Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 59,755 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
/-
Copyright (c) 2019 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Reid Barton, Mario Carneiro, Isabel Longbottom, Scott Morrison
-/
import data.fin.basic
import data.list.basic
import logic.relation

/-!
# Combinatorial (pre-)games.

The basic theory of combinatorial games, following Conway's book `On Numbers and Games`. We
construct "pregames", define an ordering and arithmetic operations on them, then show that the
operations descend to "games", defined via the equivalence relation `p ≈ q ↔ p ≤ q ∧ q ≤ p`.

The surreal numbers will be built as a quotient of a subtype of pregames.

A pregame (`pgame` below) is axiomatised via an inductive type, whose sole constructor takes two
types (thought of as indexing the possible moves for the players Left and Right), and a pair of
functions out of these types to `pgame` (thought of as describing the resulting game after making a
move).

Combinatorial games themselves, as a quotient of pregames, are constructed in `game.lean`.

## Conway induction

By construction, the induction principle for pregames is exactly "Conway induction". That is, to
prove some predicate `pgame → Prop` holds for all pregames, it suffices to prove that for every
pregame `g`, if the predicate holds for every game resulting from making a move, then it also holds
for `g`.

While it is often convenient to work "by induction" on pregames, in some situations this becomes
awkward, so we also define accessor functions `pgame.left_moves`, `pgame.right_moves`,
`pgame.move_left` and `pgame.move_right`. There is a relation `pgame.subsequent p q`, saying that
`p` can be reached by playing some non-empty sequence of moves starting from `q`, an instance
`well_founded subsequent`, and a local tactic `pgame_wf_tac` which is helpful for discharging proof
obligations in inductive proofs relying on this relation.

## Order properties

Pregames have both a `≤` and a `<` relation, satisfying the usual properties of a `preorder`. The
relation `0 < x` means that `x` can always be won by Left, while `0 ≤ x` means that `x` can be won
by Left as the second player.

It turns out to be quite convenient to define various relations on top of these. We define the "less
or fuzzy" relation `x ⧏ y` as `¬ y ≤ x`, the equivalence relation `x ≈ y` as `x ≤ y ∧ y ≤ x`, and
the fuzzy relation `x ∥ y` as `x ⧏ y ∧ y ⧏ x`. If `0 ⧏ x`, then `x` can be won by Left as the
first player. If `x ≈ 0`, then `x` can be won by the second player. If `x ∥ 0`, then `x` can be won
by the first player.

Statements like `zero_le_lf`, `zero_lf_le`, etc. unfold these definitions. The theorems `le_def` and
`lf_def` give a recursive characterisation of each relation in terms of themselves two moves later.
The theorems `zero_le`, `zero_lf`, etc. also take into account that `0` has no moves.

Later, games will be defined as the quotient by the `≈` relation; that is to say, the
`antisymmetrization` of `pgame`.

## Algebraic structures

We next turn to defining the operations necessary to make games into a commutative additive group.
Addition is defined for $x = \{xL | xR\}$ and $y = \{yL | yR\}$ by $x + y = \{xL + y, x + yL | xR +
y, x + yR\}$. Negation is defined by $\{xL | xR\} = \{-xR | -xL\}$.

The order structures interact in the expected way with addition, so we have
```
theorem le_iff_sub_nonneg {x y : pgame} : x ≤ y ↔ 0 ≤ y - x := sorry
theorem lt_iff_sub_pos {x y : pgame} : x < y ↔ 0 < y - x := sorry
```

We show that these operations respect the equivalence relation, and hence descend to games. At the
level of games, these operations satisfy all the laws of a commutative group. To prove the necessary
equivalence relations at the level of pregames, we introduce the notion of a `relabelling` of a
game, and show, for example, that there is a relabelling between `x + (y + z)` and `(x + y) + z`.

## Future work

* The theory of dominated and reversible positions, and unique normal form for short games.
* Analysis of basic domineering positions.
* Hex.
* Temperature.
* The development of surreal numbers, based on this development of combinatorial games, is still
  quite incomplete.

## References

The material here is all drawn from
* [Conway, *On numbers and games*][conway2001]

An interested reader may like to formalise some of the material from
* [Andreas Blass, *A game semantics for linear logic*][MR1167694]
* [André Joyal, *Remarques sur la théorie des jeux à deux personnes*][joyal1997]
-/

open function relation

universes u

/-! ### Pre-game moves -/

/-- The type of pre-games, before we have quotiented
  by equivalence (`pgame.setoid`). In ZFC, a combinatorial game is constructed from
  two sets of combinatorial games that have been constructed at an earlier
  stage. To do this in type theory, we say that a pre-game is built
  inductively from two families of pre-games indexed over any type
  in Type u. The resulting type `pgame.{u}` lives in `Type (u+1)`,
  reflecting that it is a proper class in ZFC. -/
inductive pgame : Type (u+1)
| mk : ∀ α β : Type u, (α → pgame) → (β → pgame) → pgame

namespace pgame

/-- The indexing type for allowable moves by Left. -/
def left_moves : pgame → Type u
| (mk l _ _ _) := l
/-- The indexing type for allowable moves by Right. -/
def right_moves : pgame → Type u
| (mk _ r _ _) := r

/-- The new game after Left makes an allowed move. -/
def move_left : Π (g : pgame), left_moves g → pgame
| (mk l _ L _) := L
/-- The new game after Right makes an allowed move. -/
def move_right : Π (g : pgame), right_moves g → pgame
| (mk _ r _ R) := R

@[simp] lemma left_moves_mk {xl xr xL xR} : (⟨xl, xr, xL, xR⟩ : pgame).left_moves = xl := rfl
@[simp] lemma move_left_mk {xl xr xL xR} : (⟨xl, xr, xL, xR⟩ : pgame).move_left = xL := rfl
@[simp] lemma right_moves_mk {xl xr xL xR} : (⟨xl, xr, xL, xR⟩ : pgame).right_moves = xr := rfl
@[simp] lemma move_right_mk {xl xr xL xR} : (⟨xl, xr, xL, xR⟩ : pgame).move_right = xR := rfl

/--
Construct a pre-game from list of pre-games describing the available moves for Left and Right.
-/
-- TODO define this at the level of games, as well, and perhaps also for finsets of games.
def of_lists (L R : list pgame.{u}) : pgame.{u} :=
mk (ulift (fin L.length)) (ulift (fin R.length))
  (λ i, L.nth_le i.down i.down.is_lt) (λ j, R.nth_le j.down j.down.prop)

lemma left_moves_of_lists (L R : list pgame) : (of_lists L R).left_moves = ulift (fin L.length) :=
rfl
lemma right_moves_of_lists (L R : list pgame) : (of_lists L R).right_moves = ulift (fin R.length) :=
rfl

/-- Converts a number into a left move for `of_lists`. -/
def to_of_lists_left_moves {L R : list pgame} : fin L.length ≃ (of_lists L R).left_moves :=
((equiv.cast (left_moves_of_lists L R).symm).trans equiv.ulift).symm

/-- Converts a number into a right move for `of_lists`. -/
def to_of_lists_right_moves {L R : list pgame} : fin R.length ≃ (of_lists L R).right_moves :=
((equiv.cast (right_moves_of_lists L R).symm).trans equiv.ulift).symm

theorem of_lists_move_left {L R : list pgame} (i : fin L.length) :
  (of_lists L R).move_left (to_of_lists_left_moves i) = L.nth_le i i.is_lt :=
rfl

@[simp] theorem of_lists_move_left' {L R : list pgame} (i : (of_lists L R).left_moves) :
  (of_lists L R).move_left i =
  L.nth_le (to_of_lists_left_moves.symm i) (to_of_lists_left_moves.symm i).is_lt :=
rfl

theorem of_lists_move_right {L R : list pgame} (i : fin R.length) :
  (of_lists L R).move_right (to_of_lists_right_moves i) = R.nth_le i i.is_lt :=
rfl

@[simp] theorem of_lists_move_right' {L R : list pgame} (i : (of_lists L R).right_moves) :
  (of_lists L R).move_right i =
  R.nth_le (to_of_lists_right_moves.symm i) (to_of_lists_right_moves.symm i).is_lt :=
rfl

/-- A variant of `pgame.rec_on` expressed in terms of `pgame.move_left` and `pgame.move_right`.

Both this and `pgame.rec_on` describe Conway induction on games. -/
@[elab_as_eliminator] def move_rec_on {C : pgame → Sort*} (x : pgame)
  (IH : ∀ (y : pgame), (∀ i, C (y.move_left i)) → (∀ j, C (y.move_right j)) → C y) : C x :=
x.rec_on $ λ yl yr yL yR, IH (mk yl yr yL yR)

/-- `is_option x y` means that `x` is either a left or right option for `y`. -/
@[mk_iff] inductive is_option : pgame → pgame → Prop
| move_left {x : pgame} (i : x.left_moves) : is_option (x.move_left i) x
| move_right {x : pgame} (i : x.right_moves) : is_option (x.move_right i) x

theorem is_option.mk_left {xl xr : Type u} (xL : xl → pgame) (xR : xr → pgame) (i : xl) :
  (xL i).is_option (mk xl xr xL xR) :=
@is_option.move_left (mk _ _ _ _) i

theorem is_option.mk_right {xl xr : Type u} (xL : xl → pgame) (xR : xr → pgame) (i : xr) :
  (xR i).is_option (mk xl xr xL xR) :=
@is_option.move_right (mk _ _ _ _) i

theorem wf_is_option : well_founded is_option :=
⟨λ x, move_rec_on x $ λ x IHl IHr, acc.intro x $ λ y h, begin
  induction h with _ i _ j,
  { exact IHl i },
  { exact IHr j }
end⟩

/-- `subsequent x y` says that `x` can be obtained by playing some nonempty sequence of moves from
`y`. It is the transitive closure of `is_option`. -/
def subsequent : pgame → pgame → Prop :=
trans_gen is_option

instance : is_trans _ subsequent := trans_gen.is_trans

@[trans] theorem subsequent.trans {x y z} : subsequent x y → subsequent y z → subsequent x z :=
trans_gen.trans

theorem wf_subsequent : well_founded subsequent := wf_is_option.trans_gen

instance : has_well_founded pgame := ⟨_, wf_subsequent⟩

lemma subsequent.move_left {x : pgame} (i : x.left_moves) : subsequent (x.move_left i) x :=
trans_gen.single (is_option.move_left i)

lemma subsequent.move_right {x : pgame} (j : x.right_moves) : subsequent (x.move_right j) x :=
trans_gen.single (is_option.move_right j)

lemma subsequent.mk_left {xl xr} (xL : xl → pgame) (xR : xr → pgame) (i : xl) :
  subsequent (xL i) (mk xl xr xL xR) :=
@subsequent.move_left (mk _ _ _ _) i

lemma subsequent.mk_right {xl xr} (xL : xl → pgame) (xR : xr → pgame) (j : xr) :
  subsequent (xR j) (mk xl xr xL xR) :=
@subsequent.move_right (mk _ _ _ _) j

/-- A local tactic for proving well-foundedness of recursive definitions involving pregames. -/
meta def pgame_wf_tac :=
`[solve_by_elim
  [psigma.lex.left, psigma.lex.right, subsequent.move_left, subsequent.move_right,
   subsequent.mk_left, subsequent.mk_right, subsequent.trans]
  { max_depth := 6 }]

/-! ### Basic pre-games -/

/-- The pre-game `zero` is defined by `0 = { | }`. -/
instance : has_zero pgame := ⟨⟨pempty, pempty, pempty.elim, pempty.elim⟩⟩

@[simp] lemma zero_left_moves : left_moves 0 = pempty := rfl
@[simp] lemma zero_right_moves : right_moves 0 = pempty := rfl

instance is_empty_zero_left_moves : is_empty (left_moves 0) := pempty.is_empty
instance is_empty_zero_right_moves : is_empty (right_moves 0) := pempty.is_empty

instance : inhabited pgame := ⟨0⟩

/-- The pre-game `one` is defined by `1 = { 0 | }`. -/
instance : has_one pgame := ⟨⟨punit, pempty, λ _, 0, pempty.elim⟩⟩

@[simp] lemma one_left_moves : left_moves 1 = punit := rfl
@[simp] lemma one_move_left (x) : move_left 1 x = 0 := rfl
@[simp] lemma one_right_moves : right_moves 1 = pempty := rfl

instance unique_one_left_moves : unique (left_moves 1) := punit.unique
instance is_empty_one_right_moves : is_empty (right_moves 1) := pempty.is_empty

/-! ### Pre-game order relations -/

/-- Define simultaneously by mutual induction the `≤` relation and its swapped converse `⧏` on
  pre-games.

  The ZFC definition says that `x = {xL | xR}` is less or equal to `y = {yL | yR}` if
  `∀ x₁ ∈ xL, x₁ ⧏ y` and `∀ y₂ ∈ yR, x ⧏ y₂`, where `x ⧏ y` means `¬ y ≤ x`. This is a tricky
  induction because it only decreases one side at a time, and it also swaps the arguments in the
  definition of `≤`. The solution is to define `x ≤ y` and `x ⧏ y` simultaneously. -/
def le_lf : Π (x y : pgame.{u}), Prop × Prop
| (mk xl xr xL xR) (mk yl yr yL yR) :=
  -- the orderings of the clauses here are carefully chosen so that
  --   and.left/or.inl refer to moves by Left, and
  --   and.right/or.inr refer to moves by Right.
((∀ i, (le_lf (xL i) ⟨yl, yr, yL, yR⟩).2) ∧ ∀ j, (le_lf ⟨xl, xr, xL, xR⟩ (yR j)).2,
 (∃ i, (le_lf ⟨xl, xr, xL, xR⟩ (yL i)).1) ∨ ∃ j, (le_lf (xR j) ⟨yl, yr, yL, yR⟩).1)
using_well_founded { dec_tac := pgame_wf_tac }

/-- The less or equal relation on pre-games.

If `0 ≤ x`, then Left can win `x` as the second player. -/
instance : has_le pgame := ⟨λ x y, (le_lf x y).1⟩

/-- The less or fuzzy relation on pre-games.

If `0 ⧏ x`, then Left can win `x` as the first player. -/
def lf (x y : pgame) : Prop := (le_lf x y).2

localized "infix ` ⧏ `:50 := pgame.lf" in pgame

/-- Definition of `x ≤ y` on pre-games built using the constructor. -/
@[simp] theorem mk_le_mk {xl xr xL xR yl yr yL yR} :
  mk xl xr xL xR ≤ mk yl yr yL yR ↔
  (∀ i, xL i ⧏ mk yl yr yL yR) ∧ ∀ j, mk xl xr xL xR ⧏ yR j :=
show (le_lf _ _).1 ↔ _, by { rw le_lf, refl }

/-- Definition of `x ≤ y` on pre-games, in terms of `⧏` -/
theorem le_iff_forall_lf {x y : pgame} :
  x ≤ y ↔ (∀ i, x.move_left i ⧏ y) ∧ ∀ j, x ⧏ y.move_right j :=
by { cases x, cases y, exact mk_le_mk }

theorem le_of_forall_lf {x y : pgame} (h₁ : ∀ i, x.move_left i ⧏ y) (h₂ : ∀ j, x ⧏ y.move_right j) :
  x ≤ y :=
le_iff_forall_lf.2 ⟨h₁, h₂⟩

/-- Definition of `x ⧏ y` on pre-games built using the constructor. -/
@[simp] theorem mk_lf_mk {xl xr xL xR yl yr yL yR} :
  mk xl xr xL xR ⧏ mk yl yr yL yR ↔
  (∃ i, mk xl xr xL xR ≤ yL i) ∨ ∃ j, xR j ≤ mk yl yr yL yR :=
show (le_lf _ _).2 ↔ _, by { rw le_lf, refl }

/-- Definition of `x ⧏ y` on pre-games, in terms of `≤` -/
theorem lf_iff_exists_le {x y : pgame} :
  x ⧏ y ↔ (∃ i, x ≤ y.move_left i) ∨ ∃ j, x.move_right j ≤ y :=
by { cases x, cases y, exact mk_lf_mk }

private theorem not_le_lf {x y : pgame} : (¬ x ≤ y ↔ y ⧏ x) ∧ (¬ x ⧏ y ↔ y ≤ x) :=
begin
  induction x with xl xr xL xR IHxl IHxr generalizing y,
  induction y with yl yr yL yR IHyl IHyr,
  simp only [mk_le_mk, mk_lf_mk, IHxl, IHxr, IHyl, IHyr,
    not_and_distrib, not_or_distrib, not_forall, not_exists,
    and_comm, or_comm, iff_self, and_self]
end

@[simp] protected theorem not_le {x y : pgame} : ¬ x ≤ y ↔ y ⧏ x := not_le_lf.1
@[simp] theorem not_lf {x y : pgame} : ¬ x ⧏ y ↔ y ≤ x := not_le_lf.2
theorem _root_.has_le.le.not_gf {x y : pgame} : x ≤ y → ¬ y ⧏ x := not_lf.2
theorem lf.not_ge {x y : pgame} : x ⧏ y → ¬ y ≤ x := pgame.not_le.2

theorem le_or_gf (x y : pgame) : x ≤ y ∨ y ⧏ x :=
by { rw ←pgame.not_le, apply em }

theorem move_left_lf_of_le {x y : pgame} (h : x ≤ y) (i) : x.move_left i ⧏ y :=
(le_iff_forall_lf.1 h).1 i

alias move_left_lf_of_le ← _root_.has_le.le.move_left_lf

theorem lf_move_right_of_le {x y : pgame} (h : x ≤ y) (j) : x ⧏ y.move_right j :=
(le_iff_forall_lf.1 h).2 j

alias lf_move_right_of_le ← _root_.has_le.le.lf_move_right

theorem lf_of_move_right_le {x y : pgame} {j} (h : x.move_right j ≤ y) : x ⧏ y :=
lf_iff_exists_le.2 $ or.inr ⟨j, h⟩

theorem lf_of_le_move_left {x y : pgame} {i} (h : x ≤ y.move_left i) : x ⧏ y :=
lf_iff_exists_le.2 $ or.inl ⟨i, h⟩

theorem lf_of_le_mk {xl xr xL xR y} : mk xl xr xL xR ≤ y → ∀ i, xL i ⧏ y :=
move_left_lf_of_le

theorem lf_of_mk_le {x yl yr yL yR} : x ≤ mk yl yr yL yR → ∀ j, x ⧏ yR j :=
lf_move_right_of_le

theorem mk_lf_of_le {xl xr y j} (xL) {xR : xr → pgame} : xR j ≤ y → mk xl xr xL xR ⧏ y :=
@lf_of_move_right_le (mk _ _ _ _) y j

theorem lf_mk_of_le {x yl yr} {yL : yl → pgame} (yR) {i} : x ≤ yL i → x ⧏ mk yl yr yL yR :=
@lf_of_le_move_left x (mk _ _ _ _) i

/- We prove that `x ≤ y → y ≤ z ← x ≤ z` inductively, by also simultaneously proving its cyclic
reorderings. This auxiliary lemma is used during said induction. -/
private theorem le_trans_aux {x y z : pgame}
  (h₁ : ∀ {i}, y ≤ z → z ≤ x.move_left i → y ≤ x.move_left i)
  (h₂ : ∀ {j}, z.move_right j ≤ x → x ≤ y → z.move_right j ≤ y)
  (hxy : x ≤ y) (hyz : y ≤ z) : x ≤ z :=
le_of_forall_lf
  (λ i, pgame.not_le.1 $ λ h, (h₁ hyz h).not_gf $ hxy.move_left_lf i)
  (λ j, pgame.not_le.1 $ λ h, (h₂ h hxy).not_gf $ hyz.lf_move_right j)

instance : has_lt pgame := ⟨λ x y, x ≤ y ∧ x ⧏ y⟩

instance : preorder pgame :=
{ le_refl := λ x, begin
    induction x with _ _ _ _ IHl IHr,
    exact le_of_forall_lf (λ i, lf_of_le_move_left (IHl i)) (λ i, lf_of_move_right_le (IHr i))
  end,
  le_trans := begin
    suffices : ∀ {x y z : pgame},
      (x ≤ y → y ≤ z → x ≤ z) ∧ (y ≤ z → z ≤ x → y ≤ x) ∧ (z ≤ x → x ≤ y → z ≤ y),
      from λ x y z, this.1,
    intros x y z,
    induction x with xl xr xL xR IHxl IHxr generalizing y z,
    induction y with yl yr yL yR IHyl IHyr generalizing z,
    induction z with zl zr zL zR IHzl IHzr,
    exact ⟨le_trans_aux (λ i, (IHxl i).2.1) (λ j, (IHzr j).2.2),
      le_trans_aux (λ i, (IHyl i).2.2) (λ j, (IHxr j).1),
      le_trans_aux (λ i, (IHzl i).1) (λ j, (IHyr j).2.1)⟩
  end,
  lt_iff_le_not_le := λ x y, by { rw pgame.not_le, refl },
  ..pgame.has_le, ..pgame.has_lt }

theorem lt_iff_le_and_lf {x y : pgame} : x < y ↔ x ≤ y ∧ x ⧏ y := iff.rfl
theorem lt_of_le_of_lf {x y : pgame} (h₁ : x ≤ y) (h₂ : x ⧏ y) : x < y := ⟨h₁, h₂⟩

theorem lf_of_lt {x y : pgame} (h : x < y) : x ⧏ y := h.2
alias lf_of_lt ← _root_.has_lt.lt.lf

theorem lf_irrefl (x : pgame) : ¬ x ⧏ x := le_rfl.not_gf
instance : is_irrefl _ (⧏) := ⟨lf_irrefl⟩

@[trans] theorem lf_of_le_of_lf {x y z : pgame} (h₁ : x ≤ y) (h₂ : y ⧏ z) : x ⧏ z :=
by { rw ←pgame.not_le at h₂ ⊢, exact λ h₃, h₂ (h₃.trans h₁) }
@[trans] theorem lf_of_lf_of_le {x y z : pgame} (h₁ : x ⧏ y) (h₂ : y ≤ z) : x ⧏ z :=
by { rw ←pgame.not_le at h₁ ⊢, exact λ h₃, h₁ (h₂.trans h₃) }

alias lf_of_le_of_lf ← _root_.has_le.le.trans_lf
alias lf_of_lf_of_le ← lf.trans_le

@[trans] theorem lf_of_lt_of_lf {x y z : pgame} (h₁ : x < y) (h₂ : y ⧏ z) : x ⧏ z :=
h₁.le.trans_lf h₂

@[trans] theorem lf_of_lf_of_lt {x y z : pgame} (h₁ : x ⧏ y) (h₂ : y < z) : x ⧏ z :=
h₁.trans_le h₂.le

alias lf_of_lt_of_lf ← _root_.has_lt.lt.trans_lf
alias lf_of_lf_of_lt ← lf.trans_lt

theorem move_left_lf {x : pgame} : ∀ i, x.move_left i ⧏ x :=
le_rfl.move_left_lf

theorem lf_move_right {x : pgame} : ∀ j, x ⧏ x.move_right j :=
le_rfl.lf_move_right

theorem lf_mk {xl xr} (xL : xl → pgame) (xR : xr → pgame) (i) : xL i ⧏ mk xl xr xL xR :=
@move_left_lf (mk _ _ _ _) i

theorem mk_lf {xl xr} (xL : xl → pgame) (xR : xr → pgame) (j) : mk xl xr xL xR ⧏ xR j :=
@lf_move_right (mk _ _ _ _) j

/-- This special case of `pgame.le_of_forall_lf` is useful when dealing with surreals, where `<` is
preferred over `⧏`. -/
theorem le_of_forall_lt {x y : pgame} (h₁ : ∀ i, x.move_left i < y) (h₂ : ∀ j, x < y.move_right j) :
  x ≤ y :=
le_of_forall_lf (λ i, (h₁ i).lf) (λ i, (h₂ i).lf)

/-- The definition of `x ≤ y` on pre-games, in terms of `≤` two moves later. -/
theorem le_def {x y : pgame} : x ≤ y ↔
  (∀ i, (∃ i', x.move_left i ≤ y.move_left i')  ∨ ∃ j, (x.move_left i).move_right j ≤ y) ∧
   ∀ j, (∃ i, x ≤ (y.move_right j).move_left i) ∨ ∃ j', x.move_right j' ≤ y.move_right j :=
by { rw le_iff_forall_lf, conv { to_lhs, simp only [lf_iff_exists_le] } }

/-- The definition of `x ⧏ y` on pre-games, in terms of `⧏` two moves later. -/
theorem lf_def {x y : pgame} : x ⧏ y ↔
  (∃ i, (∀ i', x.move_left i' ⧏ y.move_left i)  ∧ ∀ j, x ⧏ (y.move_left i).move_right j) ∨
   ∃ j, (∀ i, (x.move_right j).move_left i ⧏ y) ∧ ∀ j', x.move_right j ⧏ y.move_right j' :=
by { rw lf_iff_exists_le, conv { to_lhs, simp only [le_iff_forall_lf] } }

/-- The definition of `0 ≤ x` on pre-games, in terms of `0 ⧏`. -/
theorem zero_le_lf {x : pgame} : 0 ≤ x ↔ ∀ j, 0 ⧏ x.move_right j :=
by { rw le_iff_forall_lf, simp }

/-- The definition of `x ≤ 0` on pre-games, in terms of `⧏ 0`. -/
theorem le_zero_lf {x : pgame} : x ≤ 0 ↔ ∀ i, x.move_left i ⧏ 0 :=
by { rw le_iff_forall_lf, simp }

/-- The definition of `0 ⧏ x` on pre-games, in terms of `0 ≤`. -/
theorem zero_lf_le {x : pgame} : 0 ⧏ x ↔ ∃ i, 0 ≤ x.move_left i :=
by { rw lf_iff_exists_le, simp }

/-- The definition of `x ⧏ 0` on pre-games, in terms of `≤ 0`. -/
theorem lf_zero_le {x : pgame} : x ⧏ 0 ↔ ∃ j, x.move_right j ≤ 0 :=
by { rw lf_iff_exists_le, simp }

/-- The definition of `0 ≤ x` on pre-games, in terms of `0 ≤` two moves later. -/
theorem zero_le {x : pgame} : 0 ≤ x ↔ ∀ j, ∃ i, 0 ≤ (x.move_right j).move_left i :=
by { rw le_def, simp }

/-- The definition of `x ≤ 0` on pre-games, in terms of `≤ 0` two moves later. -/
theorem le_zero {x : pgame} : x ≤ 0 ↔ ∀ i, ∃ j, (x.move_left i).move_right j ≤ 0 :=
by { rw le_def, simp }

/-- The definition of `0 ⧏ x` on pre-games, in terms of `0 ⧏` two moves later. -/
theorem zero_lf {x : pgame} : 0 ⧏ x ↔ ∃ i, ∀ j, 0 ⧏ (x.move_left i).move_right j :=
by { rw lf_def, simp }

/-- The definition of `x ⧏ 0` on pre-games, in terms of `⧏ 0` two moves later. -/
theorem lf_zero {x : pgame} : x ⧏ 0 ↔ ∃ j, ∀ i, (x.move_right j).move_left i ⧏ 0 :=
by { rw lf_def, simp }

@[simp] theorem zero_le_of_is_empty_right_moves (x : pgame) [is_empty x.right_moves] : 0 ≤ x :=
zero_le.2 is_empty_elim

@[simp] theorem le_zero_of_is_empty_left_moves (x : pgame) [is_empty x.left_moves] : x ≤ 0 :=
le_zero.2 is_empty_elim

/-- Given a game won by the right player when they play second, provide a response to any move by
left. -/
noncomputable def right_response {x : pgame} (h : x ≤ 0) (i : x.left_moves) :
  (x.move_left i).right_moves :=
classical.some $ (le_zero.1 h) i

/-- Show that the response for right provided by `right_response` preserves the right-player-wins
condition. -/
lemma right_response_spec {x : pgame} (h : x ≤ 0) (i : x.left_moves) :
  (x.move_left i).move_right (right_response h i) ≤ 0 :=
classical.some_spec $ (le_zero.1 h) i

/-- Given a game won by the left player when they play second, provide a response to any move by
right. -/
noncomputable def left_response {x : pgame} (h : 0 ≤ x) (j : x.right_moves) :
  (x.move_right j).left_moves :=
classical.some $ (zero_le.1 h) j

/-- Show that the response for left provided by `left_response` preserves the left-player-wins
condition. -/
lemma left_response_spec {x : pgame} (h : 0 ≤ x) (j : x.right_moves) :
  0 ≤ (x.move_right j).move_left (left_response h j) :=
classical.some_spec $ (zero_le.1 h) j

/-- The equivalence relation on pre-games. Two pre-games `x`, `y` are equivalent if `x ≤ y` and
`y ≤ x`.

If `x ≈ 0`, then the second player can always win `x`. -/
def equiv (x y : pgame) : Prop := x ≤ y ∧ y ≤ x

localized "infix ` ≈ ` := pgame.equiv" in pgame

instance : is_equiv _ (≈) :=
{ refl := λ x, ⟨le_rfl, le_rfl⟩,
  trans := λ x y z ⟨xy, yx⟩ ⟨yz, zy⟩, ⟨xy.trans yz, zy.trans yx⟩,
  symm := λ x y, and.symm }

theorem equiv.le {x y : pgame} (h : x ≈ y) : x ≤ y := h.1
theorem equiv.ge {x y : pgame} (h : x ≈ y) : y ≤ x := h.2

@[refl, simp] theorem equiv_rfl {x} : x ≈ x := refl x
theorem equiv_refl (x) : x ≈ x := refl x

@[symm] protected theorem equiv.symm {x y} : x ≈ y → y ≈ x := symm
@[trans] protected theorem equiv.trans {x y z} : x ≈ y → y ≈ z → x ≈ z := trans
protected theorem equiv_comm {x y} : x ≈ y ↔ y ≈ x := comm

theorem equiv_of_eq {x y} (h : x = y) : x ≈ y := by subst h

@[trans] theorem le_of_le_of_equiv {x y z} (h₁ : x ≤ y) (h₂ : y ≈ z) : x ≤ z := h₁.trans h₂.1
@[trans] theorem le_of_equiv_of_le {x y z} (h₁ : x ≈ y) : y ≤ z → x ≤ z := h₁.1.trans

theorem lf.not_equiv {x y} (h : x ⧏ y) : ¬ x ≈ y := λ h', h.not_ge h'.2
theorem lf.not_equiv' {x y} (h : x ⧏ y) : ¬ y ≈ x := λ h', h.not_ge h'.1

theorem lf.not_gt {x y} (h : x ⧏ y) : ¬ y < x := λ h', h.not_ge h'.le

theorem le_congr_imp {x₁ y₁ x₂ y₂} (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) (h : x₁ ≤ y₁) : x₂ ≤ y₂ :=
hx.2.trans (h.trans hy.1)
theorem le_congr {x₁ y₁ x₂ y₂} (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ ≤ y₁ ↔ x₂ ≤ y₂ :=
⟨le_congr_imp hx hy, le_congr_imp hx.symm hy.symm⟩
theorem le_congr_left {x₁ x₂ y} (hx : x₁ ≈ x₂) : x₁ ≤ y ↔ x₂ ≤ y :=
le_congr hx equiv_rfl
theorem le_congr_right {x y₁ y₂} (hy : y₁ ≈ y₂) : x ≤ y₁ ↔ x ≤ y₂ :=
le_congr equiv_rfl hy

theorem lf_congr {x₁ y₁ x₂ y₂} (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ ⧏ y₁ ↔ x₂ ⧏ y₂ :=
pgame.not_le.symm.trans $ (not_congr (le_congr hy hx)).trans pgame.not_le
theorem lf_congr_imp {x₁ y₁ x₂ y₂} (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ ⧏ y₁ → x₂ ⧏ y₂ :=
(lf_congr hx hy).1
theorem lf_congr_left {x₁ x₂ y} (hx : x₁ ≈ x₂) : x₁ ⧏ y ↔ x₂ ⧏ y :=
lf_congr hx equiv_rfl
theorem lf_congr_right {x y₁ y₂} (hy : y₁ ≈ y₂) : x ⧏ y₁ ↔ x ⧏ y₂ :=
lf_congr equiv_rfl hy

@[trans] theorem lf_of_lf_of_equiv {x y z} (h₁ : x ⧏ y) (h₂ : y ≈ z) : x ⧏ z :=
lf_congr_imp equiv_rfl h₂ h₁
@[trans] theorem lf_of_equiv_of_lf {x y z} (h₁ : x ≈ y) : y ⧏ z → x ⧏ z :=
lf_congr_imp h₁.symm equiv_rfl

@[trans] theorem lt_of_lt_of_equiv {x y z} (h₁ : x < y) (h₂ : y ≈ z) : x < z := h₁.trans_le h₂.1
@[trans] theorem lt_of_equiv_of_lt {x y z} (h₁ : x ≈ y) : y < z → x < z := h₁.1.trans_lt

theorem lt_congr_imp {x₁ y₁ x₂ y₂} (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) (h : x₁ < y₁) : x₂ < y₂ :=
hx.2.trans_lt (h.trans_le hy.1)
theorem lt_congr {x₁ y₁ x₂ y₂} (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ < y₁ ↔ x₂ < y₂ :=
⟨lt_congr_imp hx hy, lt_congr_imp hx.symm hy.symm⟩
theorem lt_congr_left {x₁ x₂ y} (hx : x₁ ≈ x₂) : x₁ < y ↔ x₂ < y :=
lt_congr hx equiv_rfl
theorem lt_congr_right {x y₁ y₂} (hy : y₁ ≈ y₂) : x < y₁ ↔ x < y₂ :=
lt_congr equiv_rfl hy

theorem lt_or_equiv_of_le {x y : pgame} (h : x ≤ y) : x < y ∨ x ≈ y :=
and_or_distrib_left.mp ⟨h, (em $ y ≤ x).swap.imp_left pgame.not_le.1⟩

theorem lf_or_equiv_or_gf (x y : pgame) : x ⧏ y ∨ x ≈ y ∨ y ⧏ x :=
begin
  by_cases h : x ⧏ y,
  { exact or.inl h },
  { right,
    cases (lt_or_equiv_of_le (pgame.not_lf.1 h)) with h' h',
    { exact or.inr h'.lf },
    { exact or.inl h'.symm } }
end

theorem equiv_congr_left {y₁ y₂} : y₁ ≈ y₂ ↔ ∀ x₁, x₁ ≈ y₁ ↔ x₁ ≈ y₂ :=
⟨λ h x₁, ⟨λ h', h'.trans h, λ h', h'.trans h.symm⟩,
 λ h, (h y₁).1 $ equiv_rfl⟩

theorem equiv_congr_right {x₁ x₂} : x₁ ≈ x₂ ↔ ∀ y₁, x₁ ≈ y₁ ↔ x₂ ≈ y₁ :=
⟨λ h y₁, ⟨λ h', h.symm.trans h', λ h', h.trans h'⟩,
 λ h, (h x₂).2 $ equiv_rfl⟩

theorem equiv_of_mk_equiv {x y : pgame}
  (L : x.left_moves ≃ y.left_moves) (R : x.right_moves ≃ y.right_moves)
  (hl : ∀ i, x.move_left i ≈ y.move_left (L i))
  (hr : ∀ j, x.move_right j ≈ y.move_right (R j)) : x ≈ y :=
begin
  fsplit; rw le_def,
  { exact ⟨λ i, or.inl ⟨_, (hl i).1⟩, λ j, or.inr ⟨_, by simpa using (hr (R.symm j)).1⟩⟩ },
  { exact ⟨λ i, or.inl ⟨_, by simpa using (hl (L.symm i)).2⟩, λ j, or.inr ⟨_, (hr j).2⟩⟩ }
end

/-- The fuzzy, confused, or incomparable relation on pre-games.

If `x ∥ 0`, then the first player can always win `x`. -/
def fuzzy (x y : pgame) : Prop := x ⧏ y ∧ y ⧏ x

localized "infix ` ∥ `:50 := pgame.fuzzy" in pgame

@[symm] theorem fuzzy.swap {x y : pgame} : x ∥ y → y ∥ x := and.swap
instance : is_symm _ (∥) := ⟨λ x y, fuzzy.swap⟩
theorem fuzzy.swap_iff {x y : pgame} : x ∥ y ↔ y ∥ x := ⟨fuzzy.swap, fuzzy.swap⟩

theorem fuzzy_irrefl (x : pgame) : ¬ x ∥ x := λ h, lf_irrefl x h.1
instance : is_irrefl _ (∥) := ⟨fuzzy_irrefl⟩

theorem lf_iff_lt_or_fuzzy {x y : pgame} : x ⧏ y ↔ x < y ∨ x ∥ y :=
by { simp only [lt_iff_le_and_lf, fuzzy, ←pgame.not_le], tauto! }

theorem lf_of_fuzzy {x y : pgame} (h : x ∥ y) : x ⧏ y := lf_iff_lt_or_fuzzy.2 (or.inr h)
alias lf_of_fuzzy ← fuzzy.lf

theorem lt_or_fuzzy_of_lf {x y : pgame} : x ⧏ y → x < y ∨ x ∥ y :=
lf_iff_lt_or_fuzzy.1

theorem fuzzy.not_equiv {x y : pgame} (h : x ∥ y) : ¬ x ≈ y :=
λ h', h'.1.not_gf h.2
theorem fuzzy.not_equiv' {x y : pgame} (h : x ∥ y) : ¬ y ≈ x :=
λ h', h'.2.not_gf h.2

theorem not_fuzzy_of_le {x y : pgame} (h : x ≤ y) : ¬ x ∥ y :=
λ h', h'.2.not_ge h
theorem not_fuzzy_of_ge {x y : pgame} (h : y ≤ x) : ¬ x ∥ y :=
λ h', h'.1.not_ge h

theorem equiv.not_fuzzy {x y : pgame} (h : x ≈ y) : ¬ x ∥ y :=
not_fuzzy_of_le h.1
theorem equiv.not_fuzzy' {x y : pgame} (h : x ≈ y) : ¬ y ∥ x :=
not_fuzzy_of_le h.2

theorem fuzzy_congr {x₁ y₁ x₂ y₂ : pgame} (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ ∥ y₁ ↔ x₂ ∥ y₂ :=
show _ ∧ _ ↔ _ ∧ _, by rw [lf_congr hx hy, lf_congr hy hx]
theorem fuzzy_congr_imp {x₁ y₁ x₂ y₂ : pgame} (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ ∥ y₁ → x₂ ∥ y₂ :=
(fuzzy_congr hx hy).1
theorem fuzzy_congr_left {x₁ x₂ y} (hx : x₁ ≈ x₂) : x₁ ∥ y ↔ x₂ ∥ y :=
fuzzy_congr hx equiv_rfl
theorem fuzzy_congr_right {x y₁ y₂} (hy : y₁ ≈ y₂) : x ∥ y₁ ↔ x ∥ y₂ :=
fuzzy_congr equiv_rfl hy

@[trans] theorem fuzzy_of_fuzzy_of_equiv {x y z} (h₁ : x ∥ y) (h₂ : y ≈ z) : x ∥ z :=
(fuzzy_congr_right h₂).1 h₁
@[trans] theorem fuzzy_of_equiv_of_fuzzy {x y z} (h₁ : x ≈ y) (h₂ : y ∥ z) : x ∥ z :=
(fuzzy_congr_left h₁).2 h₂

/-- Exactly one of the following is true (although we don't prove this here). -/
theorem lt_or_equiv_or_gt_or_fuzzy (x y : pgame) : x < y ∨ x ≈ y ∨ y < x ∨ x ∥ y :=
begin
  cases le_or_gf x y with h₁ h₁;
  cases le_or_gf y x with h₂ h₂,
  { right, left, exact ⟨h₁, h₂⟩ },
  { left, exact ⟨h₁, h₂⟩ },
  { right, right, left, exact ⟨h₂, h₁⟩ },
  { right, right, right, exact ⟨h₂, h₁⟩ }
end

theorem lt_or_equiv_or_gf (x y : pgame) : x < y ∨ x ≈ y ∨ y ⧏ x :=
begin
  rw [lf_iff_lt_or_fuzzy, fuzzy.swap_iff],
  exact lt_or_equiv_or_gt_or_fuzzy x y
end

/-! ### Relabellings -/

/-- `restricted x y` says that Left always has no more moves in `x` than in `y`,
     and Right always has no more moves in `y` than in `x` -/
inductive restricted : pgame.{u} → pgame.{u} → Type (u+1)
| mk : Π {x y : pgame} (L : x.left_moves → y.left_moves) (R : y.right_moves → x.right_moves),
         (∀ i, restricted (x.move_left i) (y.move_left (L i))) →
         (∀ j, restricted (x.move_right (R j)) (y.move_right j)) → restricted x y

/-- The identity restriction. -/
@[refl] def restricted.refl : Π (x : pgame), restricted x x
| x := ⟨_, _, λ i, restricted.refl _, λ j, restricted.refl _⟩
using_well_founded { dec_tac := pgame_wf_tac }

instance (x : pgame) : inhabited (restricted x x) := ⟨restricted.refl _⟩

/-- Transitivity of restriction. -/
def restricted.trans : Π {x y z : pgame} (r : restricted x y) (s : restricted y z), restricted x z
| x y z ⟨L₁, R₁, hL₁, hR₁⟩ ⟨L₂, R₂, hL₂, hR₂⟩ :=
⟨_, _, λ i, (hL₁ i).trans (hL₂ _), λ j, (hR₁ _).trans (hR₂ j)⟩

theorem restricted.le : Π {x y : pgame} (r : restricted x y), x ≤ y
| x y ⟨L, R, hL, hR⟩ :=
le_def.2 ⟨λ i, or.inl ⟨L i, (hL i).le⟩, λ i, or.inr ⟨R i, (hR i).le⟩⟩

/--
`relabelling x y` says that `x` and `y` are really the same game, just dressed up differently.
Specifically, there is a bijection between the moves for Left in `x` and in `y`, and similarly
for Right, and under these bijections we inductively have `relabelling`s for the consequent games.
-/
inductive relabelling : pgame.{u} → pgame.{u} → Type (u+1)
| mk : Π {x y : pgame} (L : x.left_moves ≃ y.left_moves) (R : x.right_moves ≃ y.right_moves),
         (∀ i, relabelling (x.move_left i) (y.move_left (L i))) →
         (∀ j, relabelling (x.move_right j) (y.move_right (R j))) →
       relabelling x y

localized "infix ` ≡r `:50 := pgame.relabelling" in pgame

namespace relabelling
variables {x y : pgame.{u}}

/-- A constructor for relabellings swapping the equivalences. -/
def mk' (L : y.left_moves ≃ x.left_moves) (R : y.right_moves ≃ x.right_moves)
  (hL : ∀ i, x.move_left (L i) ≡r y.move_left i)
  (hR : ∀ j, x.move_right (R j) ≡r y.move_right j) : x ≡r y :=
⟨L.symm, R.symm, λ i, by simpa using hL (L.symm i), λ j, by simpa using hR (R.symm j)⟩

/-- The equivalence between left moves of `x` and `y` given by the relabelling. -/
def left_moves_equiv : Π (r : x ≡r y), x.left_moves ≃ y.left_moves
| ⟨L, R, hL, hR⟩ := L

@[simp] theorem mk_left_moves_equiv {x y L R hL hR} :
  (@relabelling.mk x y L R hL hR).left_moves_equiv = L := rfl
@[simp] theorem mk'_left_moves_equiv {x y L R hL hR} :
  (@relabelling.mk' x y L R hL hR).left_moves_equiv = L.symm := rfl

/-- The equivalence between right moves of `x` and `y` given by the relabelling. -/
def right_moves_equiv : Π (r : x ≡r y), x.right_moves ≃ y.right_moves
| ⟨L, R, hL, hR⟩ := R

@[simp] theorem mk_right_moves_equiv {x y L R hL hR} :
  (@relabelling.mk x y L R hL hR).right_moves_equiv = R := rfl
@[simp] theorem mk'_right_moves_equiv {x y L R hL hR} :
  (@relabelling.mk' x y L R hL hR).right_moves_equiv = R.symm := rfl

/-- A left move of `x` is a relabelling of a left move of `y`. -/
def move_left : ∀ (r : x ≡r y) (i : x.left_moves),
  x.move_left i ≡r y.move_left (r.left_moves_equiv i)
| ⟨L, R, hL, hR⟩ := hL

/-- A left move of `y` is a relabelling of a left move of `x`. -/
def move_left_symm : ∀ (r : x ≡r y) (i : y.left_moves),
  x.move_left (r.left_moves_equiv.symm i) ≡r y.move_left i
| ⟨L, R, hL, hR⟩ i := by simpa using hL (L.symm i)

/-- A right move of `x` is a relabelling of a right move of `y`. -/
def move_right : ∀ (r : x ≡r y) (i : x.right_moves),
  x.move_right i ≡r y.move_right (r.right_moves_equiv i)
| ⟨L, R, hL, hR⟩ := hR

/-- A right move of `y` is a relabelling of a right move of `x`. -/
def move_right_symm : ∀ (r : x ≡r y) (i : y.right_moves),
  x.move_right (r.right_moves_equiv.symm i) ≡r y.move_right i
| ⟨L, R, hL, hR⟩ i := by simpa using hR (R.symm i)

/-- If `x` is a relabelling of `y`, then `x` is a restriction of `y`. -/
def restricted : Π {x y : pgame} (r : x ≡r y), restricted x y
| x y r := ⟨_, _, λ i, (r.move_left i).restricted, λ j, (r.move_right_symm j).restricted⟩
using_well_founded { dec_tac := pgame_wf_tac }

/-! It's not the case that `restricted x y → restricted y x → x ≡r y`, but if we insisted that the
maps in a restriction were injective, then one could use Schröder-Bernstein for do this. -/

/-- The identity relabelling. -/
@[refl] def refl : Π (x : pgame), x ≡r x
| x := ⟨equiv.refl _, equiv.refl _, λ i, refl _, λ j, refl _⟩
using_well_founded { dec_tac := pgame_wf_tac }

instance (x : pgame) : inhabited (x ≡r x) := ⟨refl _⟩

/-- Flip a relabelling. -/
@[symm] def symm : Π {x y : pgame}, x ≡r y → y ≡r x
| x y ⟨L, R, hL, hR⟩ := mk' L R (λ i, (hL i).symm) (λ j, (hR j).symm)

theorem le (r : x ≡r y) : x ≤ y := r.restricted.le
theorem ge (r : x ≡r y) : y ≤ x := r.symm.restricted.le

/-- A relabelling lets us prove equivalence of games. -/
theorem equiv (r : x ≡r y) : x ≈ y := ⟨r.le, r.ge⟩

/-- Transitivity of relabelling. -/
@[trans] def trans : Π {x y z : pgame}, x ≡r y → y ≡r z → x ≡r z
| x y z ⟨L₁, R₁, hL₁, hR₁⟩ ⟨L₂, R₂, hL₂, hR₂⟩ :=
⟨L₁.trans L₂, R₁.trans R₂, λ i, (hL₁ i).trans (hL₂ _), λ j, (hR₁ j).trans (hR₂ _)⟩

/-- Any game without left or right moves is a relabelling of 0. -/
def is_empty (x : pgame) [is_empty x.left_moves] [is_empty x.right_moves] : x ≡r 0 :=
⟨equiv.equiv_pempty _, equiv.equiv_of_is_empty _ _, is_empty_elim, is_empty_elim⟩

end relabelling

theorem equiv.is_empty (x : pgame) [is_empty x.left_moves] [is_empty x.right_moves] : x ≈ 0 :=
(relabelling.is_empty x).equiv

instance {x y : pgame} : has_coe (x ≡r y) (x ≈ y) := ⟨relabelling.equiv⟩

/-- Replace the types indexing the next moves for Left and Right by equivalent types. -/
def relabel {x : pgame} {xl' xr'} (el : xl' ≃ x.left_moves) (er : xr' ≃ x.right_moves) : pgame :=
⟨xl', xr', x.move_left ∘ el, x.move_right ∘ er⟩

@[simp] lemma relabel_move_left' {x : pgame} {xl' xr'}
  (el : xl' ≃ x.left_moves) (er : xr' ≃ x.right_moves) (i : xl') :
  move_left (relabel el er) i = x.move_left (el i) :=
rfl
@[simp] lemma relabel_move_left {x : pgame} {xl' xr'}
  (el : xl' ≃ x.left_moves) (er : xr' ≃ x.right_moves) (i : x.left_moves) :
  move_left (relabel el er) (el.symm i) = x.move_left i :=
by simp

@[simp] lemma relabel_move_right' {x : pgame} {xl' xr'}
  (el : xl' ≃ x.left_moves) (er : xr' ≃ x.right_moves) (j : xr') :
  move_right (relabel el er) j = x.move_right (er j) :=
rfl
@[simp] lemma relabel_move_right {x : pgame} {xl' xr'}
  (el : xl' ≃ x.left_moves) (er : xr' ≃ x.right_moves) (j : x.right_moves) :
  move_right (relabel el er) (er.symm j) = x.move_right j :=
by simp

/-- The game obtained by relabelling the next moves is a relabelling of the original game. -/
def relabel_relabelling {x : pgame} {xl' xr'} (el : xl' ≃ x.left_moves) (er : xr' ≃ x.right_moves) :
  x ≡r relabel el er :=
relabelling.mk' el er (λ i, by simp) (λ j, by simp)

/-! ### Negation -/

/-- The negation of `{L | R}` is `{-R | -L}`. -/
def neg : pgame → pgame
| ⟨l, r, L, R⟩ := ⟨r, l, λ i, neg (R i), λ i, neg (L i)⟩

instance : has_neg pgame := ⟨neg⟩

@[simp] lemma neg_def {xl xr xL xR} : -(mk xl xr xL xR) = mk xr xl (λ j, -(xR j)) (λ i, -(xL i)) :=
rfl

instance : has_involutive_neg pgame :=
{ neg_neg := λ x, begin
    induction x with xl xr xL xR ihL ihR,
    simp_rw [neg_def, ihL, ihR],
    exact ⟨rfl, rfl, heq.rfl, heq.rfl⟩,
  end,
  ..pgame.has_neg }

@[simp] protected lemma neg_zero : -(0 : pgame) = 0 :=
begin
  dsimp [has_zero.zero, has_neg.neg, neg],
  congr; funext i; cases i
end

@[simp] lemma neg_of_lists (L R : list pgame) :
  -of_lists L R = of_lists (R.map (λ x, -x)) (L.map (λ x, -x)) :=
begin
  simp only [of_lists, neg_def, list.length_map, list.nth_le_map', eq_self_iff_true, true_and],
  split, all_goals
  { apply hfunext,
    { simp },
    { intros a a' ha,
      congr' 2,
      have : ∀ {m n} (h₁ : m = n) {b : ulift (fin m)} {c : ulift (fin n)} (h₂ : b == c),
        (b.down : ℕ) = ↑c.down,
      { rintros m n rfl b c rfl, refl },
      exact this (list.length_map _ _).symm ha } }
end

theorem is_option_neg {x y : pgame} : is_option x (-y) ↔ is_option (-x) y :=
begin
  rw [is_option_iff, is_option_iff, or_comm],
  cases y, apply or_congr;
  { apply exists_congr, intro, rw ← neg_eq_iff_neg_eq, exact eq_comm },
end

@[simp] theorem is_option_neg_neg {x y : pgame} : is_option (-x) (-y) ↔ is_option x y :=
by rw [is_option_neg, neg_neg]

theorem left_moves_neg : ∀ x : pgame, (-x).left_moves = x.right_moves
| ⟨_, _, _, _⟩ := rfl

theorem right_moves_neg : ∀ x : pgame, (-x).right_moves = x.left_moves
| ⟨_, _, _, _⟩ := rfl

/-- Turns a right move for `x` into a left move for `-x` and vice versa.

Even though these types are the same (not definitionally so), this is the preferred way to convert
between them. -/
def to_left_moves_neg {x : pgame} : x.right_moves ≃ (-x).left_moves :=
equiv.cast (left_moves_neg x).symm

/-- Turns a left move for `x` into a right move for `-x` and vice versa.

Even though these types are the same (not definitionally so), this is the preferred way to convert
between them. -/
def to_right_moves_neg {x : pgame} : x.left_moves ≃ (-x).right_moves :=
equiv.cast (right_moves_neg x).symm

lemma move_left_neg {x : pgame} (i) :
  (-x).move_left (to_left_moves_neg i) = -x.move_right i :=
by { cases x, refl }

@[simp] lemma move_left_neg' {x : pgame} (i) :
  (-x).move_left i = -x.move_right (to_left_moves_neg.symm i) :=
by { cases x, refl }

lemma move_right_neg {x : pgame} (i) :
  (-x).move_right (to_right_moves_neg i) = -(x.move_left i) :=
by { cases x, refl }

@[simp] lemma move_right_neg' {x : pgame} (i) :
  (-x).move_right i = -x.move_left (to_right_moves_neg.symm i) :=
by { cases x, refl }

lemma move_left_neg_symm {x : pgame} (i) :
  x.move_left (to_right_moves_neg.symm i) = -(-x).move_right i :=
by simp

lemma move_left_neg_symm' {x : pgame} (i) :
  x.move_left i = -(-x).move_right (to_right_moves_neg i) :=
by simp

lemma move_right_neg_symm {x : pgame} (i) :
  x.move_right (to_left_moves_neg.symm i) = -(-x).move_left i :=
by simp

lemma move_right_neg_symm' {x : pgame} (i) :
  x.move_right i = -(-x).move_left (to_left_moves_neg i) :=
by simp

/-- If `x` has the same moves as `y`, then `-x` has the sames moves as `-y`. -/
def relabelling.neg_congr : ∀ {x y : pgame}, x ≡r y → -x ≡r -y
| ⟨xl, xr, xL, xR⟩ ⟨yl, yr, yL, yR⟩ ⟨L, R, hL, hR⟩ :=
⟨R, L, λ j, (hR j).neg_congr, λ i, (hL i).neg_congr⟩

private theorem neg_le_lf_neg_iff :
  Π {x y : pgame.{u}}, (-y ≤ -x ↔ x ≤ y) ∧ (-y ⧏ -x ↔ x ⧏ y)
| (mk xl xr xL xR) (mk yl yr yL yR) :=
begin
  simp_rw [neg_def, mk_le_mk, mk_lf_mk, ← neg_def],
  split,
  { rw and_comm, apply and_congr; exact forall_congr (λ _, neg_le_lf_neg_iff.2) },
  { rw or_comm, apply or_congr; exact exists_congr (λ _, neg_le_lf_neg_iff.1) },
end
using_well_founded { dec_tac := pgame_wf_tac }

@[simp] theorem neg_le_neg_iff {x y : pgame} : -y ≤ -x ↔ x ≤ y := neg_le_lf_neg_iff.1

@[simp] theorem neg_lf_neg_iff {x y : pgame} : -y ⧏ -x ↔ x ⧏ y := neg_le_lf_neg_iff.2

@[simp] theorem neg_lt_neg_iff {x y : pgame} : -y < -x ↔ x < y :=
by rw [lt_iff_le_and_lf, lt_iff_le_and_lf, neg_le_neg_iff, neg_lf_neg_iff]

@[simp] theorem neg_equiv_neg_iff {x y : pgame} : -x ≈ -y ↔ x ≈ y :=
by rw [equiv, equiv, neg_le_neg_iff, neg_le_neg_iff, and.comm]

@[simp] theorem neg_fuzzy_neg_iff {x y : pgame} : -x ∥ -y ↔ x ∥ y :=
by rw [fuzzy, fuzzy, neg_lf_neg_iff, neg_lf_neg_iff, and.comm]

theorem neg_le_iff {x y : pgame} : -y ≤ x ↔ -x ≤ y :=
by rw [←neg_neg x, neg_le_neg_iff, neg_neg]

theorem neg_lf_iff {x y : pgame} : -y ⧏ x ↔ -x ⧏ y :=
by rw [←neg_neg x, neg_lf_neg_iff, neg_neg]

theorem neg_lt_iff {x y : pgame} : -y < x ↔ -x < y :=
by rw [←neg_neg x, neg_lt_neg_iff, neg_neg]

theorem neg_equiv_iff {x y : pgame} : -x ≈ y ↔ x ≈ -y :=
by rw [←neg_neg y, neg_equiv_neg_iff, neg_neg]

theorem neg_fuzzy_iff {x y : pgame} : -x ∥ y ↔ x ∥ -y :=
by rw [←neg_neg y, neg_fuzzy_neg_iff, neg_neg]

theorem le_neg_iff {x y : pgame} : y ≤ -x ↔ x ≤ -y :=
by rw [←neg_neg x, neg_le_neg_iff, neg_neg]

theorem lf_neg_iff {x y : pgame} : y ⧏ -x ↔ x ⧏ -y :=
by rw [←neg_neg x, neg_lf_neg_iff, neg_neg]

theorem lt_neg_iff {x y : pgame} : y < -x ↔ x < -y :=
by rw [←neg_neg x, neg_lt_neg_iff, neg_neg]

@[simp] theorem neg_le_zero_iff {x : pgame} : -x ≤ 00 ≤ x :=
by rw [neg_le_iff, pgame.neg_zero]

@[simp] theorem zero_le_neg_iff {x : pgame} : 0 ≤ -x ↔ x ≤ 0 :=
by rw [le_neg_iff, pgame.neg_zero]

@[simp] theorem neg_lf_zero_iff {x : pgame} : -x ⧏ 00 ⧏ x :=
by rw [neg_lf_iff, pgame.neg_zero]

@[simp] theorem zero_lf_neg_iff {x : pgame} : 0 ⧏ -x ↔ x ⧏ 0 :=
by rw [lf_neg_iff, pgame.neg_zero]

@[simp] theorem neg_lt_zero_iff {x : pgame} : -x < 00 < x :=
by rw [neg_lt_iff, pgame.neg_zero]

@[simp] theorem zero_lt_neg_iff {x : pgame} : 0 < -x ↔ x < 0 :=
by rw [lt_neg_iff, pgame.neg_zero]

@[simp] theorem neg_equiv_zero_iff {x : pgame} : -x ≈ 0 ↔ x ≈ 0 :=
by rw [neg_equiv_iff, pgame.neg_zero]

@[simp] theorem neg_fuzzy_zero_iff {x : pgame} : -x ∥ 0 ↔ x ∥ 0 :=
by rw [neg_fuzzy_iff, pgame.neg_zero]

@[simp] theorem zero_equiv_neg_iff {x : pgame} : 0 ≈ -x ↔ 0 ≈ x :=
by rw [←neg_equiv_iff, pgame.neg_zero]

@[simp] theorem zero_fuzzy_neg_iff {x : pgame} : 0 ∥ -x ↔ 0 ∥ x :=
by rw [←neg_fuzzy_iff, pgame.neg_zero]

/-! ### Addition and subtraction -/

/-- The sum of `x = {xL | xR}` and `y = {yL | yR}` is `{xL + y, x + yL | xR + y, x + yR}`. -/
instance : has_add pgame.{u} := ⟨λ x y, begin
  induction x with xl xr xL xR IHxl IHxr generalizing y,
  induction y with yl yr yL yR IHyl IHyr,
  have y := mk yl yr yL yR,
  refine ⟨xl ⊕ yl, xr ⊕ yr, sum.rec _ _, sum.rec _ _⟩,
  { exact λ i, IHxl i y },
  { exact IHyl },
  { exact λ i, IHxr i y },
  { exact IHyr }
end⟩

/-- The pre-game `((0+1)+⋯)+1`. -/
instance : has_nat_cast pgame := ⟨nat.unary_cast⟩

@[simp] protected theorem nat_succ (n : ℕ) : ((n + 1 : ℕ) : pgame) = n + 1 := rfl

instance is_empty_left_moves_add (x y : pgame.{u})
  [is_empty x.left_moves] [is_empty y.left_moves] : is_empty (x + y).left_moves :=
begin
  unfreezingI { cases x, cases y },
  apply is_empty_sum.2 ⟨_, _⟩,
  assumption'
end

instance is_empty_right_moves_add (x y : pgame.{u})
  [is_empty x.right_moves] [is_empty y.right_moves] : is_empty (x + y).right_moves :=
begin
  unfreezingI { cases x, cases y },
  apply is_empty_sum.2 ⟨_, _⟩,
  assumption'
end

/-- `x + 0` has exactly the same moves as `x`. -/
def add_zero_relabelling : Π (x : pgame.{u}), x + 0 ≡r x
| ⟨xl, xr, xL, xR⟩ :=
begin
  refine ⟨equiv.sum_empty xl pempty, equiv.sum_empty xr pempty, _, _⟩;
  rintro (⟨i⟩|⟨⟨⟩⟩);
  apply add_zero_relabelling
end

/-- `x + 0` is equivalent to `x`. -/
lemma add_zero_equiv (x : pgame.{u}) : x + 0 ≈ x :=
(add_zero_relabelling x).equiv

/-- `0 + x` has exactly the same moves as `x`. -/
def zero_add_relabelling : Π (x : pgame.{u}), 0 + x ≡r x
| ⟨xl, xr, xL, xR⟩ :=
begin
  refine ⟨equiv.empty_sum pempty xl, equiv.empty_sum pempty xr, _, _⟩;
  rintro (⟨⟨⟩⟩|⟨i⟩);
  apply zero_add_relabelling
end

/-- `0 + x` is equivalent to `x`. -/
lemma zero_add_equiv (x : pgame.{u}) : 0 + x ≈ x :=
(zero_add_relabelling x).equiv

theorem left_moves_add : ∀ (x y : pgame.{u}),
  (x + y).left_moves = (x.left_moves ⊕ y.left_moves)
| ⟨_, _, _, _⟩ ⟨_, _, _, _⟩ := rfl

theorem right_moves_add : ∀ (x y : pgame.{u}),
  (x + y).right_moves = (x.right_moves ⊕ y.right_moves)
| ⟨_, _, _, _⟩ ⟨_, _, _, _⟩ := rfl

/-- Converts a left move for `x` or `y` into a left move for `x + y` and vice versa.

Even though these types are the same (not definitionally so), this is the preferred way to convert
between them. -/
def to_left_moves_add {x y : pgame} :
  x.left_moves ⊕ y.left_moves ≃ (x + y).left_moves :=
equiv.cast (left_moves_add x y).symm

/-- Converts a right move for `x` or `y` into a right move for `x + y` and vice versa.

Even though these types are the same (not definitionally so), this is the preferred way to convert
between them. -/
def to_right_moves_add {x y : pgame} :
  x.right_moves ⊕ y.right_moves ≃ (x + y).right_moves :=
equiv.cast (right_moves_add x y).symm

@[simp] lemma mk_add_move_left_inl {xl xr yl yr} {xL xR yL yR} {i} :
  (mk xl xr xL xR + mk yl yr yL yR).move_left (sum.inl i) =
    (mk xl xr xL xR).move_left i + (mk yl yr yL yR) :=
rfl
@[simp] lemma add_move_left_inl {x : pgame} (y : pgame) (i) :
  (x + y).move_left (to_left_moves_add (sum.inl i)) = x.move_left i + y :=
by { cases x, cases y, refl }

@[simp] lemma mk_add_move_right_inl {xl xr yl yr} {xL xR yL yR} {i} :
  (mk xl xr xL xR + mk yl yr yL yR).move_right (sum.inl i) =
    (mk xl xr xL xR).move_right i + (mk yl yr yL yR) :=
rfl
@[simp] lemma add_move_right_inl {x : pgame} (y : pgame) (i) :
  (x + y).move_right (to_right_moves_add (sum.inl i)) = x.move_right i + y :=
by { cases x, cases y, refl }

@[simp] lemma mk_add_move_left_inr {xl xr yl yr} {xL xR yL yR} {i} :
  (mk xl xr xL xR + mk yl yr yL yR).move_left (sum.inr i) =
    (mk xl xr xL xR) + (mk yl yr yL yR).move_left i :=
rfl
@[simp] lemma add_move_left_inr (x : pgame) {y : pgame} (i) :
  (x + y).move_left (to_left_moves_add (sum.inr i)) = x + y.move_left i :=
by { cases x, cases y, refl }

@[simp] lemma mk_add_move_right_inr {xl xr yl yr} {xL xR yL yR} {i} :
  (mk xl xr xL xR + mk yl yr yL yR).move_right (sum.inr i) =
    (mk xl xr xL xR) + (mk yl yr yL yR).move_right i :=
rfl
@[simp] lemma add_move_right_inr (x : pgame) {y : pgame} (i) :
  (x + y).move_right (to_right_moves_add (sum.inr i)) = x + y.move_right i :=
by { cases x, cases y, refl }

lemma left_moves_add_cases {x y : pgame} (k) {P : (x + y).left_moves → Prop}
  (hl : ∀ i, P $ to_left_moves_add (sum.inl i))
  (hr : ∀ i, P $ to_left_moves_add (sum.inr i)) : P k :=
begin
  rw ←to_left_moves_add.apply_symm_apply k,
  cases to_left_moves_add.symm k with i i,
  { exact hl i },
  { exact hr i }
end

lemma right_moves_add_cases {x y : pgame} (k) {P : (x + y).right_moves → Prop}
  (hl : ∀ j, P $ to_right_moves_add (sum.inl j))
  (hr : ∀ j, P $ to_right_moves_add (sum.inr j)) : P k :=
begin
  rw ←to_right_moves_add.apply_symm_apply k,
  cases to_right_moves_add.symm k with i i,
  { exact hl i },
  { exact hr i }
end

instance is_empty_nat_right_moves : ∀ n : ℕ, is_empty (right_moves n)
| 0 := pempty.is_empty
| (n + 1) := begin
  haveI := is_empty_nat_right_moves n,
  rw [pgame.nat_succ, right_moves_add],
  apply_instance
end

/-- If `w` has the same moves as `x` and `y` has the same moves as `z`,
then `w + y` has the same moves as `x + z`. -/
def relabelling.add_congr : ∀ {w x y z : pgame.{u}}, w ≡r x → y ≡r z → w + y ≡r x + z
| ⟨wl, wr, wL, wR⟩ ⟨xl, xr, xL, xR⟩ ⟨yl, yr, yL, yR⟩ ⟨zl, zr, zL, zR⟩
  ⟨L₁, R₁, hL₁, hR₁⟩ ⟨L₂, R₂, hL₂, hR₂⟩ :=
begin
  let Hwx : ⟨wl, wr, wL, wR⟩ ≡r ⟨xl, xr, xL, xR⟩ := ⟨L₁, R₁, hL₁, hR₁⟩,
  let Hyz : ⟨yl, yr, yL, yR⟩ ≡r ⟨zl, zr, zL, zR⟩ := ⟨L₂, R₂, hL₂, hR₂⟩,
  refine ⟨equiv.sum_congr L₁ L₂, equiv.sum_congr R₁ R₂, _, _⟩;
  rintro (i|j),
  { exact (hL₁ i).add_congr Hyz },
  { exact Hwx.add_congr (hL₂ j) },
  { exact (hR₁ i).add_congr Hyz },
  { exact Hwx.add_congr (hR₂ j) }
end
using_well_founded { dec_tac := pgame_wf_tac }

instance : has_sub pgame := ⟨λ x y, x + -y⟩

@[simp] theorem sub_zero (x : pgame) : x - 0 = x + 0 :=
show x + -0 = x + 0, by rw pgame.neg_zero

/-- If `w` has the same moves as `x` and `y` has the same moves as `z`,
then `w - y` has the same moves as `x - z`. -/
def relabelling.sub_congr {w x y z : pgame} (h₁ : w ≡r x) (h₂ : y ≡r z) : w - y ≡r x - z :=
h₁.add_congr h₂.neg_congr

/-- `-(x + y)` has exactly the same moves as `-x + -y`. -/
def neg_add_relabelling : Π (x y : pgame), -(x + y) ≡r -x + -y
| ⟨xl, xr, xL, xR⟩ ⟨yl, yr, yL, yR⟩ :=
begin
  refine ⟨equiv.refl _, equiv.refl _, _, _⟩,
  all_goals {
    exact λ j, sum.cases_on j
      (λ j, neg_add_relabelling _ _)
      (λ j, neg_add_relabelling ⟨xl, xr, xL, xR⟩ _) }
end
using_well_founded { dec_tac := pgame_wf_tac }

theorem neg_add_le {x y : pgame} : -(x + y) ≤ -x + -y :=
(neg_add_relabelling x y).le

/-- `x + y` has exactly the same moves as `y + x`. -/
def add_comm_relabelling : Π (x y : pgame.{u}), x + y ≡r y + x
| (mk xl xr xL xR) (mk yl yr yL yR) :=
begin
  refine ⟨equiv.sum_comm _ _, equiv.sum_comm _ _, _, _⟩;
  rintros (_|_);
  { dsimp [left_moves_add, right_moves_add], apply add_comm_relabelling }
end
using_well_founded { dec_tac := pgame_wf_tac }

theorem add_comm_le {x y : pgame} : x + y ≤ y + x :=
(add_comm_relabelling x y).le

theorem add_comm_equiv {x y : pgame} : x + y ≈ y + x :=
(add_comm_relabelling x y).equiv

/-- `(x + y) + z` has exactly the same moves as `x + (y + z)`. -/
def add_assoc_relabelling : Π (x y z : pgame.{u}), x + y + z ≡r x + (y + z)
| ⟨xl, xr, xL, xR⟩ ⟨yl, yr, yL, yR⟩ ⟨zl, zr, zL, zR⟩ :=
begin
  refine ⟨equiv.sum_assoc _ _ _, equiv.sum_assoc _ _ _, _, _⟩,
  all_goals
  { rintro (⟨i|i⟩|i) <|> rintro (j|⟨j|j⟩),
    { apply add_assoc_relabelling },
    { apply add_assoc_relabelling ⟨xl, xr, xL, xR⟩ },
    { apply add_assoc_relabelling ⟨xl, xr, xL, xR⟩ ⟨yl, yr, yL, yR⟩ } }
end
using_well_founded { dec_tac := pgame_wf_tac }

theorem add_assoc_equiv {x y z : pgame} : (x + y) + z ≈ x + (y + z) :=
(add_assoc_relabelling x y z).equiv

theorem add_left_neg_le_zero : ∀ (x : pgame), -x + x ≤ 0
| ⟨xl, xr, xL, xR⟩ :=
le_zero.2 $ λ i, begin
  cases i,
  { -- If Left played in -x, Right responds with the same move in x.
    refine ⟨@to_right_moves_add _ ⟨_, _, _, _⟩ (sum.inr i), _⟩,
    convert @add_left_neg_le_zero (xR i),
    apply add_move_right_inr },
  { -- If Left in x, Right responds with the same move in -x.
    dsimp,
    refine ⟨@to_right_moves_add ⟨_, _, _, _⟩ _ (sum.inl i), _⟩,
    convert @add_left_neg_le_zero (xL i),
    apply add_move_right_inl }
end

theorem zero_le_add_left_neg (x : pgame) : 0 ≤ -x + x :=
begin
  rw [←neg_le_neg_iff, pgame.neg_zero],
  exact neg_add_le.trans (add_left_neg_le_zero _)
end

theorem add_left_neg_equiv (x : pgame) : -x + x ≈ 0 :=
⟨add_left_neg_le_zero x, zero_le_add_left_neg x⟩

theorem add_right_neg_le_zero (x : pgame) : x + -x ≤ 0 :=
add_comm_le.trans (add_left_neg_le_zero x)

theorem zero_le_add_right_neg (x : pgame) : 0 ≤ x + -x :=
(zero_le_add_left_neg x).trans add_comm_le

theorem add_right_neg_equiv (x : pgame) : x + -x ≈ 0 :=
⟨add_right_neg_le_zero x, zero_le_add_right_neg x⟩

theorem sub_self_equiv : ∀ x, x - x ≈ 0 :=
add_right_neg_equiv

private lemma add_le_add_right' : ∀ {x y z : pgame} (h : x ≤ y), x + z ≤ y + z
| (mk xl xr xL xR) (mk yl yr yL yR) (mk zl zr zL zR) :=
λ h, begin
  refine le_def.2 ⟨λ i, _, λ i, _⟩;
  cases i,
  { rw le_def at h,
    cases h,
    rcases h_left i with ⟨i', ih⟩ | ⟨j, jh⟩,
    { exact or.inl ⟨to_left_moves_add (sum.inl i'), add_le_add_right' ih⟩ },
    { refine or.inr ⟨to_right_moves_add (sum.inl j), _⟩,
      convert add_le_add_right' jh,
      apply add_move_right_inl } },
  { exact or.inl ⟨@to_left_moves_add _ ⟨_, _, _, _⟩ (sum.inr i), add_le_add_right' h⟩ },
  { rw le_def at h,
    cases h,
    rcases h_right i with ⟨i, ih⟩ | ⟨j', jh⟩,
    { refine or.inl ⟨to_left_moves_add (sum.inl i), _⟩,
      convert add_le_add_right' ih,
      apply add_move_left_inl },
    { exact or.inr ⟨to_right_moves_add (sum.inl j'), add_le_add_right' jh⟩ } },
  { exact or.inr ⟨@to_right_moves_add _ ⟨_, _, _, _⟩ (sum.inr i), add_le_add_right' h⟩ }
end
using_well_founded { dec_tac := pgame_wf_tac }

instance covariant_class_swap_add_le : covariant_class pgame pgame (swap (+)) (≤) :=
⟨λ x y z, add_le_add_right'⟩

instance covariant_class_add_le : covariant_class pgame pgame (+) (≤) :=
⟨λ x y z h, (add_comm_le.trans (add_le_add_right h x)).trans add_comm_le⟩

theorem add_lf_add_right {y z : pgame} (h : y ⧏ z) (x) : y + x ⧏ z + x :=
suffices z + x ≤ y + x → z ≤ y, by { rw ←pgame.not_le at ⊢ h, exact mt this h }, λ w,
  calc z ≤ z + 0        : (add_zero_relabelling _).symm.le
     ... ≤ z + (x + -x) : add_le_add_left (zero_le_add_right_neg x) _
     ... ≤ z + x + -x   : (add_assoc_relabelling _ _ _).symm.le
     ... ≤ y + x + -x   : add_le_add_right w _
     ... ≤ y + (x + -x) : (add_assoc_relabelling _ _ _).le
     ... ≤ y + 0        : add_le_add_left (add_right_neg_le_zero x) _
     ... ≤ y            : (add_zero_relabelling _).le

theorem add_lf_add_left {y z : pgame} (h : y ⧏ z) (x) : x + y ⧏ x + z :=
by { rw lf_congr add_comm_equiv add_comm_equiv, apply add_lf_add_right h }

instance covariant_class_swap_add_lt : covariant_class pgame pgame (swap (+)) (<) :=
⟨λ x y z h, ⟨add_le_add_right h.1 x, add_lf_add_right h.2 x⟩⟩

instance covariant_class_add_lt : covariant_class pgame pgame (+) (<) :=
⟨λ x y z h, ⟨add_le_add_left h.1 x, add_lf_add_left h.2 x⟩⟩

theorem add_lf_add_of_lf_of_le {w x y z : pgame} (hwx : w ⧏ x) (hyz : y ≤ z) : w + y ⧏ x + z :=
lf_of_lf_of_le (add_lf_add_right hwx y) (add_le_add_left hyz x)

theorem add_lf_add_of_le_of_lf {w x y z : pgame} (hwx : w ≤ x) (hyz : y ⧏ z) : w + y ⧏ x + z :=
lf_of_le_of_lf (add_le_add_right hwx y) (add_lf_add_left hyz x)

theorem add_congr {w x y z : pgame} (h₁ : w ≈ x) (h₂ : y ≈ z) : w + y ≈ x + z :=
⟨(add_le_add_left h₂.1 w).trans (add_le_add_right h₁.1 z),
  (add_le_add_left h₂.2 x).trans (add_le_add_right h₁.2 y)⟩

theorem add_congr_left {x y z : pgame} (h : x ≈ y) : x + z ≈ y + z :=
add_congr h equiv_rfl

theorem add_congr_right {x y z : pgame} : y ≈ z → x + y ≈ x + z :=
add_congr equiv_rfl

theorem sub_congr {w x y z : pgame} (h₁ : w ≈ x) (h₂ : y ≈ z) : w - y ≈ x - z :=
add_congr h₁ (neg_equiv_neg_iff.2 h₂)

theorem sub_congr_left {x y z : pgame} (h : x ≈ y) : x - z ≈ y - z :=
sub_congr h equiv_rfl

theorem sub_congr_right {x y z : pgame} : y ≈ z → x - y ≈ x - z :=
sub_congr equiv_rfl

theorem le_iff_sub_nonneg {x y : pgame} : x ≤ y ↔ 0 ≤ y - x :=
⟨λ h, (zero_le_add_right_neg x).trans (add_le_add_right h _),
 λ h,
  calc x ≤ 0 + x : (zero_add_relabelling x).symm.le
     ... ≤ y - x + x : add_le_add_right h _
     ... ≤ y + (-x + x) : (add_assoc_relabelling _ _ _).le
     ... ≤ y + 0 : add_le_add_left (add_left_neg_le_zero x) _
     ... ≤ y : (add_zero_relabelling y).le⟩

theorem lf_iff_sub_zero_lf {x y : pgame} : x ⧏ y ↔ 0 ⧏ y - x :=
⟨λ h, (zero_le_add_right_neg x).trans_lf (add_lf_add_right h _),
 λ h,
  calc x ≤ 0 + x : (zero_add_relabelling x).symm.le
     ... ⧏ y - x + x : add_lf_add_right h _
     ... ≤ y + (-x + x) : (add_assoc_relabelling _ _ _).le
     ... ≤ y + 0 : add_le_add_left (add_left_neg_le_zero x) _
     ... ≤ y : (add_zero_relabelling y).le⟩

theorem lt_iff_sub_pos {x y : pgame} : x < y ↔ 0 < y - x :=
⟨λ h, lt_of_le_of_lt (zero_le_add_right_neg x) (add_lt_add_right h _),
 λ h,
  calc x ≤ 0 + x : (zero_add_relabelling x).symm.le
     ... < y - x + x : add_lt_add_right h _
     ... ≤ y + (-x + x) : (add_assoc_relabelling _ _ _).le
     ... ≤ y + 0 : add_le_add_left (add_left_neg_le_zero x) _
     ... ≤ y : (add_zero_relabelling y).le⟩

/-! ### Special pre-games -/

/-- The pre-game `star`, which is fuzzy with zero. -/
def star : pgame.{u} := ⟨punit, punit, λ _, 0, λ _, 0⟩

@[simp] theorem star_left_moves : star.left_moves = punit := rfl
@[simp] theorem star_right_moves : star.right_moves = punit := rfl

@[simp] theorem star_move_left (x) : star.move_left x = 0 := rfl
@[simp] theorem star_move_right (x) : star.move_right x = 0 := rfl

instance unique_star_left_moves : unique star.left_moves := punit.unique
instance unique_star_right_moves : unique star.right_moves := punit.unique

theorem star_fuzzy_zero : star ∥ 0 :=
⟨by { rw lf_zero, use default, rintros ⟨⟩ }, by { rw zero_lf, use default, rintros ⟨⟩ }⟩

@[simp] theorem neg_star : -star = star :=
by simp [star]

@[simp] theorem zero_lt_one : (0 : pgame) < 1 :=
lt_of_le_of_lf (zero_le_of_is_empty_right_moves 1) (zero_lf_le.2 ⟨default, le_rfl⟩)

instance : zero_le_one_class pgame := ⟨zero_lt_one.le⟩

@[simp] theorem zero_lf_one : (0 : pgame) ⧏ 1 :=
zero_lt_one.lf

end pgame