{V : opens α | V ∈ B ∧ V ⊆ U}, λ U hU, hU.left, _⟩,
apply ext,
rw [coe_Sup, hB.open_eq_sUnion' U.prop],
simp_rw [sUnion_eq_bUnion, Union, supr_and, supr_image],
refl },
{ intro h,
rw is_basis_iff_nbhd,
intros U x hx,
rcases h U with ⟨Us, hUs, rfl⟩,
rcases mem_Sup.1 hx with ⟨U, Us, xU⟩,
exact ⟨U, hUs Us, xU, le_Sup Us⟩ }
end
/-- If `α` has a basis consisting of compact opens, then an open set in `α` is compact open iff
it is a finite union of some elements in the basis -/
lemma is_compact_open_iff_eq_finite_Union_of_is_basis
{ι : Type*} (b : ι → opens α) (hb : opens.is_basis (set.range b))
(hb' : ∀ i, is_compact (b i : set α)) (U : set α) :
is_compact U ∧ is_open U ↔ ∃ (s : set ι), s.finite ∧ U = ⋃ i ∈ s, b i :=
begin
apply is_compact_open_iff_eq_finite_Union_of_is_topological_basis
(λ i : ι, (b i).1),
{ convert hb, ext, simp },
{ exact hb' }
end
@[simp] lemma is_compact_element_iff (s : opens α) :
complete_lattice.is_compact_element s ↔ is_compact (s : set α) :=
begin
rw [is_compact_iff_finite_subcover, complete_lattice.is_compact_element_iff],
refine ⟨_, λ H ι U hU, _⟩,
{ introv H hU hU',
obtain ⟨t, ht⟩ := H ι (λ i, ⟨U i, hU i⟩) (by simpa),
refine ⟨t, set.subset.trans ht _⟩,
rw [coe_finset_sup, finset.sup_eq_supr],
refl },
{ obtain ⟨t, ht⟩ := H (λ i, U i) (λ i, (U i).prop)
(by simpa using (show (s : set α) ⊆ ↑(supr U), from hU)),
refine ⟨t, set.subset.trans ht _⟩,
simp only [set.Union_subset_iff],
show ∀ i ∈ t, U i ≤ t.sup U, from λ i, finset.le_sup }
end
/-- The preimage of an open set, as an open set. -/
def comap (f : C(α, β)) : frame_hom (opens β) (opens α) :=
{ to_fun := λ s, ⟨f ⁻¹' s, s.2.preimage f.continuous⟩,
map_Sup' := λ s, ext $ by simp only [coe_Sup, preimage_Union, coe_mk, mem_image, Union_exists,
bUnion_and', Union_Union_eq_right],
map_inf' := λ a b, rfl,
map_top' := rfl }
@[simp] lemma comap_id : comap (continuous_map.id α) = frame_hom.id _ :=
frame_hom.ext $ λ a, ext rfl
lemma comap_mono (f : C(α, β)) {s t : opens β} (h : s ≤ t) : comap f s ≤ comap f t :=
order_hom_class.mono (comap f) h
@[simp] lemma coe_comap (f : C(α, β)) (U : opens β) : ↑(comap f U) = f ⁻¹' U := rfl
@[simp] lemma comap_val (f : C(α, β)) (U : opens β) : (comap f U).1 = f ⁻¹' U := rfl
protected lemma comap_comp (g : C(β, γ)) (f : C(α, β)) :
comap (g.comp f) = (comap f).comp (comap g) := rfl
protected lemma comap_comap (g : C(β, γ)) (f : C(α, β)) (U : opens γ) :
comap f (comap g U) = comap (g.comp f) U := rfl
lemma comap_injective [t0_space β] : injective (comap : C(α, β) → frame_hom (opens β) (opens α)) :=
λ f g h, continuous_map.ext $ λ a, inseparable.eq $ inseparable_iff_forall_open.2 $ λ s hs,
have comap f ⟨s, hs⟩ = comap g ⟨s, hs⟩, from fun_like.congr_fun h ⟨_, hs⟩,
show a ∈ f ⁻¹' s ↔ a ∈ g ⁻¹' s, from set.ext_iff.1 (ext_iff.2 this) a
/-- A homeomorphism induces an equivalence on open sets, by taking comaps. -/
@[simp] protected def equiv (f : α ≃ₜ β) : opens α ≃ opens β :=
{ to_fun := opens.comap f.symm.to_continuous_map,
inv_fun := opens.comap f.to_continuous_map,
left_inv := by { intro U, ext1, exact f.to_equiv.preimage_symm_preimage _ },
right_inv := by { intro U, ext1, exact f.to_equiv.symm_preimage_preimage _ } }
/-- A homeomorphism induces an order isomorphism on open sets, by taking comaps. -/
@[simp] protected def order_iso (f : α ≃ₜ β) : opens α ≃o opens β :=
{ to_equiv := opens.equiv f,
map_rel_iff' := λ U V, f.symm.surjective.preimage_subset_preimage_iff }
end opens
/-- The open neighborhoods of a point. See also `opens` or `nhds`. -/
def open_nhds_of (x : α) : Type* := { s : set α // is_open s ∧ x ∈ s }
instance open_nhds_of.inhabited {α : Type*} [topological_space α] (x : α) :
inhabited (open_nhds_of x) := ⟨⟨set.univ, is_open_univ, set.mem_univ _⟩⟩
end topological_space
|