Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 11,357 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro, Floris van Doorn
-/
import order.hom.complete_lattice
import topology.bases
import topology.homeomorph
import topology.continuous_function.basic
import order.compactly_generated

/-!
# Open sets

## Summary

We define the subtype of open sets in a topological space.

## Main Definitions

- `opens α` is the type of open subsets of a topological space `α`.
- `open_nhds_of x` is the type of open subsets of a topological space `α` containing `x : α`.
-/

open filter function order set

variables {ι α β γ : Type*} [topological_space α] [topological_space β] [topological_space γ]

namespace topological_space
variable (α)
/-- The type of open subsets of a topological space. -/
def opens := {s : set α // is_open s}

variable {α}
namespace opens
instance : has_coe (opens α) (set α) := { coe := subtype.val }

lemma val_eq_coe (U : opens α) : U.1 = ↑U := rfl

/-- the coercion `opens α → set α` applied to a pair is the same as taking the first component -/
lemma coe_mk {α : Type*} [topological_space α] {U : set α} {hU : is_open U} :
  ↑(⟨U, hU⟩ : opens α) = U := rfl

instance : has_subset (opens α) :=
{ subset := λ U V, (U : set α) ⊆ V }

instance : has_mem α (opens α) :=
{ mem := λ a U, a ∈ (U : set α) }

@[simp] lemma subset_coe {U V : opens α} : ((U : set α) ⊆ (V : set α)) = (U ⊆ V) := rfl

@[simp] lemma mem_coe {x : α} {U : opens α} : (x ∈ (U : set α)) = (x ∈ U) := rfl

@[simp] lemma mem_mk {x : α} {U : set α} {h : is_open U} :
  @has_mem.mem _ _ opens.has_mem x ⟨U, h⟩ ↔ x ∈ U := iff.rfl

@[ext] lemma ext {U V : opens α} (h : (U : set α) = V) : U = V := subtype.ext h
@[ext] lemma ext_iff {U V : opens α} : (U : set α) = V ↔ U = V := subtype.ext_iff.symm

instance : partial_order (opens α) := subtype.partial_order _

/-- The interior of a set, as an element of `opens`. -/
def interior (s : set α) : opens α := ⟨interior s, is_open_interior⟩

lemma gc : galois_connection (coe : opens α → set α) interior :=
λ U s, ⟨λ h, interior_maximal h U.property, λ h, le_trans h interior_subset⟩

open order_dual (of_dual to_dual)

/-- The galois coinsertion between sets and opens. -/
def gi : galois_coinsertion subtype.val (@interior α _) :=
{ choice := λ s hs, ⟨s, interior_eq_iff_open.mp $ le_antisymm interior_subset hs⟩,
  gc := gc,
  u_l_le := λ _, interior_subset,
  choice_eq := λ s hs, le_antisymm hs interior_subset }

instance : complete_lattice (opens α) :=
complete_lattice.copy (galois_coinsertion.lift_complete_lattice gi)
/- le  -/ (λ U V, U ⊆ V) rfl
/- top -/ ⟨univ, is_open_univ⟩ (ext interior_univ.symm)
/- bot -/ ⟨∅, is_open_empty⟩ rfl
/- sup -/ (λ U V, ⟨↑U ∪ ↑V, U.2.union V.2⟩) rfl
/- inf -/ (λ U V, ⟨↑U ∩ ↑V, U.2.inter V.2⟩)
  (funext $ λ U, funext $ λ V, ext (U.2.inter V.2).interior_eq.symm)
/- Sup -/ (λ S, ⟨⋃ s ∈ S, ↑s, is_open_bUnion $ λ s _, s.2⟩) (funext $ λ S, ext Sup_image.symm)
/- Inf -/ _ rfl

lemma le_def {U V : opens α} : U ≤ V ↔ (U : set α) ≤ (V : set α) := iff.rfl

@[simp] lemma mk_inf_mk {U V : set α} {hU : is_open U} {hV : is_open V} :
  (⟨U, hU⟩ ⊓ ⟨V, hV⟩ : opens α) = ⟨U ⊓ V, is_open.inter hU hV⟩ := rfl
@[simp, norm_cast] lemma coe_inf (s t : opens α) : (↑(s ⊓ t) : set α) = s ∩ t := rfl
@[simp, norm_cast] lemma coe_sup (s t : opens α) : (↑(s ⊔ t) : set α) = s ∪ t := rfl
@[simp, norm_cast] lemma coe_bot : ((⊥ : opens α) : set α) = ∅ := rfl
@[simp, norm_cast] lemma coe_top : ((⊤ : opens α) : set α) = set.univ := rfl
@[simp, norm_cast] lemma coe_Sup {S : set (opens α)} : (↑(Sup S) : set α) = ⋃ i ∈ S, ↑i := rfl

@[simp, norm_cast] lemma coe_finset_sup (f : ι → opens α) (s : finset ι) :
  (↑(s.sup f) : set α) = s.sup (coe ∘ f) :=
map_finset_sup (⟨⟨coe, coe_sup⟩, coe_bot⟩ : sup_bot_hom (opens α) (set α)) _ _

@[simp, norm_cast] lemma coe_finset_inf (f : ι → opens α) (s : finset ι) :
  (↑(s.inf f) : set α) = s.inf (coe ∘ f) :=
map_finset_inf (⟨⟨coe, coe_inf⟩, coe_top⟩ : inf_top_hom (opens α) (set α)) _ _

instance : has_inter (opens α) := ⟨λ U V, U ⊓ V⟩
instance : has_union (opens α) := ⟨λ U V, U ⊔ V⟩
instance : has_emptyc (opens α) := ⟨⊥⟩
instance : inhabited (opens α) := ⟨∅⟩

@[simp] lemma inter_eq (U V : opens α) : U ∩ V = U ⊓ V := rfl
@[simp] lemma union_eq (U V : opens α) : U ∪ V = U ⊔ V := rfl
@[simp] lemma empty_eq : (∅ : opens α) = ⊥ := rfl

lemma supr_def {ι} (s : ι → opens α) : (⨆ i, s i) = ⟨⋃ i, s i, is_open_Union $ λ i, (s i).2⟩ :=
by { ext, simp only [supr, coe_Sup, bUnion_range], refl }

@[simp] lemma supr_mk {ι} (s : ι → set α) (h : Π i, is_open (s i)) :
  (⨆ i, ⟨s i, h i⟩ : opens α) = ⟨⋃ i, s i, is_open_Union h⟩ :=
by { rw supr_def, simp }

@[simp, norm_cast] lemma coe_supr {ι} (s : ι → opens α) :
  ((⨆ i, s i : opens α) : set α) = ⋃ i, s i :=
by simp [supr_def]

@[simp] theorem mem_supr {ι} {x : α} {s : ι → opens α} : x ∈ supr s ↔ ∃ i, x ∈ s i :=
by { rw [←mem_coe], simp, }

@[simp] lemma mem_Sup {Us : set (opens α)} {x : α} : x ∈ Sup Us ↔ ∃ u ∈ Us, x ∈ u :=
by simp_rw [Sup_eq_supr, mem_supr]

instance : frame (opens α) :=
{ Sup := Sup,
  inf_Sup_le_supr_inf := λ a s,
    (ext $ by simp only [coe_inf, coe_supr, coe_Sup, set.inter_Union₂]).le,
  ..opens.complete_lattice }

lemma open_embedding_of_le {U V : opens α} (i : U ≤ V) :
  open_embedding (set.inclusion i) :=
{ inj := set.inclusion_injective i,
  induced := (@induced_compose _ _ _ _ (set.inclusion i) coe).symm,
  open_range :=
  begin
    rw set.range_inclusion i,
    exact U.property.preimage continuous_subtype_val
  end, }

lemma not_nonempty_iff_eq_bot (U : opens α) : ¬ set.nonempty (U : set α) ↔ U = ⊥ :=
by rw [← subtype.coe_injective.eq_iff, opens.coe_bot, ← set.not_nonempty_iff_eq_empty]

lemma ne_bot_iff_nonempty (U : opens α) : U ≠ ⊥ ↔ set.nonempty (U : set α) :=
by rw [ne.def, ← opens.not_nonempty_iff_eq_bot, not_not]

/-- A set of `opens α` is a basis if the set of corresponding sets is a topological basis. -/
def is_basis (B : set (opens α)) : Prop := is_topological_basis ((coe : _ → set α) '' B)

lemma is_basis_iff_nbhd {B : set (opens α)} :
  is_basis B ↔ ∀ {U : opens α} {x}, x ∈ U → ∃ U' ∈ B, x ∈ U' ∧ U' ⊆ U :=
begin
  split; intro h,
  { rintros ⟨sU, hU⟩ x hx,
    rcases h.mem_nhds_iff.mp (is_open.mem_nhds hU hx)
      with ⟨sV, ⟨⟨V, H₁, H₂⟩, hsV⟩⟩,
    refine ⟨V, H₁, _⟩,
    cases V, dsimp at H₂, subst H₂, exact hsV },
  { refine is_topological_basis_of_open_of_nhds _ _,
    { rintros sU ⟨U, ⟨H₁, rfl⟩⟩, exact U.property },
    { intros x sU hx hsU,
      rcases @h (⟨sU, hsU⟩ : opens α) x hx with ⟨V, hV, H⟩,
      exact ⟨V, ⟨V, hV, rfl⟩, H⟩ } }
end

lemma is_basis_iff_cover {B : set (opens α)} :
  is_basis B ↔ ∀ U : opens α, ∃ Us ⊆ B, U = Sup Us :=
begin
  split,
  { intros hB U,
    refine ⟨{V : opens α | V ∈ B ∧ V ⊆ U}, λ U hU, hU.left, _⟩,
    apply ext,
    rw [coe_Sup, hB.open_eq_sUnion' U.prop],
    simp_rw [sUnion_eq_bUnion, Union, supr_and, supr_image],
    refl },
  { intro h,
    rw is_basis_iff_nbhd,
    intros U x hx,
    rcases h U with ⟨Us, hUs, rfl⟩,
    rcases mem_Sup.1 hx with ⟨U, Us, xU⟩,
    exact ⟨U, hUs Us, xU, le_Sup Us⟩ }
end

/-- If `α` has a basis consisting of compact opens, then an open set in `α` is compact open iff
  it is a finite union of some elements in the basis -/
lemma is_compact_open_iff_eq_finite_Union_of_is_basis
  {ι : Type*} (b : ι → opens α) (hb : opens.is_basis (set.range b))
  (hb' : ∀ i, is_compact (b i : set α)) (U : set α) :
  is_compact U ∧ is_open U ↔ ∃ (s : set ι), s.finite ∧ U = ⋃ i ∈ s, b i :=
begin
  apply is_compact_open_iff_eq_finite_Union_of_is_topological_basis
    (λ i : ι, (b i).1),
  { convert hb, ext, simp },
  { exact hb' }
end

@[simp] lemma is_compact_element_iff (s : opens α) :
  complete_lattice.is_compact_element s ↔ is_compact (s : set α) :=
begin
  rw [is_compact_iff_finite_subcover, complete_lattice.is_compact_element_iff],
  refine ⟨_, λ H ι U hU, _⟩,
  { introv H hU hU',
    obtain ⟨t, ht⟩ := H ι (λ i, ⟨U i, hU i⟩) (by simpa),
    refine ⟨t, set.subset.trans ht _⟩,
    rw [coe_finset_sup, finset.sup_eq_supr],
    refl },
  { obtain ⟨t, ht⟩ := H (λ i, U i) (λ i, (U i).prop)
      (by simpa using (show (s : set α) ⊆ ↑(supr U), from hU)),
    refine ⟨t, set.subset.trans ht _⟩,
    simp only [set.Union_subset_iff],
    show ∀ i ∈ t, U i ≤ t.sup U, from λ i, finset.le_sup }
end

/-- The preimage of an open set, as an open set. -/
def comap (f : C(α, β)) : frame_hom (opens β) (opens α) :=
{ to_fun := λ s, ⟨f ⁻¹' s, s.2.preimage f.continuous⟩,
  map_Sup' := λ s, ext $ by simp only [coe_Sup, preimage_Union, coe_mk, mem_image, Union_exists,
    bUnion_and', Union_Union_eq_right],
  map_inf' := λ a b, rfl,
  map_top' := rfl }

@[simp] lemma comap_id : comap (continuous_map.id α) = frame_hom.id _ :=
frame_hom.ext $ λ a, ext rfl

lemma comap_mono (f : C(α, β)) {s t : opens β} (h : s ≤ t) : comap f s ≤ comap f t :=
order_hom_class.mono (comap f) h

@[simp] lemma coe_comap (f : C(α, β)) (U : opens β) : ↑(comap f U) = f ⁻¹' U := rfl

@[simp] lemma comap_val (f : C(α, β)) (U : opens β) : (comap f U).1 = f ⁻¹' U := rfl

protected lemma comap_comp (g : C(β, γ)) (f : C(α, β)) :
  comap (g.comp f) = (comap f).comp (comap g) := rfl

protected lemma comap_comap (g : C(β, γ)) (f : C(α, β)) (U : opens γ) :
  comap f (comap g U) = comap (g.comp f) U := rfl

lemma comap_injective [t0_space β] : injective (comap : C(α, β) → frame_hom (opens β) (opens α)) :=
λ f g h, continuous_map.ext $ λ a, inseparable.eq $ inseparable_iff_forall_open.2 $ λ s hs,
have comap f ⟨s, hs⟩ = comap g ⟨s, hs⟩, from fun_like.congr_fun h ⟨_, hs⟩,
show a ∈ f ⁻¹' s ↔ a ∈ g ⁻¹' s, from set.ext_iff.1 (ext_iff.2 this) a

/-- A homeomorphism induces an equivalence on open sets, by taking comaps. -/
@[simp] protected def equiv (f : α ≃ₜ β) : opens α ≃ opens β :=
{ to_fun := opens.comap f.symm.to_continuous_map,
  inv_fun := opens.comap f.to_continuous_map,
  left_inv := by { intro U, ext1, exact f.to_equiv.preimage_symm_preimage _ },
  right_inv := by { intro U, ext1, exact f.to_equiv.symm_preimage_preimage _ } }

/-- A homeomorphism induces an order isomorphism on open sets, by taking comaps. -/
@[simp] protected def order_iso (f : α ≃ₜ β) : opens α ≃o opens β :=
{ to_equiv := opens.equiv f,
  map_rel_iff' := λ U V, f.symm.surjective.preimage_subset_preimage_iff }

end opens

/-- The open neighborhoods of a point. See also `opens` or `nhds`. -/
def open_nhds_of (x : α) : Type* := { s : set α // is_open s ∧ x ∈ s }

instance open_nhds_of.inhabited {α : Type*} [topological_space α] (x : α) :
  inhabited (open_nhds_of x) := ⟨⟨set.univ, is_open_univ, set.mem_univ _⟩⟩

end topological_space