Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 38,876 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import topology.constructions
import topology.continuous_on

/-!
# Bases of topologies. Countability axioms.

A topological basis on a topological space `t` is a collection of sets,
such that all open sets can be generated as unions of these sets, without the need to take
finite intersections of them. This file introduces a framework for dealing with these collections,
and also what more we can say under certain countability conditions on bases,
which are referred to as first- and second-countable.
We also briefly cover the theory of separable spaces, which are those with a countable, dense
subset. If a space is second-countable, and also has a countably generated uniformity filter
(for example, if `t` is a metric space), it will automatically be separable (and indeed, these
conditions are equivalent in this case).

## Main definitions

* `is_topological_basis s`: The topological space `t` has basis `s`.
* `separable_space α`: The topological space `t` has a countable, dense subset.
* `is_separable s`: The set `s` is contained in the closure of a countable set.
* `first_countable_topology α`: A topology in which `𝓝 x` is countably generated for every `x`.
* `second_countable_topology α`: A topology which has a topological basis which is countable.

## Main results

* `first_countable_topology.tendsto_subseq`: In a first-countable space,
  cluster points are limits of subsequences.
* `second_countable_topology.is_open_Union_countable`: In a second-countable space, the union of
  arbitrarily-many open sets is equal to a sub-union of only countably many of these sets.
* `second_countable_topology.countable_cover_nhds`: Consider `f : α → set α` with the property that
  `f x ∈ 𝓝 x` for all `x`. Then there is some countable set `s` whose image covers the space.

## Implementation Notes
For our applications we are interested that there exists a countable basis, but we do not need the
concrete basis itself. This allows us to declare these type classes as `Prop` to use them as mixins.

### TODO:
More fine grained instances for `first_countable_topology`, `separable_space`, `t2_space`, and more
(see the comment below `subtype.second_countable_topology`.)
-/

open set filter function
open_locale topological_space filter
noncomputable theory

namespace topological_space

universe u
variables {α : Type u} [t : topological_space α]
include t

/-- A topological basis is one that satisfies the necessary conditions so that
  it suffices to take unions of the basis sets to get a topology (without taking
  finite intersections as well). -/
structure is_topological_basis (s : set (set α)) : Prop :=
(exists_subset_inter : ∀t₁∈s, ∀t₂∈s, ∀ x ∈ t₁ ∩ t₂, ∃ t₃∈s, x ∈ t₃ ∧ t₃ ⊆ t₁ ∩ t₂)
(sUnion_eq : (⋃₀ s) = univ)
(eq_generate_from : t = generate_from s)

/-- If a family of sets `s` generates the topology, then nonempty intersections of finite
subcollections of `s` form a topological basis. -/
lemma is_topological_basis_of_subbasis {s : set (set α)} (hs : t = generate_from s) :
  is_topological_basis ((λ f, ⋂₀ f) '' {f : set (set α) | f.finite ∧ f ⊆ s ∧ (⋂₀ f).nonempty}) :=
begin
  refine ⟨_, _, _⟩,
  { rintro _ ⟨t₁, ⟨hft₁, ht₁b, ht₁⟩, rfl⟩ _ ⟨t₂, ⟨hft₂, ht₂b, ht₂⟩, rfl⟩ x h,
    have : ⋂₀ (t₁ ∪ t₂) = ⋂₀ t₁ ∩ ⋂₀ t₂ := sInter_union t₁ t₂,
    exact ⟨_, ⟨t₁ ∪ t₂, ⟨hft₁.union hft₂, union_subset ht₁b ht₂b, this.symm ▸ ⟨x, h⟩⟩, this⟩, h,
      subset.rfl⟩ },
  { rw [sUnion_image, Union₂_eq_univ_iff],
    intro x, have : x ∈ ⋂₀ ∅, { rw sInter_empty, exact mem_univ x },
    exact ⟨∅, ⟨finite_empty, empty_subset _, x, this⟩, this⟩ },
  { rw hs,
    apply le_antisymm; apply le_generate_from,
    { rintro _ ⟨t, ⟨hft, htb, ht⟩, rfl⟩,
      exact @is_open_sInter _ (generate_from s) _ hft (λ s hs, generate_open.basic _ $ htb hs) },
    { intros t ht,
      rcases t.eq_empty_or_nonempty with rfl|hne, { apply @is_open_empty _ _ },
      rw ← sInter_singleton t at hne ⊢,
      exact generate_open.basic _ ⟨{t}, ⟨finite_singleton t, singleton_subset_iff.2 ht, hne⟩,
        rfl⟩ } }
end

/-- If a family of open sets `s` is such that every open neighbourhood contains some
member of `s`, then `s` is a topological basis. -/
lemma is_topological_basis_of_open_of_nhds {s : set (set α)}
  (h_open : ∀ u ∈ s, is_open u)
  (h_nhds : ∀(a:α) (u : set α), a ∈ u → is_open u → ∃v ∈ s, a ∈ v ∧ v ⊆ u) :
  is_topological_basis s :=
begin
  refine ⟨λ t₁ ht₁ t₂ ht₂ x hx, h_nhds _ _ hx (is_open.inter (h_open _ ht₁) (h_open _ ht₂)), _, _⟩,
  { refine sUnion_eq_univ_iff.2a, _),
    rcases h_nhds a univ trivial is_open_univ with ⟨u, h₁, h₂, -⟩,
    exact ⟨u, h₁, h₂⟩ },
  { refine (le_generate_from h_open).antisymm (λ u hu, _),
    refine (@is_open_iff_nhds α (generate_from s) u).mpr (λ a ha, _),
    rcases h_nhds a u ha hu with ⟨v, hvs, hav, hvu⟩,
    rw nhds_generate_from,
    exact infi₂_le_of_le v ⟨hav, hvs⟩ (le_principal_iff.2 hvu) }
end

/-- A set `s` is in the neighbourhood of `a` iff there is some basis set `t`, which
contains `a` and is itself contained in `s`. -/
lemma is_topological_basis.mem_nhds_iff {a : α} {s : set α} {b : set (set α)}
  (hb : is_topological_basis b) : s ∈ 𝓝 a ↔ ∃ t ∈ b, a ∈ t ∧ t ⊆ s :=
begin
  change s ∈ (𝓝 a).sets ↔ ∃ t ∈ b, a ∈ t ∧ t ⊆ s,
  rw [hb.eq_generate_from, nhds_generate_from, binfi_sets_eq],
  { simp [and_assoc, and.left_comm] },
  { exact assume s ⟨hs₁, hs₂⟩ t ⟨ht₁, ht₂⟩,
      have a ∈ s ∩ t, from ⟨hs₁, ht₁⟩,
      let ⟨u, hu₁, hu₂, hu₃⟩ := hb.1 _ hs₂ _ ht₂ _ this in
      ⟨u, ⟨hu₂, hu₁⟩, le_principal_iff.2 (subset.trans hu₃ (inter_subset_left _ _)),
        le_principal_iff.2 (subset.trans hu₃ (inter_subset_right _ _))⟩ },
  { rcases eq_univ_iff_forall.1 hb.sUnion_eq a with ⟨i, h1, h2⟩,
    exact ⟨i, h2, h1⟩ }
end

lemma is_topological_basis.is_open_iff {s : set α} {b : set (set α)} (hb : is_topological_basis b) :
  is_open s ↔ ∀ a ∈ s, ∃ t ∈ b, a ∈ t ∧ t ⊆ s :=
by simp [is_open_iff_mem_nhds, hb.mem_nhds_iff]

lemma is_topological_basis.nhds_has_basis {b : set (set α)} (hb : is_topological_basis b) {a : α} :
  (𝓝 a).has_basis (λ t : set α, t ∈ b ∧ a ∈ t) (λ t, t) :=
⟨λ s, hb.mem_nhds_iff.trans $ by simp only [exists_prop, and_assoc]⟩

protected lemma is_topological_basis.is_open {s : set α} {b : set (set α)}
  (hb : is_topological_basis b) (hs : s ∈ b) : is_open s :=
by { rw hb.eq_generate_from, exact generate_open.basic s hs }

protected lemma is_topological_basis.mem_nhds {a : α} {s : set α} {b : set (set α)}
  (hb : is_topological_basis b) (hs : s ∈ b) (ha : a ∈ s) : s ∈ 𝓝 a :=
(hb.is_open hs).mem_nhds ha

lemma is_topological_basis.exists_subset_of_mem_open {b : set (set α)}
  (hb : is_topological_basis b) {a:α} {u : set α} (au : a ∈ u)
  (ou : is_open u) : ∃v ∈ b, a ∈ v ∧ v ⊆ u :=
hb.mem_nhds_iff.1 $ is_open.mem_nhds ou au

 /-- Any open set is the union of the basis sets contained in it. -/
lemma is_topological_basis.open_eq_sUnion' {B : set (set α)}
  (hB : is_topological_basis B) {u : set α} (ou : is_open u) :
  u = ⋃₀ {s ∈ B | s ⊆ u} :=
ext $ λ a,
⟨λ ha, let ⟨b, hb, ab, bu⟩ := hB.exists_subset_of_mem_open ha ou in ⟨b, ⟨hb, bu⟩, ab⟩,
  λ ⟨b, ⟨hb, bu⟩, ab⟩, bu ab⟩

lemma is_topological_basis.open_eq_sUnion {B : set (set α)}
  (hB : is_topological_basis B) {u : set α} (ou : is_open u) :
  ∃ S ⊆ B, u = ⋃₀ S :=
⟨{s ∈ B | s ⊆ u}, λ s h, h.1, hB.open_eq_sUnion' ou⟩

lemma is_topological_basis.open_eq_Union {B : set (set α)}
  (hB : is_topological_basis B) {u : set α} (ou : is_open u) :
  ∃ (β : Type u) (f : β → set α), u = (⋃ i, f i) ∧ ∀ i, f i ∈ B :=
⟨↥{s ∈ B | s ⊆ u}, coe, by { rw ← sUnion_eq_Union, apply hB.open_eq_sUnion' ou }, λ s, and.left s.2⟩

 /-- A point `a` is in the closure of `s` iff all basis sets containing `a` intersect `s`. -/
lemma is_topological_basis.mem_closure_iff {b : set (set α)} (hb : is_topological_basis b)
  {s : set α} {a : α} :
  a ∈ closure s ↔ ∀ o ∈ b, a ∈ o → (o ∩ s).nonempty :=
(mem_closure_iff_nhds_basis' hb.nhds_has_basis).trans $ by simp only [and_imp]

 /-- A set is dense iff it has non-trivial intersection with all basis sets. -/
lemma is_topological_basis.dense_iff {b : set (set α)} (hb : is_topological_basis b) {s : set α} :
  dense s ↔ ∀ o ∈ b, set.nonempty o → (o ∩ s).nonempty :=
begin
  simp only [dense, hb.mem_closure_iff],
  exact ⟨λ h o hb ⟨a, ha⟩, h a o hb ha, λ h a o hb ha, h o hb ⟨a, ha⟩⟩
end

lemma is_topological_basis.is_open_map_iff {β} [topological_space β] {B : set (set α)}
  (hB : is_topological_basis B) {f : α → β} :
  is_open_map f ↔ ∀ s ∈ B, is_open (f '' s) :=
begin
  refine ⟨λ H o ho, H _ (hB.is_open ho), λ hf o ho, _⟩,
  rw [hB.open_eq_sUnion' ho, sUnion_eq_Union, image_Union],
  exact is_open_Union (λ s, hf s s.2.1)
end

lemma is_topological_basis.exists_nonempty_subset {B : set (set α)}
  (hb : is_topological_basis B) {u : set α} (hu : u.nonempty) (ou : is_open u) :
  ∃ v ∈ B, set.nonempty v ∧ v ⊆ u :=
begin
  cases hu with x hx,
  rw [hb.open_eq_sUnion' ou, mem_sUnion] at hx,
  rcases hx with ⟨v, hv, hxv⟩,
  exact ⟨v, hv.1, ⟨x, hxv⟩, hv.2end

lemma is_topological_basis_opens : is_topological_basis { U : set α | is_open U } :=
is_topological_basis_of_open_of_nhds (by tauto) (by tauto)

protected lemma is_topological_basis.prod {β} [topological_space β] {B₁ : set (set α)}
  {B₂ : set (set β)} (h₁ : is_topological_basis B₁) (h₂ : is_topological_basis B₂) :
  is_topological_basis (image2 (×ˢ) B₁ B₂) :=
begin
  refine is_topological_basis_of_open_of_nhds _ _,
  { rintro _ ⟨u₁, u₂, hu₁, hu₂, rfl⟩,
    exact (h₁.is_open hu₁).prod (h₂.is_open hu₂) },
  { rintro ⟨a, b⟩ u hu uo,
    rcases (h₁.nhds_has_basis.prod_nhds h₂.nhds_has_basis).mem_iff.1 (is_open.mem_nhds uo hu)
      with ⟨⟨s, t⟩, ⟨⟨hs, ha⟩, ht, hb⟩, hu⟩,
    exact ⟨s ×ˢ t, mem_image2_of_mem hs ht, ⟨ha, hb⟩, hu⟩ }
end

protected lemma is_topological_basis.inducing {β} [topological_space β]
  {f : α → β} {T : set (set β)} (hf : inducing f) (h : is_topological_basis T) :
  is_topological_basis (image (preimage f) T) :=
begin
  refine is_topological_basis_of_open_of_nhds _ _,
  { rintros _ ⟨V, hV, rfl⟩,
    rwa hf.is_open_iff,
    refine ⟨V, h.is_open hV, rfl⟩ },
  { intros a U ha hU,
    rw hf.is_open_iff at hU,
    obtain ⟨V, hV, rfl⟩ := hU,
    obtain ⟨S, hS, rfl⟩ := h.open_eq_sUnion hV,
    obtain ⟨W, hW, ha⟩ := ha,
    refine ⟨f ⁻¹' W, ⟨_, hS hW, rfl⟩, ha, set.preimage_mono $ set.subset_sUnion_of_mem hW⟩ }
end

lemma is_topological_basis_of_cover {ι} {U  : ι → set α} (Uo : ∀ i, is_open (U i))
  (Uc : (⋃ i, U i) = univ) {b : Π i, set (set (U i))} (hb : ∀ i, is_topological_basis (b i)) :
  is_topological_basis (⋃ i : ι, image (coe : U i → α) '' (b i)) :=
begin
  refine is_topological_basis_of_open_of_nhds (λ u hu, _) _,
  { simp only [mem_Union, mem_image] at hu,
    rcases hu with ⟨i, s, sb, rfl⟩,
    exact (Uo i).is_open_map_subtype_coe _ ((hb i).is_open sb) },
  { intros a u ha uo,
    rcases Union_eq_univ_iff.1 Uc a with ⟨i, hi⟩,
    lift a to ↥(U i) using hi,
    rcases (hb i).exists_subset_of_mem_open (by exact ha) (uo.preimage continuous_subtype_coe)
      with ⟨v, hvb, hav, hvu⟩,
    exact ⟨coe '' v, mem_Union.2 ⟨i, mem_image_of_mem _ hvb⟩, mem_image_of_mem _ hav,
      image_subset_iff.2 hvu⟩ }
end

protected lemma is_topological_basis.continuous {β : Type*} [topological_space β]
  {B : set (set β)} (hB : is_topological_basis B) (f : α → β) (hf : ∀ s ∈ B, is_open (f ⁻¹' s)) :
  continuous f :=
begin rw hB.eq_generate_from, exact continuous_generated_from hf end

variables (α)

/-- A separable space is one with a countable dense subset, available through
`topological_space.exists_countable_dense`. If `α` is also known to be nonempty, then
`topological_space.dense_seq` provides a sequence `ℕ → α` with dense range, see
`topological_space.dense_range_dense_seq`.

If `α` is a uniform space with countably generated uniformity filter (e.g., an `emetric_space`),
then this condition is equivalent to `topological_space.second_countable_topology α`. In this case
the latter should be used as a typeclass argument in theorems because Lean can automatically deduce
`separable_space` from `second_countable_topology` but it can't deduce `second_countable_topology`
and `emetric_space`. -/
class separable_space : Prop :=
(exists_countable_dense : ∃s:set α, s.countable ∧ dense s)

lemma exists_countable_dense [separable_space α] :
  ∃ s : set α, s.countable ∧ dense s :=
separable_space.exists_countable_dense

/-- A nonempty separable space admits a sequence with dense range. Instead of running `cases` on the
conclusion of this lemma, you might want to use `topological_space.dense_seq` and
`topological_space.dense_range_dense_seq`.

If `α` might be empty, then `exists_countable_dense` is the main way to use separability of `α`. -/
lemma exists_dense_seq [separable_space α] [nonempty α] : ∃ u : ℕ → α, dense_range u :=
begin
  obtain ⟨s : set α, hs, s_dense⟩ := exists_countable_dense α,
  cases set.countable_iff_exists_subset_range.mp hs with u hu,
  exact ⟨u, s_dense.mono hu⟩,
end

/-- A dense sequence in a non-empty separable topological space.

If `α` might be empty, then `exists_countable_dense` is the main way to use separability of `α`. -/
def dense_seq [separable_space α] [nonempty α] : ℕ → α := classical.some (exists_dense_seq α)

/-- The sequence `dense_seq α` has dense range. -/
@[simp] lemma dense_range_dense_seq [separable_space α] [nonempty α] :
  dense_range (dense_seq α) := classical.some_spec (exists_dense_seq α)

variable {α}

@[priority 100]
instance encodable.to_separable_space [encodable α] : separable_space α :=
{ exists_countable_dense := ⟨set.univ, set.countable_univ, dense_univ⟩ }

lemma separable_space_of_dense_range {ι : Type*} [encodable ι] (u : ι → α) (hu : dense_range u) :
  separable_space α :=
⟨⟨range u, countable_range u, hu⟩⟩

/-- In a separable space, a family of nonempty disjoint open sets is countable. -/
lemma _root_.set.pairwise_disjoint.countable_of_is_open [separable_space α] {ι : Type*}
  {s : ι → set α} {a : set ι} (h : a.pairwise_disjoint s) (ha : ∀ i ∈ a, is_open (s i))
  (h'a : ∀ i ∈ a, (s i).nonempty) :
  a.countable :=
begin
  rcases exists_countable_dense α with ⟨u, ⟨u_encodable⟩, u_dense⟩,
  have : ∀ i : a, ∃ y, y ∈ s i ∩ u :=
    λ i, dense_iff_inter_open.1 u_dense (s i) (ha i i.2) (h'a i i.2),
  choose f hfs hfu using this,
  lift f to a → u using hfu,
  have f_inj : injective f,
  { refine injective_iff_pairwise_ne.mpr ((h.subtype _ _).mono $ λ i j hij hfij, hij ⟨hfs i, _⟩),
    simp only [congr_arg coe hfij, hfs j] },
  exact ⟨@encodable.of_inj _ _ u_encodable f f_inj⟩
end

/-- In a separable space, a family of disjoint sets with nonempty interiors is countable. -/
lemma _root_.set.pairwise_disjoint.countable_of_nonempty_interior [separable_space α] {ι : Type*}
  {s : ι → set α} {a : set ι} (h : a.pairwise_disjoint s)
  (ha : ∀ i ∈ a, (interior (s i)).nonempty) :
  a.countable :=
(h.mono $ λ i, interior_subset).countable_of_is_open (λ i hi, is_open_interior) ha

/-- A set `s` in a topological space is separable if it is contained in the closure of a
countable set `c`. Beware that this definition does not require that `c` is contained in `s` (to
express the latter, use `separable_space s` or `is_separable (univ : set s))`. In metric spaces,
the two definitions are equivalent, see `topological_space.is_separable.separable_space`. -/
def is_separable (s : set α) :=
∃ c : set α, c.countable ∧ s ⊆ closure c

lemma is_separable.mono {s u : set α} (hs : is_separable s) (hu : u ⊆ s) :
  is_separable u :=
begin
  rcases hs with ⟨c, c_count, hs⟩,
  exact ⟨c, c_count, hu.trans hs⟩
end

lemma is_separable.union {s u : set α} (hs : is_separable s) (hu : is_separable u) :
  is_separable (s ∪ u) :=
begin
  rcases hs with ⟨cs, cs_count, hcs⟩,
  rcases hu with ⟨cu, cu_count, hcu⟩,
  refine ⟨cs ∪ cu, cs_count.union cu_count, _⟩,
  exact union_subset (hcs.trans (closure_mono (subset_union_left _ _)))
    (hcu.trans (closure_mono (subset_union_right _ _)))
end

lemma is_separable.closure {s : set α} (hs : is_separable s) : is_separable (closure s) :=
begin
  rcases hs with ⟨c, c_count, hs⟩,
  exact ⟨c, c_count, by simpa using closure_mono hs⟩,
end

lemma is_separable_Union {ι : Type*} [encodable ι] {s : ι → set α} (hs : ∀ i, is_separable (s i)) :
  is_separable (⋃ i, s i) :=
begin
  choose c hc h'c using hs,
  refine ⟨⋃ i, c i, countable_Union hc, Union_subset_iff.2 (λ i, _)⟩,
  exact (h'c i).trans (closure_mono (subset_Union _ i))
end

lemma _root_.set.countable.is_separable {s : set α} (hs : s.countable) : is_separable s :=
⟨s, hs, subset_closure⟩

lemma _root_.set.finite.is_separable {s : set α} (hs : s.finite) : is_separable s :=
hs.countable.is_separable

lemma is_separable_univ_iff :
  is_separable (univ : set α) ↔ separable_space α :=
begin
  split,
  { rintros ⟨c, c_count, hc⟩,
    refine ⟨⟨c, c_count, by rwa [dense_iff_closure_eq, ← univ_subset_iff]⟩⟩ },
  { introsI h,
    rcases exists_countable_dense α with ⟨c, c_count, hc⟩,
    exact ⟨c, c_count, by rwa [univ_subset_iff, ← dense_iff_closure_eq]⟩ }
end

lemma is_separable_of_separable_space [h : separable_space α] (s : set α) : is_separable s :=
is_separable.mono (is_separable_univ_iff.2 h) (subset_univ _)

lemma is_separable.image {β : Type*} [topological_space β]
  {s : set α} (hs : is_separable s) {f : α → β} (hf : continuous f) :
  is_separable (f '' s) :=
begin
  rcases hs with ⟨c, c_count, hc⟩,
  refine ⟨f '' c, c_count.image _, _⟩,
  rw image_subset_iff,
  exact hc.trans (closure_subset_preimage_closure_image hf)
end

lemma is_separable_of_separable_space_subtype (s : set α) [separable_space s] : is_separable s :=
begin
  have : is_separable ((coe : s → α) '' (univ : set s)) :=
    (is_separable_of_separable_space _).image continuous_subtype_coe,
  simpa only [image_univ, subtype.range_coe_subtype],
end

end topological_space

open topological_space

lemma is_topological_basis_pi {ι : Type*} {X : ι → Type*}
  [∀ i, topological_space (X i)] {T : Π i, set (set (X i))}
  (cond : ∀ i, is_topological_basis (T i)) :
  is_topological_basis {S : set (Π i, X i) | ∃ (U : Π i, set (X i)) (F : finset ι),
    (∀ i, i ∈ F → (U i) ∈ T i) ∧ S = (F : set ι).pi U } :=
begin
  refine is_topological_basis_of_open_of_nhds _ _,
  { rintro _ ⟨U, F, h1, rfl⟩,
    apply is_open_set_pi F.finite_to_set,
    intros i hi,
    exact (cond i).is_open (h1 i hi) },
  { intros a U ha hU,
    obtain ⟨I, t, hta, htU⟩ :
      ∃ (I : finset ι) (t : Π (i : ι), set (X i)), (∀ i, t i ∈ 𝓝 (a i)) ∧ set.pi ↑I t ⊆ U,
    { rw [← filter.mem_pi', ← nhds_pi], exact hU.mem_nhds ha },
    have : ∀ i, ∃ V ∈ T i, a i ∈ V ∧ V ⊆ t i := λ i, (cond i).mem_nhds_iff.1 (hta i),
    choose V hVT haV hVt,
    exact ⟨_, ⟨V, I, λ i hi, hVT i, rfl⟩, λ i hi, haV i, (pi_mono $ λ i hi, hVt i).trans htU⟩ },
end

lemma is_topological_basis_infi {β : Type*} {ι : Type*} {X : ι → Type*}
  [t : ∀ i, topological_space (X i)] {T : Π i, set (set (X i))}
  (cond : ∀ i, is_topological_basis (T i)) (f : Π i, β → X i) :
  @is_topological_basis β (⨅ i, induced (f i) (t i))
  { S | ∃ (U : Π i, set (X i)) (F : finset ι),
    (∀ i, i ∈ F → U i ∈ T i) ∧ S = ⋂ i (hi : i ∈ F), (f i) ⁻¹' (U i) } :=
begin
  convert (is_topological_basis_pi cond).inducing (inducing_infi_to_pi _),
  ext V,
  split,
  { rintros ⟨U, F, h1, h2⟩,
    have : (F : set ι).pi U = (⋂ (i : ι) (hi : i ∈ F),
        (λ (z : Π j, X j), z i) ⁻¹' (U i)), by { ext, simp },
    refine ⟨(F : set ι).pi U, ⟨U, F, h1, rfl⟩, _⟩,
    rw [this, h2, set.preimage_Inter],
    congr' 1,
    ext1,
    rw set.preimage_Inter,
    refl },
  { rintros ⟨U, ⟨U, F, h1, rfl⟩, h⟩,
    refine ⟨U, F, h1, _⟩,
    have : (F : set ι).pi U = (⋂ (i : ι) (hi : i ∈ F),
        (λ (z : Π j, X j), z i) ⁻¹' (U i)), by { ext, simp },
    rw [← h, this, set.preimage_Inter],
    congr' 1,
    ext1,
    rw set.preimage_Inter,
    refl }
end

lemma is_topological_basis_singletons (α : Type*) [topological_space α] [discrete_topology α] :
  is_topological_basis {s | ∃ (x : α), (s : set α) = {x}} :=
is_topological_basis_of_open_of_nhds (λ u hu, is_open_discrete _) $
  λ x u hx u_open, ⟨{x}, ⟨x, rfl⟩, mem_singleton x, singleton_subset_iff.2 hx⟩

/-- If `α` is a separable space and `f : α → β` is a continuous map with dense range, then `β` is
a separable space as well. E.g., the completion of a separable uniform space is separable. -/
protected lemma dense_range.separable_space {α β : Type*} [topological_space α] [separable_space α]
  [topological_space β] {f : α → β} (h : dense_range f) (h' : continuous f) :
  separable_space β :=
let ⟨s, s_cnt, s_dense⟩ := exists_countable_dense α in
⟨⟨f '' s, countable.image s_cnt f, h.dense_image h' s_dense⟩⟩

lemma dense.exists_countable_dense_subset {α : Type*} [topological_space α]
  {s : set α} [separable_space s] (hs : dense s) :
  ∃ t ⊆ s, t.countable ∧ dense t :=
let ⟨t, htc, htd⟩ := exists_countable_dense s
in ⟨coe '' t, image_subset_iff.2 $ λ x _, mem_preimage.2 $ subtype.coe_prop _, htc.image coe,
  hs.dense_range_coe.dense_image continuous_subtype_val htd⟩

/-- Let `s` be a dense set in a topological space `α` with partial order structure. If `s` is a
separable space (e.g., if `α` has a second countable topology), then there exists a countable
dense subset `t ⊆ s` such that `t` contains bottom/top element of `α` when they exist and belong
to `s`. For a dense subset containing neither bot nor top elements, see
`dense.exists_countable_dense_subset_no_bot_top`. -/
lemma dense.exists_countable_dense_subset_bot_top {α : Type*} [topological_space α]
  [partial_order α] {s : set α} [separable_space s] (hs : dense s) :
  ∃ t ⊆ s, t.countable ∧ dense t ∧ (∀ x, is_bot x → x ∈ s → x ∈ t) ∧
    (∀ x, is_top x → x ∈ s → x ∈ t) :=
begin
  rcases hs.exists_countable_dense_subset with ⟨t, hts, htc, htd⟩,
  refine ⟨(t ∪ ({x | is_bot x} ∪ {x | is_top x})) ∩ s, _, _, _, _, _⟩,
  exacts [inter_subset_right _ _,
    (htc.union ((countable_is_bot α).union (countable_is_top α))).mono (inter_subset_left _ _),
    htd.mono (subset_inter (subset_union_left _ _) hts),
    λ x hx hxs, ⟨or.inr $ or.inl hx, hxs⟩, λ x hx hxs, ⟨or.inr $ or.inr hx, hxs⟩]
end

instance separable_space_univ {α : Type*} [topological_space α] [separable_space α] :
  separable_space (univ : set α) :=
(equiv.set.univ α).symm.surjective.dense_range.separable_space
  (continuous_subtype_mk _ continuous_id)

/-- If `α` is a separable topological space with a partial order, then there exists a countable
dense set `s : set α` that contains those of both bottom and top elements of `α` that actually
exist. For a dense set containing neither bot nor top elements, see
`exists_countable_dense_no_bot_top`. -/
lemma exists_countable_dense_bot_top (α : Type*) [topological_space α] [separable_space α]
  [partial_order α] :
  ∃ s : set α, s.countable ∧ dense s ∧ (∀ x, is_bot x → x ∈ s) ∧ (∀ x, is_top x → x ∈ s) :=
by simpa using dense_univ.exists_countable_dense_subset_bot_top

namespace topological_space
universe u
variables (α : Type u) [t : topological_space α]
include t


/-- A first-countable space is one in which every point has a
  countable neighborhood basis. -/
class first_countable_topology : Prop :=
(nhds_generated_countable : ∀a:α, (𝓝 a).is_countably_generated)

attribute [instance] first_countable_topology.nhds_generated_countable

namespace first_countable_topology
variable {α}

/-- In a first-countable space, a cluster point `x` of a sequence
is the limit of some subsequence. -/
lemma tendsto_subseq [first_countable_topology α] {u : ℕ → α} {x : α}
  (hx : map_cluster_pt x at_top u) :
  ∃ (ψ : ℕ → ℕ), (strict_mono ψ) ∧ (tendsto (u ∘ ψ) at_top (𝓝 x)) :=
subseq_tendsto_of_ne_bot hx

end first_countable_topology

variables {α}

instance {β} [topological_space β] [first_countable_topology α] [first_countable_topology β] :
  first_countable_topology (α × β) :=
⟨λ ⟨x, y⟩, by { rw nhds_prod_eq, apply_instance }⟩

section pi

omit t

instance {ι : Type*} {π : ι → Type*} [countable ι] [Π i, topological_space (π i)]
  [∀ i, first_countable_topology (π i)] : first_countable_topology (Π i, π i) :=
⟨λ f, by { rw nhds_pi, apply_instance }⟩

end pi

instance is_countably_generated_nhds_within (x : α) [is_countably_generated (𝓝 x)] (s : set α) :
  is_countably_generated (𝓝[s] x) :=
inf.is_countably_generated _ _

variable (α)

/-- A second-countable space is one with a countable basis. -/
class second_countable_topology : Prop :=
(is_open_generated_countable [] :
  ∃ b : set (set α), b.countable ∧ t = topological_space.generate_from b)

variable {α}

protected lemma is_topological_basis.second_countable_topology
  {b : set (set α)} (hb : is_topological_basis b) (hc : b.countable) :
  second_countable_topology α :=
⟨⟨b, hc, hb.eq_generate_from⟩⟩

variable (α)

lemma exists_countable_basis [second_countable_topology α] :
  ∃b:set (set α), b.countable ∧ ∅ ∉ b ∧ is_topological_basis b :=
let ⟨b, hb₁, hb₂⟩ := second_countable_topology.is_open_generated_countable α in
let b' := (λs, ⋂₀ s) '' {s:set (set α) | s.finite ∧ s ⊆ b ∧ (⋂₀ s).nonempty} in
⟨b',
  ((countable_set_of_finite_subset hb₁).mono
    (by { simp only [← and_assoc], apply inter_subset_left })).image _,
  assume ⟨s, ⟨_, _, hn⟩, hp⟩, absurd hn (not_nonempty_iff_eq_empty.2 hp),
  is_topological_basis_of_subbasis hb₂⟩

/-- A countable topological basis of `α`. -/
def countable_basis [second_countable_topology α] : set (set α) :=
(exists_countable_basis α).some

lemma countable_countable_basis [second_countable_topology α] : (countable_basis α).countable :=
(exists_countable_basis α).some_spec.1

instance encodable_countable_basis [second_countable_topology α] :
  encodable (countable_basis α) :=
(countable_countable_basis α).to_encodable

lemma empty_nmem_countable_basis [second_countable_topology α] : ∅ ∉ countable_basis α :=
(exists_countable_basis α).some_spec.2.1

lemma is_basis_countable_basis [second_countable_topology α] :
  is_topological_basis (countable_basis α) :=
(exists_countable_basis α).some_spec.2.2

lemma eq_generate_from_countable_basis [second_countable_topology α] :
  ‹topological_space α› = generate_from (countable_basis α) :=
(is_basis_countable_basis α).eq_generate_from

variable {α}

lemma is_open_of_mem_countable_basis [second_countable_topology α] {s : set α}
  (hs : s ∈ countable_basis α) : is_open s :=
(is_basis_countable_basis α).is_open hs

lemma nonempty_of_mem_countable_basis [second_countable_topology α] {s : set α}
  (hs : s ∈ countable_basis α) : s.nonempty :=
ne_empty_iff_nonempty.1 $ ne_of_mem_of_not_mem hs $ empty_nmem_countable_basis α

variable (α)

@[priority 100] -- see Note [lower instance priority]
instance second_countable_topology.to_first_countable_topology
  [second_countable_topology α] : first_countable_topology α :=
⟨λ x, has_countable_basis.is_countably_generated $
  ⟨(is_basis_countable_basis α).nhds_has_basis, (countable_countable_basis α).mono $
    inter_subset_left _ _⟩⟩

/-- If `β` is a second-countable space, then its induced topology
via `f` on `α` is also second-countable. -/
lemma second_countable_topology_induced (β)
  [t : topological_space β] [second_countable_topology β] (f : α → β) :
  @second_countable_topology α (t.induced f) :=
begin
  rcases second_countable_topology.is_open_generated_countable β with ⟨b, hb, eq⟩,
  refine { is_open_generated_countable := ⟨preimage f '' b, hb.image _, _⟩ },
  rw [eq, induced_generate_from_eq]
end

instance subtype.second_countable_topology (s : set α) [second_countable_topology α] :
  second_countable_topology s :=
second_countable_topology_induced s α coe

/- TODO: more fine grained instances for first_countable_topology, separable_space, t2_space, ... -/
instance {β : Type*} [topological_space β]
  [second_countable_topology α] [second_countable_topology β] : second_countable_topology (α × β) :=
((is_basis_countable_basis α).prod (is_basis_countable_basis β)).second_countable_topology $
  (countable_countable_basis α).image2 (countable_countable_basis β) _

instance {ι : Type*} {π : ι → Type*}
  [countable ι] [t : ∀a, topological_space (π a)] [∀a, second_countable_topology (π a)] :
  second_countable_topology (∀a, π a) :=
begin
  haveI := encodable.of_countable ι,
  have : t = (λa, generate_from (countable_basis (π a))),
    from funext (assume a, (is_basis_countable_basis (π a)).eq_generate_from),
  rw [this, pi_generate_from_eq],
  constructor, refine ⟨_, _, rfl⟩,
  have : set.countable {T : set (Π i, π i) | ∃ (I : finset ι) (s : Π i : I, set (π i)),
    (∀ i, s i ∈ countable_basis (π i)) ∧ T = {f | ∀ i : I, f i ∈ s i}},
  { simp only [set_of_exists, ← exists_prop],
    refine countable_Union (λ I, countable.bUnion _ (λ _ _, countable_singleton _)),
    change set.countable {s : Π i : I, set (π i) | ∀ i, s i ∈ countable_basis (π i)},
    exact countable_pi (λ i, countable_countable_basis _) },
  convert this using 1, ext1 T, split,
  { rintro ⟨s, I, hs, rfl⟩,
    refine ⟨I, λ i, s i, λ i, hs i i.2, _⟩,
    simp only [set.pi, set_coe.forall'], refl },
  { rintro ⟨I, s, hs, rfl⟩,
    rcases @subtype.surjective_restrict ι (λ i, set (π i)) _ (λ i, i ∈ I) s with ⟨s, rfl⟩,
    exact ⟨s, I, λ i hi, hs ⟨i, hi⟩, set.ext $ λ f, subtype.forall⟩ }
end

@[priority 100] -- see Note [lower instance priority]
instance second_countable_topology.to_separable_space
  [second_countable_topology α] : separable_space α :=
begin
  choose p hp using λ s : countable_basis α, nonempty_of_mem_countable_basis s.2,
  exact ⟨⟨range p, countable_range _,
    (is_basis_countable_basis α).dense_iff.2 $ λ o ho _, ⟨p ⟨o, ho⟩, hp _, mem_range_self _⟩⟩⟩
end

variables {α}

/-- A countable open cover induces a second-countable topology if all open covers
are themselves second countable. -/
lemma second_countable_topology_of_countable_cover {ι} [encodable ι] {U : ι → set α}
  [∀ i, second_countable_topology (U i)] (Uo : ∀ i, is_open (U i))  (hc : (⋃ i, U i) = univ) :
  second_countable_topology α :=
begin
  have : is_topological_basis (⋃ i, image (coe : U i → α) '' (countable_basis (U i))),
    from is_topological_basis_of_cover Uo hc (λ i, is_basis_countable_basis (U i)),
  exact this.second_countable_topology
    (countable_Union $ λ i, (countable_countable_basis _).image _)
end

/-- In a second-countable space, an open set, given as a union of open sets,
is equal to the union of countably many of those sets. -/
lemma is_open_Union_countable [second_countable_topology α]
  {ι} (s : ι → set α) (H : ∀ i, is_open (s i)) :
  ∃ T : set ι, T.countable ∧ (⋃ i ∈ T, s i) = ⋃ i, s i :=
begin
  let B := {b ∈ countable_basis α | ∃ i, b ⊆ s i},
  choose f hf using λ b : B, b.2.2,
  haveI : encodable B := ((countable_countable_basis α).mono (sep_subset _ _)).to_encodable,
  refine ⟨_, countable_range f, (Union₂_subset_Union _ _).antisymm (sUnion_subset _)⟩,
  rintro _ ⟨i, rfl⟩ x xs,
  rcases (is_basis_countable_basis α).exists_subset_of_mem_open xs (H _) with ⟨b, hb, xb, bs⟩,
  exact ⟨_, ⟨_, rfl⟩, _, ⟨⟨⟨_, hb, _, bs⟩, rfl⟩, rfl⟩, hf _ (by exact xb)⟩
end

lemma is_open_sUnion_countable [second_countable_topology α]
  (S : set (set α)) (H : ∀ s ∈ S, is_open s) :
  ∃ T : set (set α), T.countable ∧ T ⊆ S ∧ ⋃₀ T = ⋃₀ S :=
let ⟨T, cT, hT⟩ := is_open_Union_countable (λ s:S, s.1) (λ s, H s.1 s.2) in
⟨subtype.val '' T, cT.image _,
  image_subset_iff.2 $ λ ⟨x, xs⟩ xt, xs,
  by rwa [sUnion_image, sUnion_eq_Union]⟩

/-- In a topological space with second countable topology, if `f` is a function that sends each
point `x` to a neighborhood of `x`, then for some countable set `s`, the neighborhoods `f x`,
`x ∈ s`, cover the whole space. -/
lemma countable_cover_nhds [second_countable_topology α] {f : α → set α}
  (hf : ∀ x, f x ∈ 𝓝 x) : ∃ s : set α, s.countable ∧ (⋃ x ∈ s, f x) = univ :=
begin
  rcases is_open_Union_countable (λ x, interior (f x)) (λ x, is_open_interior) with ⟨s, hsc, hsU⟩,
  suffices : (⋃ x ∈ s, interior (f x)) = univ,
    from ⟨s, hsc, flip eq_univ_of_subset this $ Union₂_mono $ λ _ _, interior_subset⟩,
  simp only [hsU, eq_univ_iff_forall, mem_Union],
  exact λ x, ⟨x, mem_interior_iff_mem_nhds.2 (hf x)⟩
end

lemma countable_cover_nhds_within [second_countable_topology α] {f : α → set α} {s : set α}
  (hf : ∀ x ∈ s, f x ∈ 𝓝[s] x) : ∃ t ⊆ s, t.countable ∧ s ⊆ (⋃ x ∈ t, f x) :=
begin
  have : ∀ x : s, coe ⁻¹' (f x) ∈ 𝓝 x, from λ x, preimage_coe_mem_nhds_subtype.2 (hf x x.2),
  rcases countable_cover_nhds this with ⟨t, htc, htU⟩,
  refine ⟨coe '' t, subtype.coe_image_subset _ _, htc.image _, λ x hx, _⟩,
  simp only [bUnion_image, eq_univ_iff_forall, ← preimage_Union, mem_preimage] at htU ⊢,
  exact htU ⟨x, hx⟩
end

section sigma

variables {ι : Type*} {E : ι → Type*} [∀ i, topological_space (E i)]
omit t

/-- In a disjoint union space `Σ i, E i`, one can form a topological basis by taking the union of
topological bases on each of the parts of the space. -/
lemma is_topological_basis.sigma
  {s : Π (i : ι), set (set (E i))} (hs : ∀ i, is_topological_basis (s i)) :
  is_topological_basis (⋃ (i : ι), (λ u, ((sigma.mk i) '' u : set (Σ i, E i))) '' (s i)) :=
begin
  apply is_topological_basis_of_open_of_nhds,
  { assume u hu,
    obtain ⟨i, t, ts, rfl⟩ : ∃ (i : ι) (t : set (E i)), t ∈ s i ∧ sigma.mk i '' t = u,
      by simpa only [mem_Union, mem_image] using hu,
    exact is_open_map_sigma_mk _ ((hs i).is_open ts) },
  { rintros ⟨i, x⟩ u hxu u_open,
    have hx : x ∈ sigma.mk i ⁻¹' u := hxu,
    obtain ⟨v, vs, xv, hv⟩ : ∃ (v : set (E i)) (H : v ∈ s i), x ∈ v ∧ v ⊆ sigma.mk i ⁻¹' u :=
      (hs i).exists_subset_of_mem_open hx (is_open_sigma_iff.1 u_open i),
    exact ⟨(sigma.mk i) '' v, mem_Union.2 ⟨i, mem_image_of_mem _ vs⟩, mem_image_of_mem _ xv,
      image_subset_iff.2 hv⟩ }
end

/-- A countable disjoint union of second countable spaces is second countable. -/
instance [encodable ι] [∀ i, second_countable_topology (E i)] :
  second_countable_topology (Σ i, E i) :=
begin
  let b := (⋃ (i : ι), (λ u, ((sigma.mk i) '' u : set (Σ i, E i))) '' (countable_basis (E i))),
  have A : is_topological_basis b := is_topological_basis.sigma (λ i, is_basis_countable_basis  _),
  have B : b.countable := countable_Union (λ i, countable.image (countable_countable_basis _) _),
  exact A.second_countable_topology B,
end

end sigma


section sum
omit t

variables {β : Type*} [topological_space α] [topological_space β]

/-- In a sum space `α ⊕ β`, one can form a topological basis by taking the union of
topological bases on each of the two components. -/
lemma is_topological_basis.sum
  {s : set (set α)} (hs : is_topological_basis s) {t : set (set β)} (ht : is_topological_basis t) :
  is_topological_basis (((λ u, sum.inl '' u) '' s) ∪ ((λ u, sum.inr '' u) '' t)) :=
begin
  apply is_topological_basis_of_open_of_nhds,
  { assume u hu,
    cases hu,
    { rcases hu with ⟨w, hw, rfl⟩,
      exact open_embedding_inl.is_open_map w (hs.is_open hw) },
    { rcases hu with ⟨w, hw, rfl⟩,
      exact open_embedding_inr.is_open_map w (ht.is_open hw) } },
  { rintros x u hxu u_open,
    cases x,
    { have h'x : x ∈ sum.inl ⁻¹' u := hxu,
      obtain ⟨v, vs, xv, vu⟩ : ∃ (v : set α) (H : v ∈ s), x ∈ v ∧ v ⊆ sum.inl ⁻¹' u :=
        hs.exists_subset_of_mem_open h'x (is_open_sum_iff.1 u_open).1,
      exact ⟨sum.inl '' v, mem_union_left _ (mem_image_of_mem _ vs), mem_image_of_mem _ xv,
        image_subset_iff.2 vu⟩ },
    { have h'x : x ∈ sum.inr ⁻¹' u := hxu,
      obtain ⟨v, vs, xv, vu⟩ : ∃ (v : set β) (H : v ∈ t), x ∈ v ∧ v ⊆ sum.inr ⁻¹' u :=
        ht.exists_subset_of_mem_open h'x (is_open_sum_iff.1 u_open).2,
      exact ⟨sum.inr '' v, mem_union_right _ (mem_image_of_mem _ vs), mem_image_of_mem _ xv,
        image_subset_iff.2 vu⟩ } }
end

/-- A sum type of two second countable spaces is second countable. -/
instance [second_countable_topology α] [second_countable_topology β] :
  second_countable_topology (α ⊕ β) :=
begin
  let b := (λ u, sum.inl '' u) '' (countable_basis α) ∪ (λ u, sum.inr '' u) '' (countable_basis β),
  have A : is_topological_basis b := (is_basis_countable_basis α).sum (is_basis_countable_basis β),
  have B : b.countable := (countable.image (countable_countable_basis _) _).union
    (countable.image (countable_countable_basis _) _),
  exact A.second_countable_topology B,
end

end sum

end topological_space

open topological_space

variables {α β : Type*} [topological_space α] [topological_space β] {f : α → β}

protected lemma inducing.second_countable_topology [second_countable_topology β]
  (hf : inducing f) : second_countable_topology α :=
by { rw hf.1, exact second_countable_topology_induced α β f }

protected lemma embedding.second_countable_topology [second_countable_topology β]
  (hf : embedding f) : second_countable_topology α :=
hf.1.second_countable_topology