Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 14,823 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import ring_theory.ideal.quotient
import ring_theory.polynomial.basic
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `is_local I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `is_local_of_is_maximal_radical`: if the radical of I is maximal then so is the jacobson radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universes u v
namespace ideal
variables {R : Type u} {S : Type v}
open_locale polynomial
section jacobson
section ring
variables [ring R] [ring S] {I : ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : ideal R) : ideal R :=
Inf {J : ideal R | I ≤ J ∧ is_maximal J}
lemma le_jacobson : I ≤ jacobson I :=
λ x hx, mem_Inf.mpr (λ J hJ, hJ.left hx)
@[simp] lemma jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (Inf_le_Inf (λ J hJ, ⟨Inf_le hJ, hJ.2⟩)) le_jacobson
@[simp] lemma jacobson_top : jacobson (⊤ : ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
@[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨λ H, classical.by_contradiction $ λ hi, let ⟨M, hm, him⟩ := exists_le_maximal I hi in
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M, from Inf_le ⟨him, hm⟩) $
lt_top_iff_ne_top.2 hm.ne_top) H,
λ H, eq_top_iff.2 $ le_Inf $ λ J ⟨hij, hj⟩, H ▸ hij⟩
lemma jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ :=
λ h, eq_bot_iff.mpr (h ▸ le_jacobson)
lemma jacobson_eq_self_of_is_maximal [H : is_maximal I] : I.jacobson = I :=
le_antisymm (Inf_le ⟨le_of_eq rfl, H⟩) le_jacobson
@[priority 100]
instance jacobson.is_maximal [H : is_maximal I] : is_maximal (jacobson I) :=
⟨⟨λ htop, H.1.1 (jacobson_eq_top_iff.1 htop),
λ J hJ, H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨λ hx y, classical.by_cases
(assume hxy : I ⊔ span {y * x + 1} = ⊤,
let ⟨p, hpi, q, hq, hpq⟩ := submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) in
let ⟨r, hr⟩ := mem_span_singleton'.1 hq in
⟨r, by rw [mul_assoc, ←mul_add_one, hr, ← hpq, ← neg_sub, add_sub_cancel]; exact I.neg_mem hpi⟩)
(assume hxy : I ⊔ span {y * x + 1} ≠ ⊤,
let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy in
suffices x ∉ M, from (this $ mem_Inf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim,
λ hxm, hm1.1.1 $ (eq_top_iff_one _).2 $ add_sub_cancel' (y * x) 1 ▸ M.sub_mem
(le_sup_right.trans hm2 $ subset_span rfl)
(M.mul_mem_left _ hxm)),
λ hx, mem_Inf.2 $ λ M ⟨him, hm⟩, classical.by_contradiction $ λ hxm,
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm, ⟨z, hz⟩ := hx (-y) in
hm.1.1 $ (eq_top_iff_one _).2 $ sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem
(by { rw [mul_assoc, ←mul_add_one, neg_mul, ← (sub_eq_iff_eq_add.mpr df.symm), neg_sub,
sub_add_cancel],
exact M.mul_mem_left _ hi }) (him hz)⟩
lemma exists_mul_sub_mem_of_sub_one_mem_jacobson {I : ideal R} (r : R)
(h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I :=
begin
cases mem_jacobson_iff.1 h 1 with s hs,
use s,
simpa [mul_sub] using hs
end
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_Inf_maximal :
I.jacobson = I ↔ ∃ M : set (ideal R), (∀ J ∈ M, is_maximal J ∨ J = ⊤) ∧ I = Inf M :=
begin
use λ hI, ⟨{J : ideal R | I ≤ J ∧ J.is_maximal}, ⟨λ _ hJ, or.inl hJ.right, hI.symm⟩⟩,
rintros ⟨M, hM, hInf⟩,
refine le_antisymm (λ x hx, _) le_jacobson,
rw [hInf, mem_Inf],
intros I hI,
cases hM I hI with is_max is_top,
{ exact (mem_Inf.1 hx) ⟨le_Inf_iff.1 (le_of_eq hInf) I hI, is_max⟩ },
{ exact is_top.symm ▸ submodule.mem_top }
end
theorem eq_jacobson_iff_Inf_maximal' :
I.jacobson = I ↔ ∃ M : set (ideal R), (∀ (J ∈ M) (K : ideal R), J < K → K = ⊤) ∧ I = Inf M :=
eq_jacobson_iff_Inf_maximal.trans
⟨λ h, let ⟨M, hM⟩ := h in ⟨M, ⟨λ J hJ K hK, or.rec_on (hM.1 J hJ) (λ h, h.1.2 K hK)
(λ h, eq_top_iff.2 (le_of_lt (h ▸ hK))), hM.2⟩⟩,
λ h, let ⟨M, hM⟩ := h in ⟨M, ⟨λ J hJ, or.rec_on (classical.em (J = ⊤)) (λ h, or.inr h)
(λ h, or.inl ⟨⟨h, hM.1 J hJ⟩⟩), hM.2⟩⟩⟩
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
lemma eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ x ∉ I, ∃ M : ideal R, (I ≤ M ∧ M.is_maximal) ∧ x ∉ M :=
begin
split,
{ intros h x hx,
erw [← h, mem_Inf] at hx,
push_neg at hx,
exact hx },
{ refine λ h, le_antisymm (λ x hx, _) le_jacobson,
contrapose hx,
erw mem_Inf,
push_neg,
exact h x hx }
end
theorem map_jacobson_of_surjective {f : R →+* S} (hf : function.surjective f) :
ring_hom.ker f ≤ I → map f (I.jacobson) = (map f I).jacobson :=
begin
intro h,
unfold ideal.jacobson,
have : ∀ J ∈ {J : ideal R | I ≤ J ∧ J.is_maximal}, f.ker ≤ J := λ J hJ, le_trans h hJ.left,
refine trans (map_Inf hf this) (le_antisymm _ _),
{ refine Inf_le_Inf (λ J hJ, ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩,
map_comap_of_surjective f hf J⟩⟩),
haveI : J.is_maximal := hJ.right,
exact comap_is_maximal_of_surjective f hf },
{ refine Inf_le_Inf_of_subset_insert_top (λ j hj, hj.rec_on (λ J hJ, _)),
rw ← hJ.2,
cases map_eq_top_or_is_maximal_of_surjective f hf hJ.left.right with htop hmax,
{ exact htop.symm ▸ set.mem_insert ⊤ _ },
{ exact set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ } },
end
lemma map_jacobson_of_bijective {f : R →+* S} (hf : function.bijective f) :
map f (I.jacobson) = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
lemma comap_jacobson {f : R →+* S} {K : ideal S} :
comap f (K.jacobson) = Inf (comap f '' {J : ideal S | K ≤ J ∧ J.is_maximal}) :=
trans (comap_Inf' f _) (Inf_eq_infi).symm
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : function.surjective f) {K : ideal S} :
comap f (K.jacobson) = (comap f K).jacobson :=
begin
unfold ideal.jacobson,
refine le_antisymm _ _,
{ refine le_trans (comap_mono (le_of_eq (trans top_inf_eq.symm Inf_insert.symm))) _,
rw [comap_Inf', Inf_eq_infi],
refine infi_le_infi_of_subset (λ J hJ, _),
have : comap f (map f J) = J := trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left),
cases map_eq_top_or_is_maximal_of_surjective _ hf hJ.right with htop hmax,
{ refine ⟨⊤, ⟨set.mem_insert ⊤ _, htop ▸ this⟩⟩ },
{ refine ⟨map f J, ⟨set.mem_insert_of_mem _
⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ } },
{ rw comap_Inf,
refine le_infi_iff.2 (λ J, (le_infi_iff.2 (λ hJ, _))),
haveI : J.is_maximal := hJ.right,
refine Inf_le ⟨comap_mono hJ.left, comap_is_maximal_of_surjective _ hf⟩ }
end
@[mono] lemma jacobson_mono {I J : ideal R} : I ≤ J → I.jacobson ≤ J.jacobson :=
begin
intros h x hx,
erw mem_Inf at ⊢ hx,
exact λ K ⟨hK, hK_max⟩, hx ⟨trans h hK, hK_max⟩
end
end ring
section comm_ring
variables [comm_ring R] [comm_ring S] {I : ideal R}
lemma radical_le_jacobson : radical I ≤ jacobson I :=
le_Inf (λ J hJ, (radical_eq_Inf I).symm ▸ Inf_le ⟨hJ.left, is_maximal.is_prime hJ.right⟩)
lemma eq_radical_of_eq_jacobson : jacobson I = I → radical I = I :=
λ h, le_antisymm (le_trans radical_le_jacobson (le_of_eq h)) le_radical
lemma is_unit_of_sub_one_mem_jacobson_bot (r : R)
(h : r - 1 ∈ jacobson (⊥ : ideal R)) : is_unit r :=
begin
cases exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs,
rw [mem_bot, sub_eq_zero, mul_comm] at hs,
exact is_unit_of_mul_eq_one _ _ hs
end
lemma mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : ideal R) ↔ ∀ y, is_unit (x * y + 1) :=
⟨λ hx y, let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y in
is_unit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm,
mul_comm _ z, mul_right_comm]⟩,
λ h, mem_jacobson_iff.mpr (λ y, (let ⟨b, hb⟩ := is_unit_iff_exists_inv.1 (h y) in
⟨b, (submodule.mem_bot R).2 (hb ▸ (by ring))⟩))⟩
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : ideal (R ⧸ I)) = ⊥ :=
begin
have hf : function.surjective (quotient.mk I) := submodule.quotient.mk_surjective I,
split,
{ intro h,
replace h := congr_arg (map (quotient.mk I)) h,
rw map_jacobson_of_surjective hf (le_of_eq mk_ker) at h,
simpa using h },
{ intro h,
replace h := congr_arg (comap (quotient.mk I)) h,
rw [comap_jacobson_of_surjective hf, ← (quotient.mk I).ker_eq_comap_bot] at h,
simpa using h }
end
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : ideal (R ⧸ I)) = jacobson ⊥ :=
begin
have hf : function.surjective (quotient.mk I) := submodule.quotient.mk_surjective I,
split,
{ intro h,
have := congr_arg (map (quotient.mk I)) h,
rw [map_radical_of_surjective hf (le_of_eq mk_ker),
map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this,
simpa using this },
{ intro h,
have := congr_arg (comap (quotient.mk I)) h,
rw [comap_radical, comap_jacobson_of_surjective hf, ← (quotient.mk I).ker_eq_comap_bot] at this,
simpa using this }
end
lemma jacobson_radical_eq_jacobson :
I.radical.jacobson = I.jacobson :=
le_antisymm (le_trans (le_of_eq (congr_arg jacobson (radical_eq_Inf I)))
(Inf_le_Inf (λ J hJ, ⟨Inf_le ⟨hJ.1, hJ.2.is_prime⟩, hJ.2⟩))) (jacobson_mono le_radical)
end comm_ring
end jacobson
section polynomial
open polynomial
variables [comm_ring R]
lemma jacobson_bot_polynomial_le_Inf_map_maximal :
jacobson (⊥ : ideal R[X]) ≤ Inf (map (C : R →+* R[X]) '' {J : ideal R | J.is_maximal}) :=
begin
refine le_Inf (λ J, exists_imp_distrib.2 (λ j hj, _)),
haveI : j.is_maximal := hj.1,
refine trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J),
suffices : (⊥ : ideal (polynomial (R ⧸ j))).jacobson = ⊥,
{ rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot],
replace this :=
congr_arg (map (polynomial_quotient_equiv_quotient_polynomial j).to_ring_hom) this,
rwa [map_jacobson_of_bijective _, map_bot] at this,
exact (ring_equiv.bijective (polynomial_quotient_equiv_quotient_polynomial j)) },
refine eq_bot_iff.2 (λ f hf, _),
simpa [(λ hX, by simpa using congr_arg (λ f, coeff f 1) hX : (X : (R ⧸ j)[X]) ≠ 0)]
using eq_C_of_degree_eq_zero (degree_eq_zero_of_is_unit ((mem_jacobson_bot.1 hf) X)),
end
lemma jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : ideal R) = ⊥) :
jacobson (⊥ : ideal R[X]) = ⊥ :=
begin
refine eq_bot_iff.2 (le_trans jacobson_bot_polynomial_le_Inf_map_maximal _),
refine (λ f hf, ((submodule.mem_bot _).2 (polynomial.ext (λ n, trans _ (coeff_zero n).symm)))),
suffices : f.coeff n ∈ ideal.jacobson ⊥, by rwa [h, submodule.mem_bot] at this,
exact mem_Inf.2 (λ j hj, (mem_map_C_iff.1 ((mem_Inf.1 hf) ⟨j, ⟨hj.2, rfl⟩⟩)) n),
end
end polynomial
section is_local
variables [comm_ring R]
/-- An ideal `I` is local iff its Jacobson radical is maximal. -/
class is_local (I : ideal R) : Prop := (out : is_maximal (jacobson I))
theorem is_local_iff {I : ideal R} : is_local I ↔ is_maximal (jacobson I) :=
⟨λ h, h.1, λ h, ⟨h⟩⟩
theorem is_local_of_is_maximal_radical {I : ideal R} (hi : is_maximal (radical I)) : is_local I :=
⟨have radical I = jacobson I,
from le_antisymm (le_Inf $ λ M ⟨him, hm⟩, hm.is_prime.radical_le_iff.2 him)
(Inf_le ⟨le_radical, hi⟩),
show is_maximal (jacobson I), from this ▸ hi⟩
theorem is_local.le_jacobson {I J : ideal R} (hi : is_local I) (hij : I ≤ J) (hj : J ≠ ⊤) :
J ≤ jacobson I :=
let ⟨M, hm, hjm⟩ := exists_le_maximal J hj in
le_trans hjm $ le_of_eq $ eq.symm $ hi.1.eq_of_le hm.1.1 $ Inf_le ⟨le_trans hij hjm, hm⟩
theorem is_local.mem_jacobson_or_exists_inv {I : ideal R} (hi : is_local I) (x : R) :
x ∈ jacobson I ∨ ∃ y, y * x - 1 ∈ I :=
classical.by_cases
(assume h : I ⊔ span {x} = ⊤,
let ⟨p, hpi, q, hq, hpq⟩ := submodule.mem_sup.1 ((eq_top_iff_one _).1 h) in
let ⟨r, hr⟩ := mem_span_singleton.1 hq in
or.inr ⟨r, by rw [← hpq, mul_comm, ← hr, ← neg_sub, add_sub_cancel]; exact I.neg_mem hpi⟩)
(assume h : I ⊔ span {x} ≠ ⊤,
or.inl $ le_trans le_sup_right (hi.le_jacobson le_sup_left h) $ mem_span_singleton.2 $
dvd_refl x)
end is_local
theorem is_primary_of_is_maximal_radical [comm_ring R] {I : ideal R} (hi : is_maximal (radical I)) :
is_primary I :=
have radical I = jacobson I,
from le_antisymm (le_Inf $ λ M ⟨him, hm⟩, hm.is_prime.radical_le_iff.2 him)
(Inf_le ⟨le_radical, hi⟩),
⟨ne_top_of_lt $ lt_of_le_of_lt le_radical (lt_top_iff_ne_top.2 hi.1.1),
λ x y hxy, ((is_local_of_is_maximal_radical hi).mem_jacobson_or_exists_inv y).symm.imp
(λ ⟨z, hz⟩, by rw [← mul_one x, ← sub_sub_cancel (z * y) 1, mul_sub, mul_left_comm]; exact
I.sub_mem (I.mul_mem_left _ hxy) (I.mul_mem_left _ hz))
(this ▸ id)⟩
end ideal
|