Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 38,876 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 |
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import topology.constructions
import topology.continuous_on
/-!
# Bases of topologies. Countability axioms.
A topological basis on a topological space `t` is a collection of sets,
such that all open sets can be generated as unions of these sets, without the need to take
finite intersections of them. This file introduces a framework for dealing with these collections,
and also what more we can say under certain countability conditions on bases,
which are referred to as first- and second-countable.
We also briefly cover the theory of separable spaces, which are those with a countable, dense
subset. If a space is second-countable, and also has a countably generated uniformity filter
(for example, if `t` is a metric space), it will automatically be separable (and indeed, these
conditions are equivalent in this case).
## Main definitions
* `is_topological_basis s`: The topological space `t` has basis `s`.
* `separable_space α`: The topological space `t` has a countable, dense subset.
* `is_separable s`: The set `s` is contained in the closure of a countable set.
* `first_countable_topology α`: A topology in which `𝓝 x` is countably generated for every `x`.
* `second_countable_topology α`: A topology which has a topological basis which is countable.
## Main results
* `first_countable_topology.tendsto_subseq`: In a first-countable space,
cluster points are limits of subsequences.
* `second_countable_topology.is_open_Union_countable`: In a second-countable space, the union of
arbitrarily-many open sets is equal to a sub-union of only countably many of these sets.
* `second_countable_topology.countable_cover_nhds`: Consider `f : α → set α` with the property that
`f x ∈ 𝓝 x` for all `x`. Then there is some countable set `s` whose image covers the space.
## Implementation Notes
For our applications we are interested that there exists a countable basis, but we do not need the
concrete basis itself. This allows us to declare these type classes as `Prop` to use them as mixins.
### TODO:
More fine grained instances for `first_countable_topology`, `separable_space`, `t2_space`, and more
(see the comment below `subtype.second_countable_topology`.)
-/
open set filter function
open_locale topological_space filter
noncomputable theory
namespace topological_space
universe u
variables {α : Type u} [t : topological_space α]
include t
/-- A topological basis is one that satisfies the necessary conditions so that
it suffices to take unions of the basis sets to get a topology (without taking
finite intersections as well). -/
structure is_topological_basis (s : set (set α)) : Prop :=
(exists_subset_inter : ∀t₁∈s, ∀t₂∈s, ∀ x ∈ t₁ ∩ t₂, ∃ t₃∈s, x ∈ t₃ ∧ t₃ ⊆ t₁ ∩ t₂)
(sUnion_eq : (⋃₀ s) = univ)
(eq_generate_from : t = generate_from s)
/-- If a family of sets `s` generates the topology, then nonempty intersections of finite
subcollections of `s` form a topological basis. -/
lemma is_topological_basis_of_subbasis {s : set (set α)} (hs : t = generate_from s) :
is_topological_basis ((λ f, ⋂₀ f) '' {f : set (set α) | f.finite ∧ f ⊆ s ∧ (⋂₀ f).nonempty}) :=
begin
refine ⟨_, _, _⟩,
{ rintro _ ⟨t₁, ⟨hft₁, ht₁b, ht₁⟩, rfl⟩ _ ⟨t₂, ⟨hft₂, ht₂b, ht₂⟩, rfl⟩ x h,
have : ⋂₀ (t₁ ∪ t₂) = ⋂₀ t₁ ∩ ⋂₀ t₂ := sInter_union t₁ t₂,
exact ⟨_, ⟨t₁ ∪ t₂, ⟨hft₁.union hft₂, union_subset ht₁b ht₂b, this.symm ▸ ⟨x, h⟩⟩, this⟩, h,
subset.rfl⟩ },
{ rw [sUnion_image, Union₂_eq_univ_iff],
intro x, have : x ∈ ⋂₀ ∅, { rw sInter_empty, exact mem_univ x },
exact ⟨∅, ⟨finite_empty, empty_subset _, x, this⟩, this⟩ },
{ rw hs,
apply le_antisymm; apply le_generate_from,
{ rintro _ ⟨t, ⟨hft, htb, ht⟩, rfl⟩,
exact @is_open_sInter _ (generate_from s) _ hft (λ s hs, generate_open.basic _ $ htb hs) },
{ intros t ht,
rcases t.eq_empty_or_nonempty with rfl|hne, { apply @is_open_empty _ _ },
rw ← sInter_singleton t at hne ⊢,
exact generate_open.basic _ ⟨{t}, ⟨finite_singleton t, singleton_subset_iff.2 ht, hne⟩,
rfl⟩ } }
end
/-- If a family of open sets `s` is such that every open neighbourhood contains some
member of `s`, then `s` is a topological basis. -/
lemma is_topological_basis_of_open_of_nhds {s : set (set α)}
(h_open : ∀ u ∈ s, is_open u)
(h_nhds : ∀(a:α) (u : set α), a ∈ u → is_open u → ∃v ∈ s, a ∈ v ∧ v ⊆ u) :
is_topological_basis s :=
begin
refine ⟨λ t₁ ht₁ t₂ ht₂ x hx, h_nhds _ _ hx (is_open.inter (h_open _ ht₁) (h_open _ ht₂)), _, _⟩,
{ refine sUnion_eq_univ_iff.2 (λ a, _),
rcases h_nhds a univ trivial is_open_univ with ⟨u, h₁, h₂, -⟩,
exact ⟨u, h₁, h₂⟩ },
{ refine (le_generate_from h_open).antisymm (λ u hu, _),
refine (@is_open_iff_nhds α (generate_from s) u).mpr (λ a ha, _),
rcases h_nhds a u ha hu with ⟨v, hvs, hav, hvu⟩,
rw nhds_generate_from,
exact infi₂_le_of_le v ⟨hav, hvs⟩ (le_principal_iff.2 hvu) }
end
/-- A set `s` is in the neighbourhood of `a` iff there is some basis set `t`, which
contains `a` and is itself contained in `s`. -/
lemma is_topological_basis.mem_nhds_iff {a : α} {s : set α} {b : set (set α)}
(hb : is_topological_basis b) : s ∈ 𝓝 a ↔ ∃ t ∈ b, a ∈ t ∧ t ⊆ s :=
begin
change s ∈ (𝓝 a).sets ↔ ∃ t ∈ b, a ∈ t ∧ t ⊆ s,
rw [hb.eq_generate_from, nhds_generate_from, binfi_sets_eq],
{ simp [and_assoc, and.left_comm] },
{ exact assume s ⟨hs₁, hs₂⟩ t ⟨ht₁, ht₂⟩,
have a ∈ s ∩ t, from ⟨hs₁, ht₁⟩,
let ⟨u, hu₁, hu₂, hu₃⟩ := hb.1 _ hs₂ _ ht₂ _ this in
⟨u, ⟨hu₂, hu₁⟩, le_principal_iff.2 (subset.trans hu₃ (inter_subset_left _ _)),
le_principal_iff.2 (subset.trans hu₃ (inter_subset_right _ _))⟩ },
{ rcases eq_univ_iff_forall.1 hb.sUnion_eq a with ⟨i, h1, h2⟩,
exact ⟨i, h2, h1⟩ }
end
lemma is_topological_basis.is_open_iff {s : set α} {b : set (set α)} (hb : is_topological_basis b) :
is_open s ↔ ∀ a ∈ s, ∃ t ∈ b, a ∈ t ∧ t ⊆ s :=
by simp [is_open_iff_mem_nhds, hb.mem_nhds_iff]
lemma is_topological_basis.nhds_has_basis {b : set (set α)} (hb : is_topological_basis b) {a : α} :
(𝓝 a).has_basis (λ t : set α, t ∈ b ∧ a ∈ t) (λ t, t) :=
⟨λ s, hb.mem_nhds_iff.trans $ by simp only [exists_prop, and_assoc]⟩
protected lemma is_topological_basis.is_open {s : set α} {b : set (set α)}
(hb : is_topological_basis b) (hs : s ∈ b) : is_open s :=
by { rw hb.eq_generate_from, exact generate_open.basic s hs }
protected lemma is_topological_basis.mem_nhds {a : α} {s : set α} {b : set (set α)}
(hb : is_topological_basis b) (hs : s ∈ b) (ha : a ∈ s) : s ∈ 𝓝 a :=
(hb.is_open hs).mem_nhds ha
lemma is_topological_basis.exists_subset_of_mem_open {b : set (set α)}
(hb : is_topological_basis b) {a:α} {u : set α} (au : a ∈ u)
(ou : is_open u) : ∃v ∈ b, a ∈ v ∧ v ⊆ u :=
hb.mem_nhds_iff.1 $ is_open.mem_nhds ou au
/-- Any open set is the union of the basis sets contained in it. -/
lemma is_topological_basis.open_eq_sUnion' {B : set (set α)}
(hB : is_topological_basis B) {u : set α} (ou : is_open u) :
u = ⋃₀ {s ∈ B | s ⊆ u} :=
ext $ λ a,
⟨λ ha, let ⟨b, hb, ab, bu⟩ := hB.exists_subset_of_mem_open ha ou in ⟨b, ⟨hb, bu⟩, ab⟩,
λ ⟨b, ⟨hb, bu⟩, ab⟩, bu ab⟩
lemma is_topological_basis.open_eq_sUnion {B : set (set α)}
(hB : is_topological_basis B) {u : set α} (ou : is_open u) :
∃ S ⊆ B, u = ⋃₀ S :=
⟨{s ∈ B | s ⊆ u}, λ s h, h.1, hB.open_eq_sUnion' ou⟩
lemma is_topological_basis.open_eq_Union {B : set (set α)}
(hB : is_topological_basis B) {u : set α} (ou : is_open u) :
∃ (β : Type u) (f : β → set α), u = (⋃ i, f i) ∧ ∀ i, f i ∈ B :=
⟨↥{s ∈ B | s ⊆ u}, coe, by { rw ← sUnion_eq_Union, apply hB.open_eq_sUnion' ou }, λ s, and.left s.2⟩
/-- A point `a` is in the closure of `s` iff all basis sets containing `a` intersect `s`. -/
lemma is_topological_basis.mem_closure_iff {b : set (set α)} (hb : is_topological_basis b)
{s : set α} {a : α} :
a ∈ closure s ↔ ∀ o ∈ b, a ∈ o → (o ∩ s).nonempty :=
(mem_closure_iff_nhds_basis' hb.nhds_has_basis).trans $ by simp only [and_imp]
/-- A set is dense iff it has non-trivial intersection with all basis sets. -/
lemma is_topological_basis.dense_iff {b : set (set α)} (hb : is_topological_basis b) {s : set α} :
dense s ↔ ∀ o ∈ b, set.nonempty o → (o ∩ s).nonempty :=
begin
simp only [dense, hb.mem_closure_iff],
exact ⟨λ h o hb ⟨a, ha⟩, h a o hb ha, λ h a o hb ha, h o hb ⟨a, ha⟩⟩
end
lemma is_topological_basis.is_open_map_iff {β} [topological_space β] {B : set (set α)}
(hB : is_topological_basis B) {f : α → β} :
is_open_map f ↔ ∀ s ∈ B, is_open (f '' s) :=
begin
refine ⟨λ H o ho, H _ (hB.is_open ho), λ hf o ho, _⟩,
rw [hB.open_eq_sUnion' ho, sUnion_eq_Union, image_Union],
exact is_open_Union (λ s, hf s s.2.1)
end
lemma is_topological_basis.exists_nonempty_subset {B : set (set α)}
(hb : is_topological_basis B) {u : set α} (hu : u.nonempty) (ou : is_open u) :
∃ v ∈ B, set.nonempty v ∧ v ⊆ u :=
begin
cases hu with x hx,
rw [hb.open_eq_sUnion' ou, mem_sUnion] at hx,
rcases hx with ⟨v, hv, hxv⟩,
exact ⟨v, hv.1, ⟨x, hxv⟩, hv.2⟩
end
lemma is_topological_basis_opens : is_topological_basis { U : set α | is_open U } :=
is_topological_basis_of_open_of_nhds (by tauto) (by tauto)
protected lemma is_topological_basis.prod {β} [topological_space β] {B₁ : set (set α)}
{B₂ : set (set β)} (h₁ : is_topological_basis B₁) (h₂ : is_topological_basis B₂) :
is_topological_basis (image2 (×ˢ) B₁ B₂) :=
begin
refine is_topological_basis_of_open_of_nhds _ _,
{ rintro _ ⟨u₁, u₂, hu₁, hu₂, rfl⟩,
exact (h₁.is_open hu₁).prod (h₂.is_open hu₂) },
{ rintro ⟨a, b⟩ u hu uo,
rcases (h₁.nhds_has_basis.prod_nhds h₂.nhds_has_basis).mem_iff.1 (is_open.mem_nhds uo hu)
with ⟨⟨s, t⟩, ⟨⟨hs, ha⟩, ht, hb⟩, hu⟩,
exact ⟨s ×ˢ t, mem_image2_of_mem hs ht, ⟨ha, hb⟩, hu⟩ }
end
protected lemma is_topological_basis.inducing {β} [topological_space β]
{f : α → β} {T : set (set β)} (hf : inducing f) (h : is_topological_basis T) :
is_topological_basis (image (preimage f) T) :=
begin
refine is_topological_basis_of_open_of_nhds _ _,
{ rintros _ ⟨V, hV, rfl⟩,
rwa hf.is_open_iff,
refine ⟨V, h.is_open hV, rfl⟩ },
{ intros a U ha hU,
rw hf.is_open_iff at hU,
obtain ⟨V, hV, rfl⟩ := hU,
obtain ⟨S, hS, rfl⟩ := h.open_eq_sUnion hV,
obtain ⟨W, hW, ha⟩ := ha,
refine ⟨f ⁻¹' W, ⟨_, hS hW, rfl⟩, ha, set.preimage_mono $ set.subset_sUnion_of_mem hW⟩ }
end
lemma is_topological_basis_of_cover {ι} {U : ι → set α} (Uo : ∀ i, is_open (U i))
(Uc : (⋃ i, U i) = univ) {b : Π i, set (set (U i))} (hb : ∀ i, is_topological_basis (b i)) :
is_topological_basis (⋃ i : ι, image (coe : U i → α) '' (b i)) :=
begin
refine is_topological_basis_of_open_of_nhds (λ u hu, _) _,
{ simp only [mem_Union, mem_image] at hu,
rcases hu with ⟨i, s, sb, rfl⟩,
exact (Uo i).is_open_map_subtype_coe _ ((hb i).is_open sb) },
{ intros a u ha uo,
rcases Union_eq_univ_iff.1 Uc a with ⟨i, hi⟩,
lift a to ↥(U i) using hi,
rcases (hb i).exists_subset_of_mem_open (by exact ha) (uo.preimage continuous_subtype_coe)
with ⟨v, hvb, hav, hvu⟩,
exact ⟨coe '' v, mem_Union.2 ⟨i, mem_image_of_mem _ hvb⟩, mem_image_of_mem _ hav,
image_subset_iff.2 hvu⟩ }
end
protected lemma is_topological_basis.continuous {β : Type*} [topological_space β]
{B : set (set β)} (hB : is_topological_basis B) (f : α → β) (hf : ∀ s ∈ B, is_open (f ⁻¹' s)) :
continuous f :=
begin rw hB.eq_generate_from, exact continuous_generated_from hf end
variables (α)
/-- A separable space is one with a countable dense subset, available through
`topological_space.exists_countable_dense`. If `α` is also known to be nonempty, then
`topological_space.dense_seq` provides a sequence `ℕ → α` with dense range, see
`topological_space.dense_range_dense_seq`.
If `α` is a uniform space with countably generated uniformity filter (e.g., an `emetric_space`),
then this condition is equivalent to `topological_space.second_countable_topology α`. In this case
the latter should be used as a typeclass argument in theorems because Lean can automatically deduce
`separable_space` from `second_countable_topology` but it can't deduce `second_countable_topology`
and `emetric_space`. -/
class separable_space : Prop :=
(exists_countable_dense : ∃s:set α, s.countable ∧ dense s)
lemma exists_countable_dense [separable_space α] :
∃ s : set α, s.countable ∧ dense s :=
separable_space.exists_countable_dense
/-- A nonempty separable space admits a sequence with dense range. Instead of running `cases` on the
conclusion of this lemma, you might want to use `topological_space.dense_seq` and
`topological_space.dense_range_dense_seq`.
If `α` might be empty, then `exists_countable_dense` is the main way to use separability of `α`. -/
lemma exists_dense_seq [separable_space α] [nonempty α] : ∃ u : ℕ → α, dense_range u :=
begin
obtain ⟨s : set α, hs, s_dense⟩ := exists_countable_dense α,
cases set.countable_iff_exists_subset_range.mp hs with u hu,
exact ⟨u, s_dense.mono hu⟩,
end
/-- A dense sequence in a non-empty separable topological space.
If `α` might be empty, then `exists_countable_dense` is the main way to use separability of `α`. -/
def dense_seq [separable_space α] [nonempty α] : ℕ → α := classical.some (exists_dense_seq α)
/-- The sequence `dense_seq α` has dense range. -/
@[simp] lemma dense_range_dense_seq [separable_space α] [nonempty α] :
dense_range (dense_seq α) := classical.some_spec (exists_dense_seq α)
variable {α}
@[priority 100]
instance encodable.to_separable_space [encodable α] : separable_space α :=
{ exists_countable_dense := ⟨set.univ, set.countable_univ, dense_univ⟩ }
lemma separable_space_of_dense_range {ι : Type*} [encodable ι] (u : ι → α) (hu : dense_range u) :
separable_space α :=
⟨⟨range u, countable_range u, hu⟩⟩
/-- In a separable space, a family of nonempty disjoint open sets is countable. -/
lemma _root_.set.pairwise_disjoint.countable_of_is_open [separable_space α] {ι : Type*}
{s : ι → set α} {a : set ι} (h : a.pairwise_disjoint s) (ha : ∀ i ∈ a, is_open (s i))
(h'a : ∀ i ∈ a, (s i).nonempty) :
a.countable :=
begin
rcases exists_countable_dense α with ⟨u, ⟨u_encodable⟩, u_dense⟩,
have : ∀ i : a, ∃ y, y ∈ s i ∩ u :=
λ i, dense_iff_inter_open.1 u_dense (s i) (ha i i.2) (h'a i i.2),
choose f hfs hfu using this,
lift f to a → u using hfu,
have f_inj : injective f,
{ refine injective_iff_pairwise_ne.mpr ((h.subtype _ _).mono $ λ i j hij hfij, hij ⟨hfs i, _⟩),
simp only [congr_arg coe hfij, hfs j] },
exact ⟨@encodable.of_inj _ _ u_encodable f f_inj⟩
end
/-- In a separable space, a family of disjoint sets with nonempty interiors is countable. -/
lemma _root_.set.pairwise_disjoint.countable_of_nonempty_interior [separable_space α] {ι : Type*}
{s : ι → set α} {a : set ι} (h : a.pairwise_disjoint s)
(ha : ∀ i ∈ a, (interior (s i)).nonempty) :
a.countable :=
(h.mono $ λ i, interior_subset).countable_of_is_open (λ i hi, is_open_interior) ha
/-- A set `s` in a topological space is separable if it is contained in the closure of a
countable set `c`. Beware that this definition does not require that `c` is contained in `s` (to
express the latter, use `separable_space s` or `is_separable (univ : set s))`. In metric spaces,
the two definitions are equivalent, see `topological_space.is_separable.separable_space`. -/
def is_separable (s : set α) :=
∃ c : set α, c.countable ∧ s ⊆ closure c
lemma is_separable.mono {s u : set α} (hs : is_separable s) (hu : u ⊆ s) :
is_separable u :=
begin
rcases hs with ⟨c, c_count, hs⟩,
exact ⟨c, c_count, hu.trans hs⟩
end
lemma is_separable.union {s u : set α} (hs : is_separable s) (hu : is_separable u) :
is_separable (s ∪ u) :=
begin
rcases hs with ⟨cs, cs_count, hcs⟩,
rcases hu with ⟨cu, cu_count, hcu⟩,
refine ⟨cs ∪ cu, cs_count.union cu_count, _⟩,
exact union_subset (hcs.trans (closure_mono (subset_union_left _ _)))
(hcu.trans (closure_mono (subset_union_right _ _)))
end
lemma is_separable.closure {s : set α} (hs : is_separable s) : is_separable (closure s) :=
begin
rcases hs with ⟨c, c_count, hs⟩,
exact ⟨c, c_count, by simpa using closure_mono hs⟩,
end
lemma is_separable_Union {ι : Type*} [encodable ι] {s : ι → set α} (hs : ∀ i, is_separable (s i)) :
is_separable (⋃ i, s i) :=
begin
choose c hc h'c using hs,
refine ⟨⋃ i, c i, countable_Union hc, Union_subset_iff.2 (λ i, _)⟩,
exact (h'c i).trans (closure_mono (subset_Union _ i))
end
lemma _root_.set.countable.is_separable {s : set α} (hs : s.countable) : is_separable s :=
⟨s, hs, subset_closure⟩
lemma _root_.set.finite.is_separable {s : set α} (hs : s.finite) : is_separable s :=
hs.countable.is_separable
lemma is_separable_univ_iff :
is_separable (univ : set α) ↔ separable_space α :=
begin
split,
{ rintros ⟨c, c_count, hc⟩,
refine ⟨⟨c, c_count, by rwa [dense_iff_closure_eq, ← univ_subset_iff]⟩⟩ },
{ introsI h,
rcases exists_countable_dense α with ⟨c, c_count, hc⟩,
exact ⟨c, c_count, by rwa [univ_subset_iff, ← dense_iff_closure_eq]⟩ }
end
lemma is_separable_of_separable_space [h : separable_space α] (s : set α) : is_separable s :=
is_separable.mono (is_separable_univ_iff.2 h) (subset_univ _)
lemma is_separable.image {β : Type*} [topological_space β]
{s : set α} (hs : is_separable s) {f : α → β} (hf : continuous f) :
is_separable (f '' s) :=
begin
rcases hs with ⟨c, c_count, hc⟩,
refine ⟨f '' c, c_count.image _, _⟩,
rw image_subset_iff,
exact hc.trans (closure_subset_preimage_closure_image hf)
end
lemma is_separable_of_separable_space_subtype (s : set α) [separable_space s] : is_separable s :=
begin
have : is_separable ((coe : s → α) '' (univ : set s)) :=
(is_separable_of_separable_space _).image continuous_subtype_coe,
simpa only [image_univ, subtype.range_coe_subtype],
end
end topological_space
open topological_space
lemma is_topological_basis_pi {ι : Type*} {X : ι → Type*}
[∀ i, topological_space (X i)] {T : Π i, set (set (X i))}
(cond : ∀ i, is_topological_basis (T i)) :
is_topological_basis {S : set (Π i, X i) | ∃ (U : Π i, set (X i)) (F : finset ι),
(∀ i, i ∈ F → (U i) ∈ T i) ∧ S = (F : set ι).pi U } :=
begin
refine is_topological_basis_of_open_of_nhds _ _,
{ rintro _ ⟨U, F, h1, rfl⟩,
apply is_open_set_pi F.finite_to_set,
intros i hi,
exact (cond i).is_open (h1 i hi) },
{ intros a U ha hU,
obtain ⟨I, t, hta, htU⟩ :
∃ (I : finset ι) (t : Π (i : ι), set (X i)), (∀ i, t i ∈ 𝓝 (a i)) ∧ set.pi ↑I t ⊆ U,
{ rw [← filter.mem_pi', ← nhds_pi], exact hU.mem_nhds ha },
have : ∀ i, ∃ V ∈ T i, a i ∈ V ∧ V ⊆ t i := λ i, (cond i).mem_nhds_iff.1 (hta i),
choose V hVT haV hVt,
exact ⟨_, ⟨V, I, λ i hi, hVT i, rfl⟩, λ i hi, haV i, (pi_mono $ λ i hi, hVt i).trans htU⟩ },
end
lemma is_topological_basis_infi {β : Type*} {ι : Type*} {X : ι → Type*}
[t : ∀ i, topological_space (X i)] {T : Π i, set (set (X i))}
(cond : ∀ i, is_topological_basis (T i)) (f : Π i, β → X i) :
@is_topological_basis β (⨅ i, induced (f i) (t i))
{ S | ∃ (U : Π i, set (X i)) (F : finset ι),
(∀ i, i ∈ F → U i ∈ T i) ∧ S = ⋂ i (hi : i ∈ F), (f i) ⁻¹' (U i) } :=
begin
convert (is_topological_basis_pi cond).inducing (inducing_infi_to_pi _),
ext V,
split,
{ rintros ⟨U, F, h1, h2⟩,
have : (F : set ι).pi U = (⋂ (i : ι) (hi : i ∈ F),
(λ (z : Π j, X j), z i) ⁻¹' (U i)), by { ext, simp },
refine ⟨(F : set ι).pi U, ⟨U, F, h1, rfl⟩, _⟩,
rw [this, h2, set.preimage_Inter],
congr' 1,
ext1,
rw set.preimage_Inter,
refl },
{ rintros ⟨U, ⟨U, F, h1, rfl⟩, h⟩,
refine ⟨U, F, h1, _⟩,
have : (F : set ι).pi U = (⋂ (i : ι) (hi : i ∈ F),
(λ (z : Π j, X j), z i) ⁻¹' (U i)), by { ext, simp },
rw [← h, this, set.preimage_Inter],
congr' 1,
ext1,
rw set.preimage_Inter,
refl }
end
lemma is_topological_basis_singletons (α : Type*) [topological_space α] [discrete_topology α] :
is_topological_basis {s | ∃ (x : α), (s : set α) = {x}} :=
is_topological_basis_of_open_of_nhds (λ u hu, is_open_discrete _) $
λ x u hx u_open, ⟨{x}, ⟨x, rfl⟩, mem_singleton x, singleton_subset_iff.2 hx⟩
/-- If `α` is a separable space and `f : α → β` is a continuous map with dense range, then `β` is
a separable space as well. E.g., the completion of a separable uniform space is separable. -/
protected lemma dense_range.separable_space {α β : Type*} [topological_space α] [separable_space α]
[topological_space β] {f : α → β} (h : dense_range f) (h' : continuous f) :
separable_space β :=
let ⟨s, s_cnt, s_dense⟩ := exists_countable_dense α in
⟨⟨f '' s, countable.image s_cnt f, h.dense_image h' s_dense⟩⟩
lemma dense.exists_countable_dense_subset {α : Type*} [topological_space α]
{s : set α} [separable_space s] (hs : dense s) :
∃ t ⊆ s, t.countable ∧ dense t :=
let ⟨t, htc, htd⟩ := exists_countable_dense s
in ⟨coe '' t, image_subset_iff.2 $ λ x _, mem_preimage.2 $ subtype.coe_prop _, htc.image coe,
hs.dense_range_coe.dense_image continuous_subtype_val htd⟩
/-- Let `s` be a dense set in a topological space `α` with partial order structure. If `s` is a
separable space (e.g., if `α` has a second countable topology), then there exists a countable
dense subset `t ⊆ s` such that `t` contains bottom/top element of `α` when they exist and belong
to `s`. For a dense subset containing neither bot nor top elements, see
`dense.exists_countable_dense_subset_no_bot_top`. -/
lemma dense.exists_countable_dense_subset_bot_top {α : Type*} [topological_space α]
[partial_order α] {s : set α} [separable_space s] (hs : dense s) :
∃ t ⊆ s, t.countable ∧ dense t ∧ (∀ x, is_bot x → x ∈ s → x ∈ t) ∧
(∀ x, is_top x → x ∈ s → x ∈ t) :=
begin
rcases hs.exists_countable_dense_subset with ⟨t, hts, htc, htd⟩,
refine ⟨(t ∪ ({x | is_bot x} ∪ {x | is_top x})) ∩ s, _, _, _, _, _⟩,
exacts [inter_subset_right _ _,
(htc.union ((countable_is_bot α).union (countable_is_top α))).mono (inter_subset_left _ _),
htd.mono (subset_inter (subset_union_left _ _) hts),
λ x hx hxs, ⟨or.inr $ or.inl hx, hxs⟩, λ x hx hxs, ⟨or.inr $ or.inr hx, hxs⟩]
end
instance separable_space_univ {α : Type*} [topological_space α] [separable_space α] :
separable_space (univ : set α) :=
(equiv.set.univ α).symm.surjective.dense_range.separable_space
(continuous_subtype_mk _ continuous_id)
/-- If `α` is a separable topological space with a partial order, then there exists a countable
dense set `s : set α` that contains those of both bottom and top elements of `α` that actually
exist. For a dense set containing neither bot nor top elements, see
`exists_countable_dense_no_bot_top`. -/
lemma exists_countable_dense_bot_top (α : Type*) [topological_space α] [separable_space α]
[partial_order α] :
∃ s : set α, s.countable ∧ dense s ∧ (∀ x, is_bot x → x ∈ s) ∧ (∀ x, is_top x → x ∈ s) :=
by simpa using dense_univ.exists_countable_dense_subset_bot_top
namespace topological_space
universe u
variables (α : Type u) [t : topological_space α]
include t
/-- A first-countable space is one in which every point has a
countable neighborhood basis. -/
class first_countable_topology : Prop :=
(nhds_generated_countable : ∀a:α, (𝓝 a).is_countably_generated)
attribute [instance] first_countable_topology.nhds_generated_countable
namespace first_countable_topology
variable {α}
/-- In a first-countable space, a cluster point `x` of a sequence
is the limit of some subsequence. -/
lemma tendsto_subseq [first_countable_topology α] {u : ℕ → α} {x : α}
(hx : map_cluster_pt x at_top u) :
∃ (ψ : ℕ → ℕ), (strict_mono ψ) ∧ (tendsto (u ∘ ψ) at_top (𝓝 x)) :=
subseq_tendsto_of_ne_bot hx
end first_countable_topology
variables {α}
instance {β} [topological_space β] [first_countable_topology α] [first_countable_topology β] :
first_countable_topology (α × β) :=
⟨λ ⟨x, y⟩, by { rw nhds_prod_eq, apply_instance }⟩
section pi
omit t
instance {ι : Type*} {π : ι → Type*} [countable ι] [Π i, topological_space (π i)]
[∀ i, first_countable_topology (π i)] : first_countable_topology (Π i, π i) :=
⟨λ f, by { rw nhds_pi, apply_instance }⟩
end pi
instance is_countably_generated_nhds_within (x : α) [is_countably_generated (𝓝 x)] (s : set α) :
is_countably_generated (𝓝[s] x) :=
inf.is_countably_generated _ _
variable (α)
/-- A second-countable space is one with a countable basis. -/
class second_countable_topology : Prop :=
(is_open_generated_countable [] :
∃ b : set (set α), b.countable ∧ t = topological_space.generate_from b)
variable {α}
protected lemma is_topological_basis.second_countable_topology
{b : set (set α)} (hb : is_topological_basis b) (hc : b.countable) :
second_countable_topology α :=
⟨⟨b, hc, hb.eq_generate_from⟩⟩
variable (α)
lemma exists_countable_basis [second_countable_topology α] :
∃b:set (set α), b.countable ∧ ∅ ∉ b ∧ is_topological_basis b :=
let ⟨b, hb₁, hb₂⟩ := second_countable_topology.is_open_generated_countable α in
let b' := (λs, ⋂₀ s) '' {s:set (set α) | s.finite ∧ s ⊆ b ∧ (⋂₀ s).nonempty} in
⟨b',
((countable_set_of_finite_subset hb₁).mono
(by { simp only [← and_assoc], apply inter_subset_left })).image _,
assume ⟨s, ⟨_, _, hn⟩, hp⟩, absurd hn (not_nonempty_iff_eq_empty.2 hp),
is_topological_basis_of_subbasis hb₂⟩
/-- A countable topological basis of `α`. -/
def countable_basis [second_countable_topology α] : set (set α) :=
(exists_countable_basis α).some
lemma countable_countable_basis [second_countable_topology α] : (countable_basis α).countable :=
(exists_countable_basis α).some_spec.1
instance encodable_countable_basis [second_countable_topology α] :
encodable (countable_basis α) :=
(countable_countable_basis α).to_encodable
lemma empty_nmem_countable_basis [second_countable_topology α] : ∅ ∉ countable_basis α :=
(exists_countable_basis α).some_spec.2.1
lemma is_basis_countable_basis [second_countable_topology α] :
is_topological_basis (countable_basis α) :=
(exists_countable_basis α).some_spec.2.2
lemma eq_generate_from_countable_basis [second_countable_topology α] :
‹topological_space α› = generate_from (countable_basis α) :=
(is_basis_countable_basis α).eq_generate_from
variable {α}
lemma is_open_of_mem_countable_basis [second_countable_topology α] {s : set α}
(hs : s ∈ countable_basis α) : is_open s :=
(is_basis_countable_basis α).is_open hs
lemma nonempty_of_mem_countable_basis [second_countable_topology α] {s : set α}
(hs : s ∈ countable_basis α) : s.nonempty :=
ne_empty_iff_nonempty.1 $ ne_of_mem_of_not_mem hs $ empty_nmem_countable_basis α
variable (α)
@[priority 100] -- see Note [lower instance priority]
instance second_countable_topology.to_first_countable_topology
[second_countable_topology α] : first_countable_topology α :=
⟨λ x, has_countable_basis.is_countably_generated $
⟨(is_basis_countable_basis α).nhds_has_basis, (countable_countable_basis α).mono $
inter_subset_left _ _⟩⟩
/-- If `β` is a second-countable space, then its induced topology
via `f` on `α` is also second-countable. -/
lemma second_countable_topology_induced (β)
[t : topological_space β] [second_countable_topology β] (f : α → β) :
@second_countable_topology α (t.induced f) :=
begin
rcases second_countable_topology.is_open_generated_countable β with ⟨b, hb, eq⟩,
refine { is_open_generated_countable := ⟨preimage f '' b, hb.image _, _⟩ },
rw [eq, induced_generate_from_eq]
end
instance subtype.second_countable_topology (s : set α) [second_countable_topology α] :
second_countable_topology s :=
second_countable_topology_induced s α coe
/- TODO: more fine grained instances for first_countable_topology, separable_space, t2_space, ... -/
instance {β : Type*} [topological_space β]
[second_countable_topology α] [second_countable_topology β] : second_countable_topology (α × β) :=
((is_basis_countable_basis α).prod (is_basis_countable_basis β)).second_countable_topology $
(countable_countable_basis α).image2 (countable_countable_basis β) _
instance {ι : Type*} {π : ι → Type*}
[countable ι] [t : ∀a, topological_space (π a)] [∀a, second_countable_topology (π a)] :
second_countable_topology (∀a, π a) :=
begin
haveI := encodable.of_countable ι,
have : t = (λa, generate_from (countable_basis (π a))),
from funext (assume a, (is_basis_countable_basis (π a)).eq_generate_from),
rw [this, pi_generate_from_eq],
constructor, refine ⟨_, _, rfl⟩,
have : set.countable {T : set (Π i, π i) | ∃ (I : finset ι) (s : Π i : I, set (π i)),
(∀ i, s i ∈ countable_basis (π i)) ∧ T = {f | ∀ i : I, f i ∈ s i}},
{ simp only [set_of_exists, ← exists_prop],
refine countable_Union (λ I, countable.bUnion _ (λ _ _, countable_singleton _)),
change set.countable {s : Π i : I, set (π i) | ∀ i, s i ∈ countable_basis (π i)},
exact countable_pi (λ i, countable_countable_basis _) },
convert this using 1, ext1 T, split,
{ rintro ⟨s, I, hs, rfl⟩,
refine ⟨I, λ i, s i, λ i, hs i i.2, _⟩,
simp only [set.pi, set_coe.forall'], refl },
{ rintro ⟨I, s, hs, rfl⟩,
rcases @subtype.surjective_restrict ι (λ i, set (π i)) _ (λ i, i ∈ I) s with ⟨s, rfl⟩,
exact ⟨s, I, λ i hi, hs ⟨i, hi⟩, set.ext $ λ f, subtype.forall⟩ }
end
@[priority 100] -- see Note [lower instance priority]
instance second_countable_topology.to_separable_space
[second_countable_topology α] : separable_space α :=
begin
choose p hp using λ s : countable_basis α, nonempty_of_mem_countable_basis s.2,
exact ⟨⟨range p, countable_range _,
(is_basis_countable_basis α).dense_iff.2 $ λ o ho _, ⟨p ⟨o, ho⟩, hp _, mem_range_self _⟩⟩⟩
end
variables {α}
/-- A countable open cover induces a second-countable topology if all open covers
are themselves second countable. -/
lemma second_countable_topology_of_countable_cover {ι} [encodable ι] {U : ι → set α}
[∀ i, second_countable_topology (U i)] (Uo : ∀ i, is_open (U i)) (hc : (⋃ i, U i) = univ) :
second_countable_topology α :=
begin
have : is_topological_basis (⋃ i, image (coe : U i → α) '' (countable_basis (U i))),
from is_topological_basis_of_cover Uo hc (λ i, is_basis_countable_basis (U i)),
exact this.second_countable_topology
(countable_Union $ λ i, (countable_countable_basis _).image _)
end
/-- In a second-countable space, an open set, given as a union of open sets,
is equal to the union of countably many of those sets. -/
lemma is_open_Union_countable [second_countable_topology α]
{ι} (s : ι → set α) (H : ∀ i, is_open (s i)) :
∃ T : set ι, T.countable ∧ (⋃ i ∈ T, s i) = ⋃ i, s i :=
begin
let B := {b ∈ countable_basis α | ∃ i, b ⊆ s i},
choose f hf using λ b : B, b.2.2,
haveI : encodable B := ((countable_countable_basis α).mono (sep_subset _ _)).to_encodable,
refine ⟨_, countable_range f, (Union₂_subset_Union _ _).antisymm (sUnion_subset _)⟩,
rintro _ ⟨i, rfl⟩ x xs,
rcases (is_basis_countable_basis α).exists_subset_of_mem_open xs (H _) with ⟨b, hb, xb, bs⟩,
exact ⟨_, ⟨_, rfl⟩, _, ⟨⟨⟨_, hb, _, bs⟩, rfl⟩, rfl⟩, hf _ (by exact xb)⟩
end
lemma is_open_sUnion_countable [second_countable_topology α]
(S : set (set α)) (H : ∀ s ∈ S, is_open s) :
∃ T : set (set α), T.countable ∧ T ⊆ S ∧ ⋃₀ T = ⋃₀ S :=
let ⟨T, cT, hT⟩ := is_open_Union_countable (λ s:S, s.1) (λ s, H s.1 s.2) in
⟨subtype.val '' T, cT.image _,
image_subset_iff.2 $ λ ⟨x, xs⟩ xt, xs,
by rwa [sUnion_image, sUnion_eq_Union]⟩
/-- In a topological space with second countable topology, if `f` is a function that sends each
point `x` to a neighborhood of `x`, then for some countable set `s`, the neighborhoods `f x`,
`x ∈ s`, cover the whole space. -/
lemma countable_cover_nhds [second_countable_topology α] {f : α → set α}
(hf : ∀ x, f x ∈ 𝓝 x) : ∃ s : set α, s.countable ∧ (⋃ x ∈ s, f x) = univ :=
begin
rcases is_open_Union_countable (λ x, interior (f x)) (λ x, is_open_interior) with ⟨s, hsc, hsU⟩,
suffices : (⋃ x ∈ s, interior (f x)) = univ,
from ⟨s, hsc, flip eq_univ_of_subset this $ Union₂_mono $ λ _ _, interior_subset⟩,
simp only [hsU, eq_univ_iff_forall, mem_Union],
exact λ x, ⟨x, mem_interior_iff_mem_nhds.2 (hf x)⟩
end
lemma countable_cover_nhds_within [second_countable_topology α] {f : α → set α} {s : set α}
(hf : ∀ x ∈ s, f x ∈ 𝓝[s] x) : ∃ t ⊆ s, t.countable ∧ s ⊆ (⋃ x ∈ t, f x) :=
begin
have : ∀ x : s, coe ⁻¹' (f x) ∈ 𝓝 x, from λ x, preimage_coe_mem_nhds_subtype.2 (hf x x.2),
rcases countable_cover_nhds this with ⟨t, htc, htU⟩,
refine ⟨coe '' t, subtype.coe_image_subset _ _, htc.image _, λ x hx, _⟩,
simp only [bUnion_image, eq_univ_iff_forall, ← preimage_Union, mem_preimage] at htU ⊢,
exact htU ⟨x, hx⟩
end
section sigma
variables {ι : Type*} {E : ι → Type*} [∀ i, topological_space (E i)]
omit t
/-- In a disjoint union space `Σ i, E i`, one can form a topological basis by taking the union of
topological bases on each of the parts of the space. -/
lemma is_topological_basis.sigma
{s : Π (i : ι), set (set (E i))} (hs : ∀ i, is_topological_basis (s i)) :
is_topological_basis (⋃ (i : ι), (λ u, ((sigma.mk i) '' u : set (Σ i, E i))) '' (s i)) :=
begin
apply is_topological_basis_of_open_of_nhds,
{ assume u hu,
obtain ⟨i, t, ts, rfl⟩ : ∃ (i : ι) (t : set (E i)), t ∈ s i ∧ sigma.mk i '' t = u,
by simpa only [mem_Union, mem_image] using hu,
exact is_open_map_sigma_mk _ ((hs i).is_open ts) },
{ rintros ⟨i, x⟩ u hxu u_open,
have hx : x ∈ sigma.mk i ⁻¹' u := hxu,
obtain ⟨v, vs, xv, hv⟩ : ∃ (v : set (E i)) (H : v ∈ s i), x ∈ v ∧ v ⊆ sigma.mk i ⁻¹' u :=
(hs i).exists_subset_of_mem_open hx (is_open_sigma_iff.1 u_open i),
exact ⟨(sigma.mk i) '' v, mem_Union.2 ⟨i, mem_image_of_mem _ vs⟩, mem_image_of_mem _ xv,
image_subset_iff.2 hv⟩ }
end
/-- A countable disjoint union of second countable spaces is second countable. -/
instance [encodable ι] [∀ i, second_countable_topology (E i)] :
second_countable_topology (Σ i, E i) :=
begin
let b := (⋃ (i : ι), (λ u, ((sigma.mk i) '' u : set (Σ i, E i))) '' (countable_basis (E i))),
have A : is_topological_basis b := is_topological_basis.sigma (λ i, is_basis_countable_basis _),
have B : b.countable := countable_Union (λ i, countable.image (countable_countable_basis _) _),
exact A.second_countable_topology B,
end
end sigma
section sum
omit t
variables {β : Type*} [topological_space α] [topological_space β]
/-- In a sum space `α ⊕ β`, one can form a topological basis by taking the union of
topological bases on each of the two components. -/
lemma is_topological_basis.sum
{s : set (set α)} (hs : is_topological_basis s) {t : set (set β)} (ht : is_topological_basis t) :
is_topological_basis (((λ u, sum.inl '' u) '' s) ∪ ((λ u, sum.inr '' u) '' t)) :=
begin
apply is_topological_basis_of_open_of_nhds,
{ assume u hu,
cases hu,
{ rcases hu with ⟨w, hw, rfl⟩,
exact open_embedding_inl.is_open_map w (hs.is_open hw) },
{ rcases hu with ⟨w, hw, rfl⟩,
exact open_embedding_inr.is_open_map w (ht.is_open hw) } },
{ rintros x u hxu u_open,
cases x,
{ have h'x : x ∈ sum.inl ⁻¹' u := hxu,
obtain ⟨v, vs, xv, vu⟩ : ∃ (v : set α) (H : v ∈ s), x ∈ v ∧ v ⊆ sum.inl ⁻¹' u :=
hs.exists_subset_of_mem_open h'x (is_open_sum_iff.1 u_open).1,
exact ⟨sum.inl '' v, mem_union_left _ (mem_image_of_mem _ vs), mem_image_of_mem _ xv,
image_subset_iff.2 vu⟩ },
{ have h'x : x ∈ sum.inr ⁻¹' u := hxu,
obtain ⟨v, vs, xv, vu⟩ : ∃ (v : set β) (H : v ∈ t), x ∈ v ∧ v ⊆ sum.inr ⁻¹' u :=
ht.exists_subset_of_mem_open h'x (is_open_sum_iff.1 u_open).2,
exact ⟨sum.inr '' v, mem_union_right _ (mem_image_of_mem _ vs), mem_image_of_mem _ xv,
image_subset_iff.2 vu⟩ } }
end
/-- A sum type of two second countable spaces is second countable. -/
instance [second_countable_topology α] [second_countable_topology β] :
second_countable_topology (α ⊕ β) :=
begin
let b := (λ u, sum.inl '' u) '' (countable_basis α) ∪ (λ u, sum.inr '' u) '' (countable_basis β),
have A : is_topological_basis b := (is_basis_countable_basis α).sum (is_basis_countable_basis β),
have B : b.countable := (countable.image (countable_countable_basis _) _).union
(countable.image (countable_countable_basis _) _),
exact A.second_countable_topology B,
end
end sum
end topological_space
open topological_space
variables {α β : Type*} [topological_space α] [topological_space β] {f : α → β}
protected lemma inducing.second_countable_topology [second_countable_topology β]
(hf : inducing f) : second_countable_topology α :=
by { rw hf.1, exact second_countable_topology_induced α β f }
protected lemma embedding.second_countable_topology [second_countable_topology β]
(hf : embedding f) : second_countable_topology α :=
hf.1.second_countable_topology
|