Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 17,613 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import analysis.specific_limits.basic
import order.filter.countable_Inter
import topology.G_delta

/-!
# Baire theorem

In a complete metric space, a countable intersection of dense open subsets is dense.

The good concept underlying the theorem is that of a Gδ set, i.e., a countable intersection
of open sets. Then Baire theorem can also be formulated as the fact that a countable
intersection of dense Gδ sets is a dense Gδ set. We prove Baire theorem, giving several different
formulations that can be handy. We also prove the important consequence that, if the space is
covered by a countable union of closed sets, then the union of their interiors is dense.

We also define the filter `residual α` generated by dense `Gδ` sets and prove that this filter
has the countable intersection property.
-/

noncomputable theory

open_locale classical topological_space filter ennreal

open filter encodable set topological_space

variables {α : Type*} {β : Type*} {γ : Type*} {ι : Type*}

section Baire_theorem

open emetric ennreal

/-- The property `baire_space α` means that the topological space `α` has the Baire property:
any countable intersection of open dense subsets is dense.
Formulated here when the source space is ℕ (and subsumed below by `dense_Inter_of_open` working
with any encodable source space).-/
class baire_space (α : Type*) [topological_space α] : Prop :=
(baire_property : ∀ f : ℕ → set α, (∀ n, is_open (f n)) → (∀ n, dense (f n)) → dense (⋂n, f n))

/-- Baire theorems asserts that various topological spaces have the Baire property.
Two versions of these theorems are given.
The first states that complete pseudo_emetric spaces are Baire. -/
@[priority 100]
instance baire_category_theorem_emetric_complete [pseudo_emetric_space α] [complete_space α] :
  baire_space α :=
begin
  refine ⟨λ f ho hd, _⟩,
  let B : ℕ → ℝ≥0∞ := λn, 1/2^n,
  have Bpos : ∀n, 0 < B n,
  { intro n,
    simp only [B, one_div, one_mul, ennreal.inv_pos],
    exact pow_ne_top two_ne_top },
  /- Translate the density assumption into two functions `center` and `radius` associating
  to any n, x, δ, δpos a center and a positive radius such that
  `closed_ball center radius` is included both in `f n` and in `closed_ball x δ`.
  We can also require `radius ≤ (1/2)^(n+1)`, to ensure we get a Cauchy sequence later. -/
  have : ∀n x δ, δ ≠ 0 → ∃y r, 0 < r ∧ r ≤ B (n+1) ∧ closed_ball y r ⊆ (closed_ball x δ) ∩ f n,
  { assume n x δ δpos,
    have : x ∈ closure (f n) := hd n x,
    rcases emetric.mem_closure_iff.1 this (δ/2) (ennreal.half_pos δpos) with ⟨y, ys, xy⟩,
    rw edist_comm at xy,
    obtain ⟨r, rpos, hr⟩ : ∃ r > 0, closed_ball y r ⊆ f n :=
      nhds_basis_closed_eball.mem_iff.1 (is_open_iff_mem_nhds.1 (ho n) y ys),
    refine ⟨y, min (min (δ/2) r) (B (n+1)), _, _, λz hz, ⟨_, _⟩⟩,
    show 0 < min (min (δ / 2) r) (B (n+1)),
      from lt_min (lt_min (ennreal.half_pos δpos) rpos) (Bpos (n+1)),
    show min (min (δ / 2) r) (B (n+1)) ≤ B (n+1), from min_le_right _ _,
    show z ∈ closed_ball x δ, from calc
      edist z x ≤ edist z y + edist y x : edist_triangle _ _ _
      ... ≤ (min (min (δ / 2) r) (B (n+1))) + (δ/2) : add_le_add hz (le_of_lt xy)
      ... ≤ δ/2 + δ/2 : add_le_add (le_trans (min_le_left _ _) (min_le_left _ _)) le_rfl
      ... = δ : ennreal.add_halves δ,
    show z ∈ f n, from hr (calc
      edist z y ≤ min (min (δ / 2) r) (B (n+1)) : hz
      ... ≤ r : le_trans (min_le_left _ _) (min_le_right _ _)) },
  choose! center radius Hpos HB Hball using this,
  refine λ x, (mem_closure_iff_nhds_basis nhds_basis_closed_eball).2 (λ ε εpos, _),
  /- `ε` is positive. We have to find a point in the ball of radius `ε` around `x` belonging to all
  `f n`. For this, we construct inductively a sequence `F n = (c n, r n)` such that the closed ball
  `closed_ball (c n) (r n)` is included in the previous ball and in `f n`, and such that
  `r n` is small enough to ensure that `c n` is a Cauchy sequence. Then `c n` converges to a
  limit which belongs to all the `f n`. -/
  let F : ℕ → (α × ℝ≥0∞) := λn, nat.rec_on n (prod.mk x (min ε (B 0)))
                              (λn p, prod.mk (center n p.1 p.2) (radius n p.1 p.2)),
  let c : ℕ → α := λn, (F n).1,
  let r : ℕ → ℝ≥0∞ := λn, (F n).2,
  have rpos : ∀ n, 0 < r n,
  { assume n,
    induction n with n hn,
    exact lt_min εpos (Bpos 0),
    exact Hpos n (c n) (r n) hn.ne' },
  have r0 : ∀ n, r n ≠ 0 := λ n, (rpos n).ne',
  have rB : ∀n, r n ≤ B n,
  { assume n,
    induction n with n hn,
    exact min_le_right _ _,
    exact HB n (c n) (r n) (r0 n) },
  have incl : ∀n, closed_ball (c (n+1)) (r (n+1)) ⊆ (closed_ball (c n) (r n)) ∩ (f n) :=
    λ n, Hball n (c n) (r n) (r0 n),
  have cdist : ∀n, edist (c n) (c (n+1)) ≤ B n,
  { assume n,
    rw edist_comm,
    have A : c (n+1) ∈ closed_ball (c (n+1)) (r (n+1)) := mem_closed_ball_self,
    have I := calc
      closed_ball (c (n+1)) (r (n+1)) ⊆ closed_ball (c n) (r n) :
        subset.trans (incl n) (inter_subset_left _ _)
      ... ⊆ closed_ball (c n) (B n) : closed_ball_subset_closed_ball (rB n),
    exact I A },
  have : cauchy_seq c :=
    cauchy_seq_of_edist_le_geometric_two _ one_ne_top cdist,
  -- as the sequence `c n` is Cauchy in a complete space, it converges to a limit `y`.
  rcases cauchy_seq_tendsto_of_complete this with ⟨y, ylim⟩,
  -- this point `y` will be the desired point. We will check that it belongs to all
  -- `f n` and to `ball x ε`.
  use y,
  simp only [exists_prop, set.mem_Inter],
  have I : ∀n, ∀m ≥ n, closed_ball (c m) (r m) ⊆ closed_ball (c n) (r n),
  { assume n,
    refine nat.le_induction _ (λm hnm h, _),
    { exact subset.refl _ },
    { exact subset.trans (incl m) (subset.trans (inter_subset_left _ _) h) }},
  have yball : ∀n, y ∈ closed_ball (c n) (r n),
  { assume n,
    refine is_closed_ball.mem_of_tendsto ylim _,
    refine (filter.eventually_ge_at_top n).mono (λ m hm, _),
    exact I n m hm mem_closed_ball_self },
  split,
  show ∀n, y ∈ f n,
  { assume n,
    have : closed_ball (c (n+1)) (r (n+1)) ⊆ f n := subset.trans (incl n) (inter_subset_right _ _),
    exact this (yball (n+1)) },
  show edist y x ≤ ε, from le_trans (yball 0) (min_le_left _ _),
end

/-- The second theorem states that locally compact spaces are Baire. -/
@[priority 100]
instance baire_category_theorem_locally_compact [topological_space α] [t2_space α]
  [locally_compact_space α] :
  baire_space α :=
begin
  constructor,
  intros f ho hd,
  /- To prove that an intersection of open dense subsets is dense, prove that its intersection
  with any open neighbourhood `U` is dense. Define recursively a decreasing sequence `K` of
  compact neighbourhoods: start with some compact neighbourhood inside `U`, then at each step,
  take its interior, intersect with `f n`, then choose a compact neighbourhood inside the
  intersection.-/
  apply dense_iff_inter_open.2,
  intros U U_open U_nonempty,
  rcases exists_positive_compacts_subset U_open U_nonempty with ⟨K₀, hK₀⟩,
  have : ∀ n (K : positive_compacts α), ∃ K' : positive_compacts α, ↑K' ⊆ f n ∩ interior K,
  { refine λ n K, exists_positive_compacts_subset ((ho n).inter is_open_interior) _,
    rw inter_comm,
    exact (hd n).inter_open_nonempty _ is_open_interior K.interior_nonempty },
  choose K_next hK_next,
  let K : ℕ → positive_compacts α := λ n, nat.rec_on n K₀ K_next,
  /- This is a decreasing sequence of positive compacts contained in suitable open sets `f n`.-/
  have hK_decreasing : ∀ (n : ℕ), ↑(K (n + 1)) ⊆ f n ∩ K n,
    from λ n, (hK_next n (K n)).trans $ inter_subset_inter_right _ interior_subset,
  /- Prove that ̀`⋂ n : ℕ, K n` is inside `U ∩ ⋂ n : ℕ, (f n)`. -/
  have hK_subset : (⋂ n, K n : set α) ⊆ U ∩ (⋂ n, f n),
  { intros x hx,
    simp only [mem_inter_eq, mem_Inter] at hx ⊢,
    exact ⟨hK₀ $ hx 0, λ n, (hK_decreasing n (hx (n + 1))).1⟩ },
  /- Prove that `⋂ n : ℕ, K n` is not empty, as an intersection of a decreasing sequence
  of nonempty compact subsets.-/
  have hK_nonempty : (⋂ n, K n : set α).nonempty,
    from is_compact.nonempty_Inter_of_sequence_nonempty_compact_closed _
      (λ n, (hK_decreasing n).trans (inter_subset_right _ _))
      (λ n, (K n).nonempty) (K 0).compact (λ n, (K n).compact.is_closed),
  exact hK_nonempty.mono hK_subset
end

variables [topological_space α] [baire_space α]

/-- Definition of a Baire space. -/
theorem dense_Inter_of_open_nat {f : ℕ → set α} (ho : ∀ n, is_open (f n)) (hd : ∀ n, dense (f n)) :
  dense (⋂ n, f n) :=
baire_space.baire_property f ho hd

/-- Baire theorem: a countable intersection of dense open sets is dense. Formulated here with ⋂₀. -/
theorem dense_sInter_of_open {S : set (set α)} (ho : ∀s∈S, is_open s) (hS : S.countable)
  (hd : ∀s∈S, dense s) : dense (⋂₀S) :=
begin
  cases S.eq_empty_or_nonempty with h h,
  { simp [h] },
  { rcases hS.exists_eq_range h with ⟨f, hf⟩,
    have F : ∀n, f n ∈ S := λn, by rw hf; exact mem_range_self _,
    rw [hf, sInter_range],
    exact dense_Inter_of_open_nat (λn, ho _ (F n)) (λn, hd _ (F n)) }
end

/-- Baire theorem: a countable intersection of dense open sets is dense. Formulated here with
an index set which is a countable set in any type. -/
theorem dense_bInter_of_open {S : set β} {f : β → set α} (ho : ∀s∈S, is_open (f s))
  (hS : S.countable) (hd : ∀s∈S, dense (f s)) : dense (⋂s∈S, f s) :=
begin
  rw ← sInter_image,
  apply dense_sInter_of_open,
  { rwa ball_image_iff },
  { exact hS.image _ },
  { rwa ball_image_iff }
end

/-- Baire theorem: a countable intersection of dense open sets is dense. Formulated here with
an index set which is an encodable type. -/
theorem dense_Inter_of_open [encodable β] {f : β → set α} (ho : ∀s, is_open (f s))
  (hd : ∀s, dense (f s)) : dense (⋂s, f s) :=
begin
  rw ← sInter_range,
  apply dense_sInter_of_open,
  { rwa forall_range_iff },
  { exact countable_range _ },
  { rwa forall_range_iff }
end

/-- Baire theorem: a countable intersection of dense Gδ sets is dense. Formulated here with ⋂₀. -/
theorem dense_sInter_of_Gδ {S : set (set α)} (ho : ∀s∈S, is_Gδ s) (hS : S.countable)
  (hd : ∀s∈S, dense s) : dense (⋂₀S) :=
begin
  -- the result follows from the result for a countable intersection of dense open sets,
  -- by rewriting each set as a countable intersection of open sets, which are of course dense.
  choose T hTo hTc hsT using ho,
  have : ⋂₀ S = ⋂₀ (⋃ s ∈ S, T s ‹_›), -- := (sInter_bUnion (λs hs, (hT s hs).2.2)).symm,
    by simp only [sInter_Union, (hsT _ _).symm, ← sInter_eq_bInter],
  rw this,
  refine dense_sInter_of_open _ (hS.bUnion hTc) _;
    simp only [mem_Union]; rintro t ⟨s, hs, tTs⟩,
  show is_open t, from hTo s hs t tTs,
  show dense t,
  { intro x,
    have := hd s hs x,
    rw hsT s hs at this,
    exact closure_mono (sInter_subset_of_mem tTs) this }
end

/-- Baire theorem: a countable intersection of dense Gδ sets is dense. Formulated here with
an index set which is an encodable type. -/
theorem dense_Inter_of_Gδ [encodable β] {f : β → set α} (ho : ∀s, is_Gδ (f s))
  (hd : ∀s, dense (f s)) : dense (⋂s, f s) :=
begin
  rw ← sInter_range,
  exact dense_sInter_of_Gδ (forall_range_iff.2 ‹_›) (countable_range _) (forall_range_iff.2 ‹_›)
end

/-- Baire theorem: a countable intersection of dense Gδ sets is dense. Formulated here with
an index set which is a countable set in any type. -/
theorem dense_bInter_of_Gδ {S : set β} {f : Π x ∈ S, set α} (ho : ∀s∈S, is_Gδ (f s ‹_›))
  (hS : S.countable) (hd : ∀s∈S, dense (f s ‹_›)) : dense (⋂s∈S, f s ‹_›) :=
begin
  rw bInter_eq_Inter,
  haveI := hS.to_encodable,
  exact dense_Inter_of_Gδ (λ s, ho s s.2) (λ s, hd s s.2)
end

/-- Baire theorem: the intersection of two dense Gδ sets is dense. -/
theorem dense.inter_of_Gδ {s t : set α} (hs : is_Gδ s) (ht : is_Gδ t) (hsc : dense s)
  (htc : dense t) :
  dense (s ∩ t) :=
begin
  rw [inter_eq_Inter],
  apply dense_Inter_of_Gδ; simp [bool.forall_bool, *]
end

/-- A property holds on a residual (comeagre) set if and only if it holds on some dense `Gδ` set. -/
lemma eventually_residual {p : α → Prop} :
  (∀ᶠ x in residual α, p x) ↔ ∃ (t : set α), is_Gδ t ∧ dense t ∧ ∀ x ∈ t, p x :=
calc (∀ᶠ x in residual α, p x) ↔
  ∀ᶠ x in ⨅ (t : set α) (ht : is_Gδ t ∧ dense t), 𝓟 t, p x :
    by simp only [residual, infi_and]
... ↔ ∃ (t : set α) (ht : is_Gδ t ∧ dense t), ∀ᶠ x in 𝓟 t, p x : mem_binfi_of_directed
    (λ t₁ h₁ t₂ h₂, ⟨t₁ ∩ t₂, ⟨h₁.1.inter h₂.1, dense.inter_of_Gδ h₁.1 h₂.1 h₁.2 h₂.2⟩, by simp⟩)
    ⟨univ, is_Gδ_univ, dense_univ⟩
... ↔ _ : by simp [and_assoc]

/-- A set is residual (comeagre) if and only if it includes a dense `Gδ` set. -/
lemma mem_residual {s : set α} :
  s ∈ residual α ↔ ∃ t ⊆ s, is_Gδ t ∧ dense t :=
(@eventually_residual α _ _ (λ x, x ∈ s)).trans $ exists_congr $
λ t, by rw [exists_prop, and_comm (t ⊆ s), subset_def, and_assoc]

lemma dense_of_mem_residual {s : set α} (hs : s ∈ residual α) :
  dense s :=
let ⟨t, hts, _, hd⟩ := mem_residual.1 hs in hd.mono hts

instance : countable_Inter_filter (residual α) :=
⟨begin
  intros S hSc hS,
  simp only [mem_residual] at *,
  choose T hTs hT using hS,
  refine ⟨⋂ s ∈ S, T s ‹_›, _, _, _⟩,
  { rw [sInter_eq_bInter],
    exact Inter₂_mono hTs },
  { exact is_Gδ_bInter hSc (λ s hs, (hT s hs).1) },
  { exact dense_bInter_of_Gδ (λ s hs, (hT s hs).1) hSc (λ s hs, (hT s hs).2) }
end⟩

/-- If a countable family of closed sets cover a dense `Gδ` set, then the union of their interiors
is dense. Formulated here with `⋃`. -/
lemma is_Gδ.dense_Union_interior_of_closed [encodable ι] {s : set α} (hs : is_Gδ s)
  (hd : dense s) {f : ι → set α} (hc : ∀ i, is_closed (f i)) (hU : s ⊆ ⋃ i, f i) :
  dense (⋃ i, interior (f i)) :=
begin
  let g := λ i, (frontier (f i))ᶜ,
  have hgo : ∀ i, is_open (g i), from λ i, is_closed_frontier.is_open_compl,
  have hgd : dense (⋂ i, g i),
  { refine dense_Inter_of_open hgo (λ i x, _),
    rw [closure_compl, interior_frontier (hc _)],
    exact id },
  refine (hd.inter_of_Gδ hs (is_Gδ_Inter $ λ i, (hgo i).is_Gδ) hgd).mono _,
  rintro x ⟨hxs, hxg⟩,
  rw [mem_Inter] at hxg,
  rcases mem_Union.1 (hU hxs) with ⟨i, hi⟩,
  exact mem_Union.2 ⟨i, self_diff_frontier (f i) ▸ ⟨hi, hxg _⟩⟩,
end

/-- If a countable family of closed sets cover a dense `Gδ` set, then the union of their interiors
is dense. Formulated here with a union over a countable set in any type. -/
lemma is_Gδ.dense_bUnion_interior_of_closed {t : set ι} {s : set α} (hs : is_Gδ s)
  (hd : dense s) (ht : t.countable) {f : ι → set α} (hc : ∀ i ∈ t, is_closed (f i))
  (hU : s ⊆ ⋃ i ∈ t, f i) :
  dense (⋃ i ∈ t, interior (f i)) :=
begin
  haveI := ht.to_encodable,
  simp only [bUnion_eq_Union, set_coe.forall'] at *,
  exact hs.dense_Union_interior_of_closed hd hc hU
end

/-- If a countable family of closed sets cover a dense `Gδ` set, then the union of their interiors
is dense. Formulated here with `⋃₀`. -/
lemma is_Gδ.dense_sUnion_interior_of_closed {T : set (set α)} {s : set α} (hs : is_Gδ s)
  (hd : dense s) (hc : T.countable) (hc' : ∀ t ∈ T, is_closed t) (hU : s ⊆ ⋃₀ T) :
  dense (⋃ t ∈ T, interior t) :=
hs.dense_bUnion_interior_of_closed hd hc hc' $ by rwa [← sUnion_eq_bUnion]

/-- Baire theorem: if countably many closed sets cover the whole space, then their interiors
are dense. Formulated here with an index set which is a countable set in any type. -/
theorem dense_bUnion_interior_of_closed {S : set β} {f : β → set α} (hc : ∀s∈S, is_closed (f s))
  (hS : S.countable) (hU : (⋃s∈S, f s) = univ) : dense (⋃s∈S, interior (f s)) :=
is_Gδ_univ.dense_bUnion_interior_of_closed dense_univ hS hc hU.ge

/-- Baire theorem: if countably many closed sets cover the whole space, then their interiors
are dense. Formulated here with `⋃₀`. -/
theorem dense_sUnion_interior_of_closed {S : set (set α)} (hc : ∀s∈S, is_closed s)
  (hS : S.countable) (hU : (⋃₀ S) = univ) : dense (⋃s∈S, interior s) :=
is_Gδ_univ.dense_sUnion_interior_of_closed dense_univ hS hc hU.ge

/-- Baire theorem: if countably many closed sets cover the whole space, then their interiors
are dense. Formulated here with an index set which is an encodable type. -/
theorem dense_Union_interior_of_closed [encodable β] {f : β → set α} (hc : ∀s, is_closed (f s))
  (hU : (⋃s, f s) = univ) : dense (⋃s, interior (f s)) :=
is_Gδ_univ.dense_Union_interior_of_closed dense_univ hc hU.ge

/-- One of the most useful consequences of Baire theorem: if a countable union of closed sets
covers the space, then one of the sets has nonempty interior. -/
theorem nonempty_interior_of_Union_of_closed [nonempty α] [encodable β] {f : β → set α}
  (hc : ∀s, is_closed (f s)) (hU : (⋃s, f s) = univ) :
  ∃s, (interior $ f s).nonempty :=
by simpa using (dense_Union_interior_of_closed hc hU).nonempty

end Baire_theorem