Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 27,347 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 |
/-
Copyright (c) 2019 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Reid Barton, Mario Carneiro, Isabel Longbottom, Scott Morrison, Apurva Nakade
-/
import set_theory.game.pgame
import tactic.abel
/-!
# Combinatorial games.
In this file we define the quotient of pre-games by the equivalence relation
`p ≈ q ↔ p ≤ q ∧ q ≤ p` (its `antisymmetrization`), and construct an instance `add_comm_group game`,
as well as an instance `partial_order game`.
## Multiplication on pre-games
We define the operations of multiplication and inverse on pre-games, and prove a few basic theorems
about them. Multiplication is not well-behaved under equivalence of pre-games i.e. `x ≈ y` does not
imply `x * z ≈ y * z`. Hence, multiplication is not a well-defined operation on games. Nevertheless,
the abelian group structure on games allows us to simplify many proofs for pre-games.
-/
open function pgame
open_locale pgame
universes u
instance pgame.setoid : setoid pgame :=
⟨(≈), equiv_refl, @pgame.equiv.symm, @pgame.equiv.trans⟩
/-- The type of combinatorial games. In ZFC, a combinatorial game is constructed from
two sets of combinatorial games that have been constructed at an earlier
stage. To do this in type theory, we say that a combinatorial pre-game is built
inductively from two families of combinatorial games indexed over any type
in Type u. The resulting type `pgame.{u}` lives in `Type (u+1)`,
reflecting that it is a proper class in ZFC.
A combinatorial game is then constructed by quotienting by the equivalence
`x ≈ y ↔ x ≤ y ∧ y ≤ x`. -/
abbreviation game := quotient pgame.setoid
namespace game
instance : add_comm_group_with_one game :=
{ zero := ⟦0⟧,
one := ⟦1⟧,
neg := quot.lift (λ x, ⟦-x⟧) (λ x y h, quot.sound ((@neg_equiv_neg_iff x y).2 h)),
add := quotient.lift₂ (λ x y : pgame, ⟦x + y⟧)
(λ x₁ y₁ x₂ y₂ hx hy, quot.sound (pgame.add_congr hx hy)),
add_zero := by { rintro ⟨x⟩, exact quot.sound (add_zero_equiv x) },
zero_add := by { rintro ⟨x⟩, exact quot.sound (zero_add_equiv x) },
add_assoc := by { rintros ⟨x⟩ ⟨y⟩ ⟨z⟩, exact quot.sound add_assoc_equiv },
add_left_neg := by { rintro ⟨x⟩, exact quot.sound (add_left_neg_equiv x) },
add_comm := by { rintros ⟨x⟩ ⟨y⟩, exact quot.sound add_comm_equiv } }
instance : inhabited game := ⟨0⟩
instance : partial_order game :=
{ le := quotient.lift₂ (≤) (λ x₁ y₁ x₂ y₂ hx hy, propext (le_congr hx hy)),
le_refl := by { rintro ⟨x⟩, exact le_refl x },
le_trans := by { rintro ⟨x⟩ ⟨y⟩ ⟨z⟩, exact @le_trans _ _ x y z },
le_antisymm := by { rintro ⟨x⟩ ⟨y⟩ h₁ h₂, apply quot.sound, exact ⟨h₁, h₂⟩ },
lt := quotient.lift₂ (<) (λ x₁ y₁ x₂ y₂ hx hy, propext (lt_congr hx hy)),
lt_iff_le_not_le := by { rintro ⟨x⟩ ⟨y⟩, exact @lt_iff_le_not_le _ _ x y }, }
/-- The less or fuzzy relation on games.
If `0 ⧏ x` (less or fuzzy with), then Left can win `x` as the first player. -/
def lf : game → game → Prop :=
quotient.lift₂ lf (λ x₁ y₁ x₂ y₂ hx hy, propext (lf_congr hx hy))
local infix ` ⧏ `:50 := lf
/-- On `game`, simp-normal inequalities should use as few negations as possible. -/
@[simp] theorem not_le : ∀ {x y : game}, ¬ x ≤ y ↔ y ⧏ x :=
by { rintro ⟨x⟩ ⟨y⟩, exact pgame.not_le }
/-- On `game`, simp-normal inequalities should use as few negations as possible. -/
@[simp] theorem not_lf : ∀ {x y : game}, ¬ x ⧏ y ↔ y ≤ x :=
by { rintro ⟨x⟩ ⟨y⟩, exact not_lf }
instance : is_trichotomous game (⧏) :=
⟨by { rintro ⟨x⟩ ⟨y⟩, change _ ∨ ⟦x⟧ = ⟦y⟧ ∨ _, rw quotient.eq, apply lf_or_equiv_or_gf }⟩
/-! It can be useful to use these lemmas to turn `pgame` inequalities into `game` inequalities, as
the `add_comm_group` structure on `game` often simplifies many proofs. -/
theorem _root_.pgame.le_iff_game_le {x y : pgame} : x ≤ y ↔ ⟦x⟧ ≤ ⟦y⟧ := iff.rfl
theorem _root_.pgame.lf_iff_game_lf {x y : pgame} : pgame.lf x y ↔ ⟦x⟧ ⧏ ⟦y⟧ := iff.rfl
theorem _root_.pgame.lt_iff_game_lt {x y : pgame} : x < y ↔ ⟦x⟧ < ⟦y⟧ := iff.rfl
theorem _root_.pgame.equiv_iff_game_eq {x y : pgame} : x ≈ y ↔ ⟦x⟧ = ⟦y⟧ :=
(@quotient.eq _ _ x y).symm
/-- The fuzzy, confused, or incomparable relation on games.
If `x ∥ 0`, then the first player can always win `x`. -/
def fuzzy : game → game → Prop :=
quotient.lift₂ fuzzy (λ x₁ y₁ x₂ y₂ hx hy, propext (fuzzy_congr hx hy))
local infix ` ∥ `:50 := fuzzy
theorem _root_.pgame.fuzzy_iff_game_fuzzy {x y : pgame} : pgame.fuzzy x y ↔ ⟦x⟧ ∥ ⟦y⟧ := iff.rfl
instance covariant_class_add_le : covariant_class game game (+) (≤) :=
⟨by { rintro ⟨a⟩ ⟨b⟩ ⟨c⟩ h, exact @add_le_add_left _ _ _ _ b c h a }⟩
instance covariant_class_swap_add_le : covariant_class game game (swap (+)) (≤) :=
⟨by { rintro ⟨a⟩ ⟨b⟩ ⟨c⟩ h, exact @add_le_add_right _ _ _ _ b c h a }⟩
instance covariant_class_add_lt : covariant_class game game (+) (<) :=
⟨by { rintro ⟨a⟩ ⟨b⟩ ⟨c⟩ h, exact @add_lt_add_left _ _ _ _ b c h a }⟩
instance covariant_class_swap_add_lt : covariant_class game game (swap (+)) (<) :=
⟨by { rintro ⟨a⟩ ⟨b⟩ ⟨c⟩ h, exact @add_lt_add_right _ _ _ _ b c h a }⟩
theorem add_lf_add_right : ∀ {b c : game} (h : b ⧏ c) (a), b + a ⧏ c + a :=
by { rintro ⟨b⟩ ⟨c⟩ h ⟨a⟩, apply add_lf_add_right h }
theorem add_lf_add_left : ∀ {b c : game} (h : b ⧏ c) (a), a + b ⧏ a + c :=
by { rintro ⟨b⟩ ⟨c⟩ h ⟨a⟩, apply add_lf_add_left h }
instance ordered_add_comm_group : ordered_add_comm_group game :=
{ add_le_add_left := @add_le_add_left _ _ _ game.covariant_class_add_le,
..game.add_comm_group_with_one,
..game.partial_order }
end game
namespace pgame
@[simp] lemma quot_neg (a : pgame) : ⟦-a⟧ = -⟦a⟧ := rfl
@[simp] lemma quot_add (a b : pgame) : ⟦a + b⟧ = ⟦a⟧ + ⟦b⟧ := rfl
@[simp] lemma quot_sub (a b : pgame) : ⟦a - b⟧ = ⟦a⟧ - ⟦b⟧ := rfl
theorem quot_eq_of_mk_quot_eq {x y : pgame}
(L : x.left_moves ≃ y.left_moves) (R : x.right_moves ≃ y.right_moves)
(hl : ∀ i, ⟦x.move_left i⟧ = ⟦y.move_left (L i)⟧)
(hr : ∀ j, ⟦x.move_right j⟧ = ⟦y.move_right (R j)⟧) : ⟦x⟧ = ⟦y⟧ :=
by { simp_rw [quotient.eq] at hl hr, exact quot.sound (equiv_of_mk_equiv L R hl hr) }
/-! Multiplicative operations can be defined at the level of pre-games,
but to prove their properties we need to use the abelian group structure of games.
Hence we define them here. -/
/-- The product of `x = {xL | xR}` and `y = {yL | yR}` is
`{xL*y + x*yL - xL*yL, xR*y + x*yR - xR*yR | xL*y + x*yR - xL*yR, x*yL + xR*y - xR*yL }`. -/
instance : has_mul pgame.{u} :=
⟨λ x y, begin
induction x with xl xr xL xR IHxl IHxr generalizing y,
induction y with yl yr yL yR IHyl IHyr,
have y := mk yl yr yL yR,
refine ⟨xl × yl ⊕ xr × yr, xl × yr ⊕ xr × yl, _, _⟩; rintro (⟨i, j⟩ | ⟨i, j⟩),
{ exact IHxl i y + IHyl j - IHxl i (yL j) },
{ exact IHxr i y + IHyr j - IHxr i (yR j) },
{ exact IHxl i y + IHyr j - IHxl i (yR j) },
{ exact IHxr i y + IHyl j - IHxr i (yL j) }
end⟩
theorem left_moves_mul : ∀ (x y : pgame.{u}), (x * y).left_moves
= (x.left_moves × y.left_moves ⊕ x.right_moves × y.right_moves)
| ⟨_, _, _, _⟩ ⟨_, _, _, _⟩ := rfl
theorem right_moves_mul : ∀ (x y : pgame.{u}), (x * y).right_moves
= (x.left_moves × y.right_moves ⊕ x.right_moves × y.left_moves)
| ⟨_, _, _, _⟩ ⟨_, _, _, _⟩ := rfl
/-- Turns two left or right moves for `x` and `y` into a left move for `x * y` and vice versa.
Even though these types are the same (not definitionally so), this is the preferred way to convert
between them. -/
def to_left_moves_mul {x y : pgame} :
x.left_moves × y.left_moves ⊕ x.right_moves × y.right_moves ≃ (x * y).left_moves :=
equiv.cast (left_moves_mul x y).symm
/-- Turns a left and a right move for `x` and `y` into a right move for `x * y` and vice versa.
Even though these types are the same (not definitionally so), this is the preferred way to convert
between them. -/
def to_right_moves_mul {x y : pgame} :
x.left_moves × y.right_moves ⊕ x.right_moves × y.left_moves ≃ (x * y).right_moves :=
equiv.cast (right_moves_mul x y).symm
@[simp] lemma mk_mul_move_left_inl {xl xr yl yr} {xL xR yL yR} {i j} :
(mk xl xr xL xR * mk yl yr yL yR).move_left (sum.inl (i, j))
= xL i * (mk yl yr yL yR) + (mk xl xr xL xR) * yL j - xL i * yL j :=
rfl
@[simp] lemma mul_move_left_inl {x y : pgame} {i j} :
(x * y).move_left (to_left_moves_mul (sum.inl (i, j)))
= x.move_left i * y + x * y.move_left j - x.move_left i * y.move_left j :=
by { cases x, cases y, refl }
@[simp] lemma mk_mul_move_left_inr {xl xr yl yr} {xL xR yL yR} {i j} :
(mk xl xr xL xR * mk yl yr yL yR).move_left (sum.inr (i, j))
= xR i * (mk yl yr yL yR) + (mk xl xr xL xR) * yR j - xR i * yR j :=
rfl
@[simp] lemma mul_move_left_inr {x y : pgame} {i j} :
(x * y).move_left (to_left_moves_mul (sum.inr (i, j)))
= x.move_right i * y + x * y.move_right j - x.move_right i * y.move_right j :=
by { cases x, cases y, refl }
@[simp] lemma mk_mul_move_right_inl {xl xr yl yr} {xL xR yL yR} {i j} :
(mk xl xr xL xR * mk yl yr yL yR).move_right (sum.inl (i, j))
= xL i * (mk yl yr yL yR) + (mk xl xr xL xR) * yR j - xL i * yR j :=
rfl
@[simp] lemma mul_move_right_inl {x y : pgame} {i j} :
(x * y).move_right (to_right_moves_mul (sum.inl (i, j)))
= x.move_left i * y + x * y.move_right j - x.move_left i * y.move_right j :=
by { cases x, cases y, refl }
@[simp] lemma mk_mul_move_right_inr {xl xr yl yr} {xL xR yL yR} {i j} :
(mk xl xr xL xR * mk yl yr yL yR).move_right (sum.inr (i, j))
= xR i * (mk yl yr yL yR) + (mk xl xr xL xR) * yL j - xR i * yL j :=
rfl
@[simp] lemma mul_move_right_inr {x y : pgame} {i j} :
(x * y).move_right (to_right_moves_mul (sum.inr (i, j)))
= x.move_right i * y + x * y.move_left j - x.move_right i * y.move_left j :=
by { cases x, cases y, refl }
lemma left_moves_mul_cases {x y : pgame} (k) {P : (x * y).left_moves → Prop}
(hl : ∀ ix iy, P $ to_left_moves_mul (sum.inl ⟨ix, iy⟩))
(hr : ∀ jx jy, P $ to_left_moves_mul (sum.inr ⟨jx, jy⟩)) : P k :=
begin
rw ←to_left_moves_mul.apply_symm_apply k,
rcases to_left_moves_mul.symm k with ⟨ix, iy⟩ | ⟨jx, jy⟩,
{ apply hl },
{ apply hr }
end
lemma right_moves_mul_cases {x y : pgame} (k) {P : (x * y).right_moves → Prop}
(hl : ∀ ix jy, P $ to_right_moves_mul (sum.inl ⟨ix, jy⟩))
(hr : ∀ jx iy, P $ to_right_moves_mul (sum.inr ⟨jx, iy⟩)) : P k :=
begin
rw ←to_right_moves_mul.apply_symm_apply k,
rcases to_right_moves_mul.symm k with ⟨ix, iy⟩ | ⟨jx, jy⟩,
{ apply hl },
{ apply hr }
end
theorem quot_mul_comm : Π (x y : pgame.{u}), ⟦x * y⟧ = ⟦y * x⟧
| (mk xl xr xL xR) (mk yl yr yL yR) :=
begin
refine quot_eq_of_mk_quot_eq
(equiv.sum_congr (equiv.prod_comm _ _) (equiv.prod_comm _ _))
((equiv.sum_comm _ _).trans (equiv.sum_congr (equiv.prod_comm _ _) (equiv.prod_comm _ _))) _ _,
all_goals { rintro (⟨i, j⟩ | ⟨i, j⟩); dsimp; rw [quot_mul_comm, quot_mul_comm (mk xl xr xL xR)] },
any_goals { rw [quot_mul_comm (xL i), add_comm] },
any_goals { rw [quot_mul_comm (xR i), add_comm] }
end
using_well_founded { dec_tac := pgame_wf_tac }
/-- `x * y` is equivalent to `y * x`. -/
theorem mul_comm_equiv (x y : pgame) : x * y ≈ y * x :=
quotient.exact $ quot_mul_comm _ _
instance is_empty_mul_zero_left_moves (x : pgame.{u}) : is_empty (x * 0).left_moves :=
by { cases x, apply sum.is_empty }
instance is_empty_mul_zero_right_moves (x : pgame.{u}) : is_empty (x * 0).right_moves :=
by { cases x, apply sum.is_empty }
instance is_empty_zero_mul_left_moves (x : pgame.{u}) : is_empty (0 * x).left_moves :=
by { cases x, apply sum.is_empty }
instance is_empty_zero_mul_right_moves (x : pgame.{u}) : is_empty (0 * x).right_moves :=
by { cases x, apply sum.is_empty }
/-- `x * 0` has exactly the same moves as `0`. -/
def mul_zero_relabelling (x : pgame) : x * 0 ≡r 0 := relabelling.is_empty _
/-- `x * 0` is equivalent to `0`. -/
theorem mul_zero_equiv (x : pgame) : x * 0 ≈ 0 := (mul_zero_relabelling x).equiv
@[simp] theorem quot_mul_zero (x : pgame) : ⟦x * 0⟧ = ⟦0⟧ :=
@quotient.sound _ _ (x * 0) _ x.mul_zero_equiv
/-- `0 * x` has exactly the same moves as `0`. -/
def zero_mul_relabelling (x : pgame) : 0 * x ≡r 0 := relabelling.is_empty _
/-- `0 * x` is equivalent to `0`. -/
theorem zero_mul_equiv (x : pgame) : 0 * x ≈ 0 := (zero_mul_relabelling x).equiv
@[simp] theorem quot_zero_mul (x : pgame) : ⟦0 * x⟧ = ⟦0⟧ :=
@quotient.sound _ _ (0 * x) _ x.zero_mul_equiv
@[simp] theorem quot_neg_mul : Π (x y : pgame), ⟦-x * y⟧ = -⟦x * y⟧
| (mk xl xr xL xR) (mk yl yr yL yR) :=
begin
let x := mk xl xr xL xR,
let y := mk yl yr yL yR,
refine quot_eq_of_mk_quot_eq _ _ _ _,
{ fsplit; rintro (⟨_, _⟩ | ⟨_, _⟩);
solve_by_elim [sum.inl, sum.inr, prod.mk] { max_depth := 4 } },
{ fsplit; rintro (⟨_, _⟩ | ⟨_, _⟩);
solve_by_elim [sum.inl, sum.inr, prod.mk] { max_depth := 4 } },
{ rintro (⟨i, j⟩ | ⟨i, j⟩),
{ change ⟦-xR i * y + (-x) * yL j - (-xR i) * yL j⟧ = ⟦-(xR i * y + x * yL j - xR i * yL j)⟧,
simp only [quot_add, quot_sub, quot_neg_mul],
simp, abel },
{ change ⟦-xL i * y + (-x) * yR j - (-xL i) * yR j⟧ = ⟦-(xL i * y + x * yR j - xL i * yR j)⟧,
simp only [quot_add, quot_sub, quot_neg_mul],
simp, abel } },
{ rintro (⟨i, j⟩ | ⟨i, j⟩),
{ change ⟦-xR i * y + (-x) * yR j - (-xR i) * yR j⟧ = ⟦-(xR i * y + x * yR j - xR i * yR j)⟧,
simp only [quot_add, quot_sub, quot_neg_mul],
simp, abel },
{ change ⟦-xL i * y + (-x) * yL j - (-xL i) * yL j⟧ = ⟦-(xL i * y + x * yL j - xL i * yL j)⟧,
simp only [quot_add, quot_sub, quot_neg_mul],
simp, abel } },
end
using_well_founded { dec_tac := pgame_wf_tac }
@[simp] theorem quot_mul_neg (x y : pgame) : ⟦x * -y⟧ = -⟦x * y⟧ :=
by rw [quot_mul_comm, quot_neg_mul, quot_mul_comm]
@[simp] theorem quot_left_distrib : Π (x y z : pgame), ⟦x * (y + z)⟧ = ⟦x * y⟧ + ⟦x * z⟧
| (mk xl xr xL xR) (mk yl yr yL yR) (mk zl zr zL zR) :=
begin
let x := mk xl xr xL xR,
let y := mk yl yr yL yR,
let z := mk zl zr zL zR,
refine quot_eq_of_mk_quot_eq _ _ _ _,
{ fsplit,
{ rintro (⟨_, _ | _⟩ | ⟨_, _ | _⟩);
solve_by_elim [sum.inl, sum.inr, prod.mk] { max_depth := 5 } },
{ rintro (⟨⟨_, _⟩ | ⟨_, _⟩⟩ | ⟨_, _⟩ | ⟨_, _⟩);
solve_by_elim [sum.inl, sum.inr, prod.mk] { max_depth := 5 } },
{ rintro (⟨_, _ | _⟩ | ⟨_, _ | _⟩); refl },
{ rintro (⟨⟨_, _⟩ | ⟨_, _⟩⟩ | ⟨_, _⟩ | ⟨_, _⟩); refl } },
{ fsplit,
{ rintro (⟨_, _ | _⟩ | ⟨_, _ | _⟩);
solve_by_elim [sum.inl, sum.inr, prod.mk] { max_depth := 5 } },
{ rintro (⟨⟨_, _⟩ | ⟨_, _⟩⟩ | ⟨_, _⟩ | ⟨_, _⟩);
solve_by_elim [sum.inl, sum.inr, prod.mk] { max_depth := 5 } },
{ rintro (⟨_, _ | _⟩ | ⟨_, _ | _⟩); refl },
{ rintro (⟨⟨_, _⟩ | ⟨_, _⟩⟩ | ⟨_, _⟩ | ⟨_, _⟩); refl } },
{ rintro (⟨i, j | k⟩ | ⟨i, j | k⟩),
{ change ⟦xL i * (y + z) + x * (yL j + z) - xL i * (yL j + z)⟧
= ⟦xL i * y + x * yL j - xL i * yL j + x * z⟧,
simp [quot_left_distrib], abel },
{ change ⟦xL i * (y + z) + x * (y + zL k) - xL i * (y + zL k)⟧
= ⟦x * y + (xL i * z + x * zL k - xL i * zL k)⟧,
simp [quot_left_distrib], abel },
{ change ⟦xR i * (y + z) + x * (yR j + z) - xR i * (yR j + z)⟧
= ⟦xR i * y + x * yR j - xR i * yR j + x * z⟧,
simp [quot_left_distrib], abel },
{ change ⟦xR i * (y + z) + x * (y + zR k) - xR i * (y + zR k)⟧
= ⟦x * y + (xR i * z + x * zR k - xR i * zR k)⟧,
simp [quot_left_distrib], abel } },
{ rintro (⟨i, j | k⟩ | ⟨i, j | k⟩),
{ change ⟦xL i * (y + z) + x * (yR j + z) - xL i * (yR j + z)⟧
= ⟦xL i * y + x * yR j - xL i * yR j + x * z⟧,
simp [quot_left_distrib], abel },
{ change ⟦xL i * (y + z) + x * (y + zR k) - xL i * (y + zR k)⟧
= ⟦x * y + (xL i * z + x * zR k - xL i * zR k)⟧,
simp [quot_left_distrib], abel },
{ change ⟦xR i * (y + z) + x * (yL j + z) - xR i * (yL j + z)⟧
= ⟦xR i * y + x * yL j - xR i * yL j + x * z⟧,
simp [quot_left_distrib], abel },
{ change ⟦xR i * (y + z) + x * (y + zL k) - xR i * (y + zL k)⟧
= ⟦x * y + (xR i * z + x * zL k - xR i * zL k)⟧,
simp [quot_left_distrib], abel } }
end
using_well_founded { dec_tac := pgame_wf_tac }
/-- `x * (y + z)` is equivalent to `x * y + x * z.`-/
theorem left_distrib_equiv (x y z : pgame) : x * (y + z) ≈ x * y + x * z :=
quotient.exact $ quot_left_distrib _ _ _
@[simp] theorem quot_left_distrib_sub (x y z : pgame) : ⟦x * (y - z)⟧ = ⟦x * y⟧ - ⟦x * z⟧ :=
by { change ⟦x * (y + -z)⟧ = ⟦x * y⟧ + -⟦x * z⟧, rw [quot_left_distrib, quot_mul_neg] }
@[simp] theorem quot_right_distrib (x y z : pgame) : ⟦(x + y) * z⟧ = ⟦x * z⟧ + ⟦y * z⟧ :=
by simp only [quot_mul_comm, quot_left_distrib]
/-- `(x + y) * z` is equivalent to `x * z + y * z.`-/
theorem right_distrib_equiv (x y z : pgame) : (x + y) * z ≈ x * z + y * z :=
quotient.exact $ quot_right_distrib _ _ _
@[simp] theorem quot_right_distrib_sub (x y z : pgame) : ⟦(y - z) * x⟧ = ⟦y * x⟧ - ⟦z * x⟧ :=
by { change ⟦(y + -z) * x⟧ = ⟦y * x⟧ + -⟦z * x⟧, rw [quot_right_distrib, quot_neg_mul] }
@[simp] theorem quot_mul_one : Π (x : pgame), ⟦x * 1⟧ = ⟦x⟧
| (mk xl xr xL xR) :=
begin
let x := mk xl xr xL xR,
refine quot_eq_of_mk_quot_eq _ _ _ _,
any_goals { fsplit,
{ rintro (⟨_, ⟨ ⟩⟩ | ⟨_, ⟨ ⟩⟩), assumption },
{ intro i,
try { exact sum.inl (i, punit.star) },
try { exact sum.inr (i, punit.star) } },
{ rintro (⟨_, ⟨ ⟩⟩ | ⟨_, ⟨ ⟩⟩), refl },
{ exact λ i, rfl } },
all_goals { rintro (⟨i, ⟨ ⟩⟩ | ⟨i, ⟨ ⟩⟩) },
{ change ⟦xL i * 1 + x * 0 - xL i * 0⟧ = ⟦xL i⟧,
simp [quot_mul_one] },
{ change ⟦xR i * 1 + x * 0 - xR i * 0⟧ = ⟦xR i⟧,
simp [quot_mul_one] }
end
/-- `x * 1` is equivalent to `x`. -/
theorem mul_one_equiv (x : pgame) : x * 1 ≈ x := quotient.exact $ quot_mul_one _
@[simp] theorem quot_one_mul (x : pgame) : ⟦1 * x⟧ = ⟦x⟧ :=
by rw [quot_mul_comm, quot_mul_one x]
/-- `1 * x` is equivalent to `x`. -/
theorem one_mul_equiv (x : pgame) : 1 * x ≈ x := quotient.exact $ quot_one_mul _
theorem quot_mul_assoc : Π (x y z : pgame), ⟦x * y * z⟧ = ⟦x * (y * z)⟧
| (mk xl xr xL xR) (mk yl yr yL yR) (mk zl zr zL zR) :=
begin
let x := mk xl xr xL xR,
let y := mk yl yr yL yR,
let z := mk zl zr zL zR,
refine quot_eq_of_mk_quot_eq _ _ _ _,
{ fsplit,
{ rintro (⟨⟨_, _⟩ | ⟨_, _⟩, _⟩ | ⟨⟨_, _⟩ | ⟨_, _⟩, _⟩);
solve_by_elim [sum.inl, sum.inr, prod.mk] { max_depth := 7 } },
{ rintro (⟨_, ⟨_, _⟩ | ⟨_, _⟩⟩ | ⟨_,⟨_, _⟩ | ⟨_, _⟩⟩);
solve_by_elim [sum.inl, sum.inr, prod.mk] { max_depth := 7 } },
{ rintro (⟨⟨_, _⟩ | ⟨_, _⟩, _⟩ | ⟨⟨_,_⟩ | ⟨_, _⟩,_⟩); refl },
{ rintro (⟨_, ⟨_, _⟩ | ⟨_, _⟩⟩ | ⟨_,⟨_, _⟩ | ⟨_, _⟩⟩); refl } },
{ fsplit,
{ rintro (⟨⟨_, _⟩ | ⟨_, _⟩, _⟩ | ⟨⟨_, _⟩ | ⟨_, _⟩,_⟩);
solve_by_elim [sum.inl, sum.inr, prod.mk] { max_depth := 7 } },
{ rintro (⟨_, ⟨_, _⟩ | ⟨_, _⟩⟩ | ⟨_, ⟨_, _⟩ | ⟨_, _⟩⟩);
solve_by_elim [sum.inl, sum.inr, prod.mk] { max_depth := 7 } },
{ rintro (⟨⟨_, _⟩ | ⟨_, _⟩, _⟩ | ⟨⟨_, _⟩ | ⟨_, _⟩,_⟩); refl },
{ rintro (⟨_, ⟨_, _⟩ | ⟨_, _⟩⟩ | ⟨_, ⟨_, _⟩ | ⟨_, _⟩⟩); refl } },
{ rintro (⟨⟨i, j⟩ | ⟨i, j⟩, k⟩ | ⟨⟨i, j⟩ | ⟨i, j⟩, k⟩),
{ change ⟦(xL i * y + x * yL j - xL i * yL j) * z + (x * y) * zL k
- (xL i * y + x * yL j - xL i * yL j) * zL k⟧
= ⟦xL i * (y * z) + x * (yL j * z + y * zL k - yL j * zL k)
- xL i * (yL j * z + y * zL k - yL j * zL k)⟧,
simp [quot_mul_assoc], abel },
{ change ⟦(xR i * y + x * yR j - xR i * yR j) * z + (x * y) * zL k
- (xR i * y + x * yR j - xR i * yR j) * zL k⟧
= ⟦xR i * (y * z) + x * (yR j * z + y * zL k - yR j * zL k)
- xR i * (yR j * z + y * zL k - yR j * zL k)⟧,
simp [quot_mul_assoc], abel },
{ change ⟦(xL i * y + x * yR j - xL i * yR j) * z + (x * y) * zR k
- (xL i * y + x * yR j - xL i * yR j) * zR k⟧
= ⟦xL i * (y * z) + x * (yR j * z + y * zR k - yR j * zR k)
- xL i * (yR j * z + y * zR k - yR j * zR k)⟧,
simp [quot_mul_assoc], abel },
{ change ⟦(xR i * y + x * yL j - xR i * yL j) * z + (x * y) * zR k
- (xR i * y + x * yL j - xR i * yL j) * zR k⟧
= ⟦xR i * (y * z) + x * (yL j * z + y * zR k - yL j * zR k)
- xR i * (yL j * z + y * zR k - yL j * zR k)⟧,
simp [quot_mul_assoc], abel } },
{ rintro (⟨⟨i, j⟩ | ⟨i, j⟩, k⟩ | ⟨⟨i, j⟩ | ⟨i, j⟩, k⟩),
{ change ⟦(xL i * y + x * yL j - xL i * yL j) * z + (x * y) * zR k
- (xL i * y + x * yL j - xL i * yL j) * zR k⟧
= ⟦xL i * (y * z) + x * (yL j * z + y * zR k - yL j * zR k)
- xL i * (yL j * z + y * zR k - yL j * zR k)⟧,
simp [quot_mul_assoc], abel },
{ change ⟦(xR i * y + x * yR j - xR i * yR j) * z + (x * y) * zR k
- (xR i * y + x * yR j - xR i * yR j) * zR k⟧
= ⟦xR i * (y * z) + x * (yR j * z + y * zR k - yR j * zR k)
- xR i * (yR j * z + y * zR k - yR j * zR k)⟧,
simp [quot_mul_assoc], abel },
{ change ⟦(xL i * y + x * yR j - xL i * yR j) * z + (x * y) * zL k
- (xL i * y + x * yR j - xL i * yR j) * zL k⟧
= ⟦xL i * (y * z) + x * (yR j * z + y * zL k - yR j * zL k)
- xL i * (yR j * z + y * zL k - yR j * zL k)⟧,
simp [quot_mul_assoc], abel },
{ change ⟦(xR i * y + x * yL j - xR i * yL j) * z + (x * y) * zL k
- (xR i * y + x * yL j - xR i * yL j) * zL k⟧
= ⟦xR i * (y * z) + x * (yL j * z + y * zL k - yL j * zL k)
- xR i * (yL j * z + y * zL k - yL j * zL k)⟧,
simp [quot_mul_assoc], abel } }
end
using_well_founded { dec_tac := pgame_wf_tac }
/-- `x * y * z` is equivalent to `x * (y * z).`-/
theorem mul_assoc_equiv (x y z : pgame) : x * y * z ≈ x * (y * z) :=
quotient.exact $ quot_mul_assoc _ _ _
/-- Because the two halves of the definition of `inv` produce more elements
on each side, we have to define the two families inductively.
This is the indexing set for the function, and `inv_val` is the function part. -/
inductive inv_ty (l r : Type u) : bool → Type u
| zero : inv_ty ff
| left₁ : r → inv_ty ff → inv_ty ff
| left₂ : l → inv_ty tt → inv_ty ff
| right₁ : l → inv_ty ff → inv_ty tt
| right₂ : r → inv_ty tt → inv_ty tt
instance (l r : Type u) [is_empty l] [is_empty r] : is_empty (inv_ty l r tt) :=
⟨by rintro (_|_|_|a|a); exact is_empty_elim a⟩
instance (l r : Type u) : inhabited (inv_ty l r ff) := ⟨inv_ty.zero⟩
instance unique_inv_ty (l r : Type u) [is_empty l] [is_empty r] : unique (inv_ty l r ff) :=
{ uniq := by { rintro (a|a|a), refl, all_goals { exact is_empty_elim a } },
..inv_ty.inhabited l r }
/-- Because the two halves of the definition of `inv` produce more elements
of each side, we have to define the two families inductively.
This is the function part, defined by recursion on `inv_ty`. -/
def inv_val {l r} (L : l → pgame) (R : r → pgame)
(IHl : l → pgame) (IHr : r → pgame) : ∀ {b}, inv_ty l r b → pgame
| _ inv_ty.zero := 0
| _ (inv_ty.left₁ i j) := (1 + (R i - mk l r L R) * inv_val j) * IHr i
| _ (inv_ty.left₂ i j) := (1 + (L i - mk l r L R) * inv_val j) * IHl i
| _ (inv_ty.right₁ i j) := (1 + (L i - mk l r L R) * inv_val j) * IHl i
| _ (inv_ty.right₂ i j) := (1 + (R i - mk l r L R) * inv_val j) * IHr i
@[simp] theorem inv_val_is_empty {l r : Type u} {b} (L R IHl IHr) (i : inv_ty l r b)
[is_empty l] [is_empty r] : inv_val L R IHl IHr i = 0 :=
begin
cases i with a _ a _ a _ a,
{ refl },
all_goals { exact is_empty_elim a }
end
/-- The inverse of a positive surreal number `x = {L | R}` is
given by `x⁻¹ = {0,
(1 + (R - x) * x⁻¹L) * R, (1 + (L - x) * x⁻¹R) * L |
(1 + (L - x) * x⁻¹L) * L, (1 + (R - x) * x⁻¹R) * R}`.
Because the two halves `x⁻¹L, x⁻¹R` of `x⁻¹` are used in their own
definition, the sets and elements are inductively generated. -/
def inv' : pgame → pgame
| ⟨l, r, L, R⟩ :=
let l' := {i // 0 < L i},
L' : l' → pgame := λ i, L i.1,
IHl' : l' → pgame := λ i, inv' (L i.1),
IHr := λ i, inv' (R i) in
⟨inv_ty l' r ff, inv_ty l' r tt,
inv_val L' R IHl' IHr, inv_val L' R IHl' IHr⟩
theorem zero_lf_inv' : ∀ (x : pgame), 0 ⧏ inv' x
| ⟨xl, xr, xL, xR⟩ := by { convert lf_mk _ _ inv_ty.zero, refl }
/-- `inv' 0` has exactly the same moves as `1`. -/
def inv'_zero : inv' 0 ≡r 1 :=
begin
change mk _ _ _ _ ≡r 1,
refine ⟨_, _, λ i, _, is_empty.elim _⟩,
{ apply equiv.equiv_punit (inv_ty _ _ _),
apply_instance },
{ apply equiv.equiv_pempty (inv_ty _ _ _),
apply_instance },
{ simp },
{ dsimp,
apply_instance }
end
theorem inv'_zero_equiv : inv' 0 ≈ 1 := inv'_zero.equiv
/-- `inv' 1` has exactly the same moves as `1`. -/
def inv'_one : inv' 1 ≡r (1 : pgame.{u}) :=
begin
change relabelling (mk _ _ _ _) 1,
haveI : is_empty {i : punit.{u+1} // (0 : pgame.{u}) < 0},
{ rw lt_self_iff_false, apply_instance },
refine ⟨_, _, λ i, _, is_empty.elim _⟩; dsimp,
{ apply equiv.equiv_punit },
{ apply equiv.equiv_of_is_empty },
{ simp },
{ apply_instance }
end
theorem inv'_one_equiv : inv' 1 ≈ 1 := inv'_one.equiv
/-- The inverse of a pre-game in terms of the inverse on positive pre-games. -/
noncomputable instance : has_inv pgame :=
⟨by { classical, exact λ x, if x ≈ 0 then 0 else if 0 < x then inv' x else -inv' (-x) }⟩
noncomputable instance : has_div pgame := ⟨λ x y, x * y⁻¹⟩
theorem inv_eq_of_equiv_zero {x : pgame} (h : x ≈ 0) : x⁻¹ = 0 := if_pos h
@[simp] theorem inv_zero : (0 : pgame)⁻¹ = 0 :=
inv_eq_of_equiv_zero (equiv_refl _)
theorem inv_eq_of_pos {x : pgame} (h : 0 < x) : x⁻¹ = inv' x :=
(if_neg h.lf.not_equiv').trans (if_pos h)
theorem inv_eq_of_lf_zero {x : pgame} (h : x ⧏ 0) : x⁻¹ = -inv' (-x) :=
(if_neg h.not_equiv).trans (if_neg h.not_gt)
/-- `1⁻¹` has exactly the same moves as `1`. -/
def inv_one : 1⁻¹ ≡r 1 :=
by { rw inv_eq_of_pos zero_lt_one, exact inv'_one }
theorem inv_one_equiv : 1⁻¹ ≈ 1 := inv_one.equiv
end pgame
|