Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 14,139 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
/-
Copyright (c) 2021 Adam Topaz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Calle Sönne, Adam Topaz
-/
import topology.separation
import topology.subset_properties
import topology.locally_constant.basic
/-!
# Discrete quotients of a topological space.
This file defines the type of discrete quotients of a topological space,
denoted `discrete_quotient X`. To avoid quantifying over types, we model such
quotients as setoids whose equivalence classes are clopen.
## Definitions
1. `discrete_quotient X` is the type of discrete quotients of `X`.
It is endowed with a coercion to `Type`, which is defined as the
quotient associated to the setoid in question, and each such quotient
is endowed with the discrete topology.
2. Given `S : discrete_quotient X`, the projection `X → S` is denoted
`S.proj`.
3. When `X` is compact and `S : discrete_quotient X`, the space `S` is
endowed with a `fintype` instance.
## Order structure
The type `discrete_quotient X` is endowed with an instance of a `semilattice_inf` with `order_top`.
The partial ordering `A ≤ B` mathematically means that `B.proj` factors through `A.proj`.
The top element `⊤` is the trivial quotient, meaning that every element of `X` is collapsed
to a point. Given `h : A ≤ B`, the map `A → B` is `discrete_quotient.of_le h`.
Whenever `X` is discrete, the type `discrete_quotient X` is also endowed with an instance of a
`semilattice_inf` with `order_bot`, where the bot element `⊥` is `X` itself.
Given `f : X → Y` and `h : continuous f`, we define a predicate `le_comap h A B` for
`A : discrete_quotient X` and `B : discrete_quotient Y`, asserting that `f` descends to `A → B`.
If `cond : le_comap h A B`, the function `A → B` is obtained by `discrete_quotient.map cond`.
## Theorems
The two main results proved in this file are:
1. `discrete_quotient.eq_of_proj_eq` which states that when `X` is compact, t2 and totally
disconnected, any two elements of `X` agree if their projections in `Q` agree for all
`Q : discrete_quotient X`.
2. `discrete_quotient.exists_of_compat` which states that when `X` is compact, then any
system of elements of `Q` as `Q : discrete_quotient X` varies, which is compatible with
respect to `discrete_quotient.of_le`, must arise from some element of `X`.
## Remarks
The constructions in this file will be used to show that any profinite space is a limit
of finite discrete spaces.
-/
variables (X : Type*) [topological_space X]
/-- The type of discrete quotients of a topological space. -/
@[ext]
structure discrete_quotient :=
(rel : X → X → Prop)
(equiv : equivalence rel)
(clopen : ∀ x, is_clopen (set_of (rel x)))
namespace discrete_quotient
variables {X} (S : discrete_quotient X)
/-- Construct a discrete quotient from a clopen set. -/
def of_clopen {A : set X} (h : is_clopen A) : discrete_quotient X :=
{ rel := λ x y, x ∈ A ∧ y ∈ A ∨ x ∉ A ∧ y ∉ A,
equiv := ⟨by tauto!, by tauto!, by tauto!⟩,
clopen := begin
intros x,
by_cases hx : x ∈ A,
{ apply is_clopen.union,
{ convert h,
ext,
exact ⟨λ i, i.2, λ i, ⟨hx,i⟩⟩ },
{ convert is_clopen_empty,
tidy } },
{ apply is_clopen.union,
{ convert is_clopen_empty,
tidy },
{ convert is_clopen.compl h,
ext,
exact ⟨λ i, i.2, λ i, ⟨hx, i⟩⟩ } },
end }
lemma refl : ∀ x : X, S.rel x x := S.equiv.1
lemma symm : ∀ x y : X, S.rel x y → S.rel y x := S.equiv.2.1
lemma trans : ∀ x y z : X, S.rel x y → S.rel y z → S.rel x z := S.equiv.2.2
/-- The setoid whose quotient yields the discrete quotient. -/
def setoid : setoid X := ⟨S.rel, S.equiv⟩
instance : has_coe_to_sort (discrete_quotient X) Type* :=
⟨λ S, quotient S.setoid⟩
instance : topological_space S := ⊥
/-- The projection from `X` to the given discrete quotient. -/
def proj : X → S := quotient.mk'
lemma proj_surjective : function.surjective S.proj := quotient.surjective_quotient_mk'
lemma fiber_eq (x : X) : S.proj ⁻¹' {S.proj x} = set_of (S.rel x) :=
begin
ext1 y,
simp only [set.mem_preimage, set.mem_singleton_iff, quotient.eq',
discrete_quotient.proj.equations._eqn_1, set.mem_set_of_eq],
exact ⟨λ h, S.symm _ _ h, λ h, S.symm _ _ h⟩,
end
lemma proj_is_locally_constant : is_locally_constant S.proj :=
begin
rw (is_locally_constant.tfae S.proj).out 0 3,
intros x,
rcases S.proj_surjective x with ⟨x,rfl⟩,
simp [fiber_eq, (S.clopen x).1],
end
lemma proj_continuous : continuous S.proj :=
is_locally_constant.continuous $ proj_is_locally_constant _
lemma fiber_closed (A : set S) : is_closed (S.proj ⁻¹' A) :=
is_closed.preimage S.proj_continuous ⟨trivial⟩
lemma fiber_open (A : set S) : is_open (S.proj ⁻¹' A) :=
is_open.preimage S.proj_continuous trivial
lemma fiber_clopen (A : set S) : is_clopen (S.proj ⁻¹' A) := ⟨fiber_open _ _, fiber_closed _ _⟩
instance : partial_order (discrete_quotient X) :=
{ le := λ A B, ∀ x y : X, A.rel x y → B.rel x y,
le_refl := λ a, by tauto,
le_trans := λ a b c h1 h2, by tauto,
le_antisymm := λ a b h1 h2, by { ext, tauto } }
instance : order_top (discrete_quotient X) :=
{ top := ⟨λ a b, true, ⟨by tauto, by tauto, by tauto⟩, λ _, is_clopen_univ⟩,
le_top := λ a, by tauto }
instance : semilattice_inf (discrete_quotient X) :=
{ inf := λ A B,
{ rel := λ x y, A.rel x y ∧ B.rel x y,
equiv := ⟨λ a, ⟨A.refl _,B.refl _⟩, λ a b h, ⟨A.symm _ _ h.1, B.symm _ _ h.2⟩,
λ a b c h1 h2, ⟨A.trans _ _ _ h1.1 h2.1, B.trans _ _ _ h1.2 h2.2⟩⟩,
clopen := λ x, is_clopen.inter (A.clopen _) (B.clopen _) },
inf_le_left := λ a b, by tauto,
inf_le_right := λ a b, by tauto,
le_inf := λ a b c h1 h2, by tauto,
..discrete_quotient.partial_order }
instance : inhabited (discrete_quotient X) := ⟨⊤⟩
section comap
variables {Y : Type*} [topological_space Y] {f : Y → X} (cont : continuous f)
/-- Comap a discrete quotient along a continuous map. -/
def comap : discrete_quotient Y :=
{ rel := λ a b, S.rel (f a) (f b),
equiv := ⟨λ a, S.refl _, λ a b h, S.symm _ _ h, λ a b c h1 h2, S.trans _ _ _ h1 h2⟩,
clopen := λ y, ⟨is_open.preimage cont (S.clopen _).1, is_closed.preimage cont (S.clopen _).2⟩ }
@[simp]
lemma comap_id : S.comap (continuous_id : continuous (id : X → X)) = S := by { ext, refl }
@[simp]
lemma comap_comp {Z : Type*} [topological_space Z] {g : Z → Y} (cont' : continuous g) :
S.comap (continuous.comp cont cont') = (S.comap cont).comap cont' := by { ext, refl }
lemma comap_mono {A B : discrete_quotient X} (h : A ≤ B) : A.comap cont ≤ B.comap cont :=
by tauto
end comap
section of_le
/-- The map induced by a refinement of a discrete quotient. -/
def of_le {A B : discrete_quotient X} (h : A ≤ B) : A → B :=
λ a, quotient.lift_on' a (λ x, B.proj x) (λ a b i, quotient.sound' (h _ _ i))
@[simp]
lemma of_le_refl {A : discrete_quotient X} : of_le (le_refl A) = id := by { ext ⟨⟩, refl }
lemma of_le_refl_apply {A : discrete_quotient X} (a : A) : of_le (le_refl A) a = a := by simp
@[simp]
lemma of_le_comp {A B C : discrete_quotient X} (h1 : A ≤ B) (h2 : B ≤ C) :
of_le (le_trans h1 h2) = of_le h2 ∘ of_le h1 := by { ext ⟨⟩, refl }
lemma of_le_comp_apply {A B C : discrete_quotient X} (h1 : A ≤ B) (h2 : B ≤ C) (a : A) :
of_le (le_trans h1 h2) a = of_le h2 (of_le h1 a) := by simp
lemma of_le_continuous {A B : discrete_quotient X} (h : A ≤ B) :
continuous (of_le h) := continuous_of_discrete_topology
@[simp]
lemma of_le_proj {A B : discrete_quotient X} (h : A ≤ B) :
of_le h ∘ A.proj = B.proj := by { ext, exact quotient.sound' (B.refl _) }
@[simp]
lemma of_le_proj_apply {A B : discrete_quotient X} (h : A ≤ B) (x : X) :
of_le h (A.proj x) = B.proj x := by { change (of_le h ∘ A.proj) x = _, simp }
end of_le
/--
When X is discrete, there is a `order_bot` instance on `discrete_quotient X`
-/
instance [discrete_topology X] : order_bot (discrete_quotient X) :=
{ bot :=
{ rel := (=),
equiv := eq_equivalence,
clopen := λ x, is_clopen_discrete _ },
bot_le := by { rintro S a b (h : a = b), rw h, exact S.refl _ } }
lemma proj_bot_injective [discrete_topology X] :
function.injective (⊥ : discrete_quotient X).proj := λ a b h, quotient.exact' h
lemma proj_bot_bijective [discrete_topology X] :
function.bijective (⊥ : discrete_quotient X).proj := ⟨proj_bot_injective, proj_surjective _⟩
section map
variables {Y : Type*} [topological_space Y] {f : Y → X}
(cont : continuous f) (A : discrete_quotient Y) (B : discrete_quotient X)
/--
Given `cont : continuous f`, `le_comap cont A B` is defined as `A ≤ B.comap f`.
Mathematically this means that `f` descends to a morphism `A → B`.
-/
def le_comap : Prop := A ≤ B.comap cont
variables {cont A B}
lemma le_comap_id (A : discrete_quotient X) : le_comap continuous_id A A := by tauto
lemma le_comap_comp {Z : Type*} [topological_space Z] {g : Z → Y} {cont' : continuous g}
{C : discrete_quotient Z} : le_comap cont' C A → le_comap cont A B →
le_comap (continuous.comp cont cont') C B := by tauto
lemma le_comap_trans {C : discrete_quotient X} :
le_comap cont A B → B ≤ C → le_comap cont A C := λ h1 h2, le_trans h1 $ comap_mono _ h2
/-- Map a discrete quotient along a continuous map. -/
def map (cond : le_comap cont A B) : A → B := quotient.map' f cond
lemma map_continuous (cond : le_comap cont A B) : continuous (map cond) :=
continuous_of_discrete_topology
@[simp]
lemma map_proj (cond : le_comap cont A B) : map cond ∘ A.proj = B.proj ∘ f := rfl
@[simp]
lemma map_proj_apply (cond : le_comap cont A B) (y : Y) : map cond (A.proj y) = B.proj (f y) := rfl
@[simp]
lemma map_id : map (le_comap_id A) = id := by { ext ⟨⟩, refl }
@[simp]
lemma map_comp {Z : Type*} [topological_space Z] {g : Z → Y} {cont' : continuous g}
{C : discrete_quotient Z} (h1 : le_comap cont' C A) (h2 : le_comap cont A B) :
map (le_comap_comp h1 h2) = map h2 ∘ map h1 := by { ext ⟨⟩, refl }
@[simp]
lemma of_le_map {C : discrete_quotient X} (cond : le_comap cont A B) (h : B ≤ C) :
map (le_comap_trans cond h) = of_le h ∘ map cond := by { ext ⟨⟩, refl }
@[simp]
lemma of_le_map_apply {C : discrete_quotient X} (cond : le_comap cont A B) (h : B ≤ C) (a : A) :
map (le_comap_trans cond h) a = of_le h (map cond a) := by { rcases a, refl }
@[simp]
lemma map_of_le {C : discrete_quotient Y} (cond : le_comap cont A B) (h : C ≤ A) :
map (le_trans h cond) = map cond ∘ of_le h := by { ext ⟨⟩, refl }
@[simp]
lemma map_of_le_apply {C : discrete_quotient Y} (cond : le_comap cont A B) (h : C ≤ A) (c : C) :
map (le_trans h cond) c = map cond (of_le h c) := by { rcases c, refl }
end map
lemma eq_of_proj_eq [t2_space X] [compact_space X] [disc : totally_disconnected_space X]
{x y : X} : (∀ Q : discrete_quotient X, Q.proj x = Q.proj y) → x = y :=
begin
intro h,
change x ∈ ({y} : set X),
rw totally_disconnected_space_iff_connected_component_singleton at disc,
rw [← disc y, connected_component_eq_Inter_clopen],
rintros U ⟨⟨U, hU1, hU2⟩, rfl⟩,
replace h : _ ∨ _ := quotient.exact' (h (of_clopen hU1)),
tauto,
end
lemma fiber_le_of_le {A B : discrete_quotient X} (h : A ≤ B) (a : A) :
A.proj ⁻¹' {a} ≤ B.proj ⁻¹' {of_le h a} :=
begin
induction a,
erw [fiber_eq, fiber_eq],
tidy,
end
lemma exists_of_compat [compact_space X] (Qs : Π (Q : discrete_quotient X), Q)
(compat : ∀ (A B : discrete_quotient X) (h : A ≤ B), of_le h (Qs _) = Qs _) :
∃ x : X, ∀ Q : discrete_quotient X, Q.proj x = Qs _ :=
begin
obtain ⟨x,hx⟩ := is_compact.nonempty_Inter_of_directed_nonempty_compact_closed
(λ (Q : discrete_quotient X), Q.proj ⁻¹' {Qs _}) (λ A B, _) (λ i, _)
(λ i, (fiber_closed _ _).is_compact) (λ i, fiber_closed _ _),
{ refine ⟨x, λ Q, _⟩,
exact hx _ ⟨Q,rfl⟩ },
{ refine ⟨A ⊓ B, λ a ha, _, λ a ha, _⟩,
{ dsimp only,
erw ← compat (A ⊓ B) A inf_le_left,
exact fiber_le_of_le _ _ ha },
{ dsimp only,
erw ← compat (A ⊓ B) B inf_le_right,
exact fiber_le_of_le _ _ ha } },
{ obtain ⟨x,hx⟩ := i.proj_surjective (Qs i),
refine ⟨x,_⟩,
dsimp only,
rw [← hx, fiber_eq],
apply i.refl },
end
noncomputable instance [compact_space X] : fintype S :=
begin
have cond : is_compact (⊤ : set X) := compact_univ,
rw is_compact_iff_finite_subcover at cond,
have h := @cond S (λ s, S.proj ⁻¹' {s}) (λ s, fiber_open _ _)
(λ x hx, ⟨S.proj ⁻¹' {S.proj x}, ⟨S.proj x, rfl⟩, rfl⟩),
let T := classical.some h,
have hT := classical.some_spec h,
refine ⟨T,λ s, _⟩,
rcases S.proj_surjective s with ⟨x,rfl⟩,
rcases hT (by tauto : x ∈ ⊤) with ⟨j, ⟨j,rfl⟩, h1, ⟨hj, rfl⟩, h2⟩,
dsimp only at h2,
suffices : S.proj x = j, by rwa this,
rcases j with ⟨j⟩,
apply quotient.sound',
erw fiber_eq at h2,
exact S.symm _ _ h2
end
end discrete_quotient
namespace locally_constant
variables {X} {α : Type*} (f : locally_constant X α)
/-- Any locally constant function induces a discrete quotient. -/
def discrete_quotient : discrete_quotient X :=
{ rel := λ a b, f b = f a,
equiv := ⟨by tauto, by tauto, λ a b c h1 h2, by rw [h2, h1]⟩,
clopen := λ x, f.is_locally_constant.is_clopen_fiber _ }
/-- The function from the discrete quotient associated to a locally constant function. -/
def lift : f.discrete_quotient → α := λ a, quotient.lift_on' a f (λ a b h, h.symm)
lemma lift_is_locally_constant : _root_.is_locally_constant f.lift := λ A, trivial
/-- A locally constant version of `locally_constant.lift`. -/
def locally_constant_lift : locally_constant f.discrete_quotient α :=
⟨f.lift, f.lift_is_locally_constant⟩
@[simp]
lemma lift_eq_coe : f.lift = f.locally_constant_lift := rfl
@[simp]
lemma factors : f.locally_constant_lift ∘ f.discrete_quotient.proj = f := by { ext, refl }
end locally_constant
|