Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 8,847 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
/-
Copyright (c) 2019 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import set_theory.game.short
/-!
# Games described via "the state of the board".
We provide a simple mechanism for constructing combinatorial (pre-)games, by describing
"the state of the board", and providing an upper bound on the number of turns remaining.
## Implementation notes
We're very careful to produce a computable definition, so small games can be evaluated
using `dec_trivial`. To achieve this, I've had to rely solely on induction on natural numbers:
relying on general well-foundedness seems to be poisonous to computation?
See `set_theory/game/domineering` for an example using this construction.
-/
universe u
namespace pgame
/--
`pgame_state S` describes how to interpret `s : S` as a state of a combinatorial game.
Use `pgame.of_state s` or `game.of_state s` to construct the game.
`pgame_state.L : S β finset S` and `pgame_state.R : S β finset S` describe the states reachable
by a move by Left or Right. `pgame_state.turn_bound : S β β` gives an upper bound on the number of
possible turns remaining from this state.
-/
class state (S : Type u) :=
(turn_bound : S β β)
(L : S β finset S)
(R : S β finset S)
(left_bound : β {s t : S} (m : t β L s), turn_bound t < turn_bound s)
(right_bound : β {s t : S} (m : t β R s), turn_bound t < turn_bound s)
open state
variables {S : Type u} [state S]
lemma turn_bound_ne_zero_of_left_move {s t : S} (m : t β L s) : turn_bound s β 0 :=
begin
intro h,
have t := state.left_bound m,
rw h at t,
exact nat.not_succ_le_zero _ t,
end
lemma turn_bound_ne_zero_of_right_move {s t : S} (m : t β R s) : turn_bound s β 0 :=
begin
intro h,
have t := state.right_bound m,
rw h at t,
exact nat.not_succ_le_zero _ t,
end
lemma turn_bound_of_left {s t : S} (m : t β L s) (n : β) (h : turn_bound s β€ n + 1) :
turn_bound t β€ n :=
nat.le_of_lt_succ (nat.lt_of_lt_of_le (left_bound m) h)
lemma turn_bound_of_right {s t : S} (m : t β R s) (n : β) (h : turn_bound s β€ n + 1) :
turn_bound t β€ n :=
nat.le_of_lt_succ (nat.lt_of_lt_of_le (right_bound m) h)
/--
Construct a `pgame` from a state and a (not necessarily optimal) bound on the number of
turns remaining.
-/
def of_state_aux : Ξ (n : β) (s : S) (h : turn_bound s β€ n), pgame
| 0 s h := pgame.mk {t // t β L s} {t // t β R s}
(Ξ» t, begin exfalso, exact turn_bound_ne_zero_of_left_move t.2 (nonpos_iff_eq_zero.mp h) end)
(Ξ» t, begin exfalso, exact turn_bound_ne_zero_of_right_move t.2 (nonpos_iff_eq_zero.mp h) end)
| (n+1) s h :=
pgame.mk {t // t β L s} {t // t β R s}
(Ξ» t, of_state_aux n t (turn_bound_of_left t.2 n h))
(Ξ» t, of_state_aux n t (turn_bound_of_right t.2 n h))
/-- Two different (valid) turn bounds give equivalent games. -/
def of_state_aux_relabelling : Ξ (s : S) (n m : β) (hn : turn_bound s β€ n) (hm : turn_bound s β€ m),
relabelling (of_state_aux n s hn) (of_state_aux m s hm)
| s 0 0 hn hm :=
begin
dsimp [pgame.of_state_aux],
fsplit, refl, refl,
{ intro i, dsimp at i, exfalso,
exact turn_bound_ne_zero_of_left_move i.2 (nonpos_iff_eq_zero.mp hn) },
{ intro j, dsimp at j, exfalso,
exact turn_bound_ne_zero_of_right_move j.2 (nonpos_iff_eq_zero.mp hm) }
end
| s 0 (m+1) hn hm :=
begin
dsimp [pgame.of_state_aux],
fsplit, refl, refl,
{ intro i, dsimp at i, exfalso,
exact turn_bound_ne_zero_of_left_move i.2 (nonpos_iff_eq_zero.mp hn) },
{ intro j, dsimp at j, exfalso,
exact turn_bound_ne_zero_of_right_move j.2 (nonpos_iff_eq_zero.mp hn) }
end
| s (n+1) 0 hn hm :=
begin
dsimp [pgame.of_state_aux],
fsplit, refl, refl,
{ intro i, dsimp at i, exfalso,
exact turn_bound_ne_zero_of_left_move i.2 (nonpos_iff_eq_zero.mp hm) },
{ intro j, dsimp at j, exfalso,
exact turn_bound_ne_zero_of_right_move j.2 (nonpos_iff_eq_zero.mp hm) }
end
| s (n+1) (m+1) hn hm :=
begin
dsimp [pgame.of_state_aux],
fsplit, refl, refl,
{ intro i,
apply of_state_aux_relabelling, },
{ intro j,
apply of_state_aux_relabelling, }
end
/-- Construct a combinatorial `pgame` from a state. -/
def of_state (s : S) : pgame := of_state_aux (turn_bound s) s (refl _)
/-- The equivalence between `left_moves` for a `pgame` constructed using `of_state_aux _ s _`, and
`L s`. -/
def left_moves_of_state_aux (n : β) {s : S} (h : turn_bound s β€ n) :
left_moves (of_state_aux n s h) β {t // t β L s} :=
by induction n; refl
/-- The equivalence between `left_moves` for a `pgame` constructed using `of_state s`, and `L s`. -/
def left_moves_of_state (s : S) : left_moves (of_state s) β {t // t β L s} :=
left_moves_of_state_aux _ _
/-- The equivalence between `right_moves` for a `pgame` constructed using `of_state_aux _ s _`, and
`R s`. -/
def right_moves_of_state_aux (n : β) {s : S} (h : turn_bound s β€ n) :
right_moves (of_state_aux n s h) β {t // t β R s} :=
by induction n; refl
/-- The equivalence between `right_moves` for a `pgame` constructed using `of_state s`, and
`R s`. -/
def right_moves_of_state (s : S) : right_moves (of_state s) β {t // t β R s} :=
right_moves_of_state_aux _ _
/--
The relabelling showing `move_left` applied to a game constructed using `of_state_aux`
has itself been constructed using `of_state_aux`.
-/
def relabelling_move_left_aux (n : β) {s : S} (h : turn_bound s β€ n)
(t : left_moves (of_state_aux n s h)) :
relabelling
(move_left (of_state_aux n s h) t)
(of_state_aux (n-1) (((left_moves_of_state_aux n h) t) : S)
((turn_bound_of_left ((left_moves_of_state_aux n h) t).2 (n-1)
(nat.le_trans h le_tsub_add)))) :=
begin
induction n,
{ have t' := (left_moves_of_state_aux 0 h) t,
exfalso, exact turn_bound_ne_zero_of_left_move t'.2 (nonpos_iff_eq_zero.mp h), },
{ refl },
end
/--
The relabelling showing `move_left` applied to a game constructed using `of`
has itself been constructed using `of`.
-/
def relabelling_move_left (s : S) (t : left_moves (of_state s)) :
relabelling
(move_left (of_state s) t)
(of_state (((left_moves_of_state s).to_fun t) : S)) :=
begin
transitivity,
apply relabelling_move_left_aux,
apply of_state_aux_relabelling,
end
/--
The relabelling showing `move_right` applied to a game constructed using `of_state_aux`
has itself been constructed using `of_state_aux`.
-/
def relabelling_move_right_aux (n : β) {s : S} (h : turn_bound s β€ n)
(t : right_moves (of_state_aux n s h)) :
relabelling
(move_right (of_state_aux n s h) t)
(of_state_aux (n-1) (((right_moves_of_state_aux n h) t) : S)
((turn_bound_of_right ((right_moves_of_state_aux n h) t).2 (n-1)
(nat.le_trans h le_tsub_add)))) :=
begin
induction n,
{ have t' := (right_moves_of_state_aux 0 h) t,
exfalso, exact turn_bound_ne_zero_of_right_move t'.2 (nonpos_iff_eq_zero.mp h), },
{ refl },
end
/--
The relabelling showing `move_right` applied to a game constructed using `of`
has itself been constructed using `of`.
-/
def relabelling_move_right (s : S) (t : right_moves (of_state s)) :
relabelling
(move_right (of_state s) t)
(of_state (((right_moves_of_state s).to_fun t) : S)) :=
begin
transitivity,
apply relabelling_move_right_aux,
apply of_state_aux_relabelling,
end
instance fintype_left_moves_of_state_aux (n : β) (s : S) (h : turn_bound s β€ n) :
fintype (left_moves (of_state_aux n s h)) :=
begin
apply fintype.of_equiv _ (left_moves_of_state_aux _ _).symm,
apply_instance,
end
instance fintype_right_moves_of_state_aux (n : β) (s : S) (h : turn_bound s β€ n) :
fintype (right_moves (of_state_aux n s h)) :=
begin
apply fintype.of_equiv _ (right_moves_of_state_aux _ _).symm,
apply_instance,
end
instance short_of_state_aux : Ξ (n : β) {s : S} (h : turn_bound s β€ n), short (of_state_aux n s h)
| 0 s h :=
short.mk'
(Ξ» i, begin
have i := (left_moves_of_state_aux _ _).to_fun i,
exfalso,
exact turn_bound_ne_zero_of_left_move i.2 (nonpos_iff_eq_zero.mp h),
end)
(Ξ» j, begin
have j := (right_moves_of_state_aux _ _).to_fun j,
exfalso,
exact turn_bound_ne_zero_of_right_move j.2 (nonpos_iff_eq_zero.mp h),
end)
| (n+1) s h :=
short.mk'
(Ξ» i, short_of_relabelling (relabelling_move_left_aux (n+1) h i).symm (short_of_state_aux n _))
(Ξ» j, short_of_relabelling (relabelling_move_right_aux (n+1) h j).symm (short_of_state_aux n _))
instance short_of_state (s : S) : short (of_state s) :=
begin
dsimp [pgame.of_state],
apply_instance
end
end pgame
namespace game
/-- Construct a combinatorial `game` from a state. -/
def of_state {S : Type u} [pgame.state S] (s : S) : game := β¦pgame.of_state sβ§
end game
|