Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 14,823 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import ring_theory.ideal.quotient
import ring_theory.polynomial.basic

/-!
# Jacobson radical

The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.

We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.

## Main definitions

Let `R` be a commutative ring, and `I` be an ideal of `R`

* `jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.

* `is_local I` is the proposition that the jacobson radical of `I` is itself a maximal ideal

## Main statements

* `mem_jacobson_iff` gives a characterization of members of the jacobson of I

* `is_local_of_is_maximal_radical`: if the radical of I is maximal then so is the jacobson radical

## Tags

Jacobson, Jacobson radical, Local Ideal

-/

universes u v

namespace ideal
variables {R : Type u} {S : Type v}
open_locale polynomial

section jacobson

section ring
variables [ring R] [ring S] {I : ideal R}

/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : ideal R) : ideal R :=
Inf {J : ideal R | I ≤ J ∧ is_maximal J}

lemma le_jacobson : I ≤ jacobson I :=
λ x hx, mem_Inf.mpr (λ J hJ, hJ.left hx)

@[simp] lemma jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (Inf_le_Inf (λ J hJ, ⟨Inf_le hJ, hJ.2⟩)) le_jacobson

@[simp] lemma jacobson_top : jacobson (⊤ : ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson

@[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨λ H, classical.by_contradiction $ λ hi, let ⟨M, hm, him⟩ := exists_le_maximal I hi in
  lt_top_iff_ne_top.1
    (lt_of_le_of_lt (show jacobson I ≤ M, from Inf_le ⟨him, hm⟩) $
      lt_top_iff_ne_top.2 hm.ne_top) H,
λ H, eq_top_iff.2 $ le_Inf $ λ J ⟨hij, hj⟩, H ▸ hij⟩

lemma jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ :=
λ h, eq_bot_iff.mpr (h ▸ le_jacobson)

lemma jacobson_eq_self_of_is_maximal [H : is_maximal I] : I.jacobson = I :=
le_antisymm (Inf_le ⟨le_of_eq rfl, H⟩) le_jacobson

@[priority 100]
instance jacobson.is_maximal [H : is_maximal I] : is_maximal (jacobson I) :=
⟨⟨λ htop, H.1.1 (jacobson_eq_top_iff.1 htop),
  λ J hJ, H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩

theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨λ hx y, classical.by_cases
  (assume hxy : I ⊔ span {y * x + 1} = ⊤,
    let ⟨p, hpi, q, hq, hpq⟩ := submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) in
    let ⟨r, hr⟩ := mem_span_singleton'.1 hq in
    ⟨r, by rw [mul_assoc, ←mul_add_one, hr, ← hpq, ← neg_sub, add_sub_cancel]; exact I.neg_mem hpi⟩)
  (assume hxy : I ⊔ span {y * x + 1} ≠ ⊤,
    let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy in
    suffices x ∉ M, from (this $ mem_Inf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim,
    λ hxm, hm1.1.1 $ (eq_top_iff_one _).2 $ add_sub_cancel' (y * x) 1 ▸ M.sub_mem
      (le_sup_right.trans hm2 $ subset_span rfl)
      (M.mul_mem_left _ hxm)),
λ hx, mem_Inf.2 $ λ M ⟨him, hm⟩, classical.by_contradiction $ λ hxm,
  let ⟨y, i, hi, df⟩ := hm.exists_inv hxm, ⟨z, hz⟩ := hx (-y) in
  hm.1.1 $ (eq_top_iff_one _).2 $ sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem
    (by { rw [mul_assoc, ←mul_add_one, neg_mul, ← (sub_eq_iff_eq_add.mpr df.symm), neg_sub,
            sub_add_cancel],
          exact M.mul_mem_left _ hi }) (him hz)⟩

lemma exists_mul_sub_mem_of_sub_one_mem_jacobson {I : ideal R} (r : R)
  (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I :=
begin
  cases mem_jacobson_iff.1 h 1 with s hs,
  use s,
  simpa [mul_sub] using hs
end

/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_Inf_maximal :
  I.jacobson = I ↔ ∃ M : set (ideal R), (∀ J ∈ M, is_maximal J ∨ J = ⊤) ∧ I = Inf M :=
begin
  use λ hI, ⟨{J : ideal R | I ≤ J ∧ J.is_maximal}, ⟨λ _ hJ, or.inl hJ.right, hI.symm⟩⟩,
  rintros ⟨M, hM, hInf⟩,
  refine le_antisymm (λ x hx, _) le_jacobson,
  rw [hInf, mem_Inf],
  intros I hI,
  cases hM I hI with is_max is_top,
  { exact (mem_Inf.1 hx) ⟨le_Inf_iff.1 (le_of_eq hInf) I hI, is_max⟩ },
  { exact is_top.symm ▸ submodule.mem_top }
end

theorem eq_jacobson_iff_Inf_maximal' :
  I.jacobson = I ↔ ∃ M : set (ideal R), (∀ (J ∈ M) (K : ideal R), J < K → K = ⊤) ∧ I = Inf M :=
eq_jacobson_iff_Inf_maximal.trans
  ⟨λ h, let ⟨M, hM⟩ := h in ⟨M, ⟨λ J hJ K hK, or.rec_on (hM.1 J hJ) (λ h, h.1.2 K hK)
    (λ h, eq_top_iff.2 (le_of_lt (h ▸ hK))), hM.2⟩⟩,
  λ h, let ⟨M, hM⟩ := h in ⟨M, ⟨λ J hJ, or.rec_on (classical.em (J = ⊤)) (λ h, or.inr h)
    (λ h, or.inl ⟨⟨h, hM.1 J hJ⟩⟩), hM.2⟩⟩⟩

/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
lemma eq_jacobson_iff_not_mem :
  I.jacobson = I ↔ ∀ x ∉ I, ∃ M : ideal R, (I ≤ M ∧ M.is_maximal) ∧ x ∉ M :=
begin
  split,
  { intros h x hx,
    erw [← h, mem_Inf] at hx,
    push_neg at hx,
    exact hx },
  { refine λ h, le_antisymm (λ x hx, _) le_jacobson,
    contrapose hx,
    erw mem_Inf,
    push_neg,
    exact h x hx }
end

theorem map_jacobson_of_surjective {f : R →+* S} (hf : function.surjective f) :
  ring_hom.ker f ≤ I → map f (I.jacobson) = (map f I).jacobson :=
begin
  intro h,
  unfold ideal.jacobson,
  have : ∀ J ∈ {J : ideal R | I ≤ J ∧ J.is_maximal}, f.ker ≤ J := λ J hJ, le_trans h hJ.left,
  refine trans (map_Inf hf this) (le_antisymm _ _),
  { refine Inf_le_Inf (λ J hJ, ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩,
    map_comap_of_surjective f hf J⟩⟩),
    haveI : J.is_maximal := hJ.right,
    exact comap_is_maximal_of_surjective f hf },
  { refine Inf_le_Inf_of_subset_insert_top (λ j hj, hj.rec_on (λ J hJ, _)),
    rw ← hJ.2,
    cases map_eq_top_or_is_maximal_of_surjective f hf hJ.left.right with htop hmax,
    { exact htop.symm ▸ set.mem_insert ⊤ _ },
    { exact set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ } },
end

lemma map_jacobson_of_bijective {f : R →+* S} (hf : function.bijective f) :
  map f (I.jacobson) = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
  (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)

lemma comap_jacobson {f : R →+* S} {K : ideal S} :
  comap f (K.jacobson) = Inf (comap f '' {J : ideal S | K ≤ J ∧ J.is_maximal}) :=
trans (comap_Inf' f _) (Inf_eq_infi).symm

theorem comap_jacobson_of_surjective {f : R →+* S} (hf : function.surjective f) {K : ideal S} :
  comap f (K.jacobson) = (comap f K).jacobson :=
begin
  unfold ideal.jacobson,
  refine le_antisymm _ _,
  { refine le_trans (comap_mono (le_of_eq (trans top_inf_eq.symm Inf_insert.symm))) _,
    rw [comap_Inf', Inf_eq_infi],
    refine infi_le_infi_of_subset (λ J hJ, _),
    have : comap f (map f J) = J := trans (comap_map_of_surjective f hf J)
      (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left),
    cases map_eq_top_or_is_maximal_of_surjective _ hf hJ.right with htop hmax,
    { refine ⟨⊤, ⟨set.mem_insert ⊤ _, htop ▸ this⟩⟩ },
    { refine ⟨map f J, ⟨set.mem_insert_of_mem _
        ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ } },
  { rw comap_Inf,
    refine le_infi_iff.2 (λ J, (le_infi_iff.2 (λ hJ, _))),
    haveI : J.is_maximal := hJ.right,
    refine Inf_le ⟨comap_mono hJ.left, comap_is_maximal_of_surjective _ hf⟩ }
end

@[mono] lemma jacobson_mono {I J : ideal R} : I ≤ J → I.jacobson ≤ J.jacobson :=
begin
  intros h x hx,
  erw mem_Inf at ⊢ hx,
  exact λ K ⟨hK, hK_max⟩, hx ⟨trans h hK, hK_max⟩
end

end ring

section comm_ring
variables [comm_ring R] [comm_ring S] {I : ideal R}

lemma radical_le_jacobson : radical I ≤ jacobson I :=
le_Inf (λ J hJ, (radical_eq_Inf I).symm ▸ Inf_le ⟨hJ.left, is_maximal.is_prime hJ.right⟩)

lemma eq_radical_of_eq_jacobson : jacobson I = I → radical I = I :=
λ h, le_antisymm (le_trans radical_le_jacobson (le_of_eq h)) le_radical

lemma is_unit_of_sub_one_mem_jacobson_bot (r : R)
  (h : r - 1 ∈ jacobson (⊥ : ideal R)) : is_unit r :=
begin
  cases exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs,
  rw [mem_bot, sub_eq_zero, mul_comm] at hs,
  exact is_unit_of_mul_eq_one _ _ hs
end

lemma mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : ideal R) ↔ ∀ y, is_unit (x * y + 1) :=
⟨λ hx y, let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y in
  is_unit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm,
    mul_comm _ z, mul_right_comm]⟩,
λ h, mem_jacobson_iff.mpr (λ y, (let ⟨b, hb⟩ := is_unit_iff_exists_inv.1 (h y) in
  ⟨b, (submodule.mem_bot R).2 (hb ▸ (by ring))⟩))⟩

/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
  I.jacobson = I ↔ jacobson (⊥ : ideal (R ⧸ I)) = ⊥ :=
begin
  have hf : function.surjective (quotient.mk I) := submodule.quotient.mk_surjective I,
  split,
  { intro h,
    replace h := congr_arg (map (quotient.mk I)) h,
    rw map_jacobson_of_surjective hf (le_of_eq mk_ker) at h,
    simpa using h },
  { intro h,
    replace h := congr_arg (comap (quotient.mk I)) h,
    rw [comap_jacobson_of_surjective hf, ← (quotient.mk I).ker_eq_comap_bot] at h,
    simpa using h }
end

/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
  I.radical = I.jacobson ↔ radical (⊥ : ideal (R ⧸ I)) = jacobson ⊥ :=
begin
  have hf : function.surjective (quotient.mk I) := submodule.quotient.mk_surjective I,
  split,
  { intro h,
    have := congr_arg (map (quotient.mk I)) h,
    rw [map_radical_of_surjective hf (le_of_eq mk_ker),
      map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this,
    simpa using this },
  { intro h,
    have := congr_arg (comap (quotient.mk I)) h,
    rw [comap_radical, comap_jacobson_of_surjective hf, ← (quotient.mk I).ker_eq_comap_bot] at this,
    simpa using this }
end

lemma jacobson_radical_eq_jacobson :
  I.radical.jacobson = I.jacobson :=
le_antisymm (le_trans (le_of_eq (congr_arg jacobson (radical_eq_Inf I)))
  (Inf_le_Inf (λ J hJ, ⟨Inf_le ⟨hJ.1, hJ.2.is_prime⟩, hJ.2⟩))) (jacobson_mono le_radical)

end comm_ring

end jacobson

section polynomial
open polynomial

variables [comm_ring R]

lemma jacobson_bot_polynomial_le_Inf_map_maximal :
  jacobson (⊥ : ideal R[X]) ≤ Inf (map (C : R →+* R[X]) '' {J : ideal R | J.is_maximal}) :=
begin
  refine le_Inf (λ J, exists_imp_distrib.2 (λ j hj, _)),
  haveI : j.is_maximal := hj.1,
  refine trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J),
  suffices : (⊥ : ideal (polynomial (R ⧸ j))).jacobson = ⊥,
  { rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot],
    replace this :=
    congr_arg (map (polynomial_quotient_equiv_quotient_polynomial j).to_ring_hom) this,
    rwa [map_jacobson_of_bijective _, map_bot] at this,
    exact (ring_equiv.bijective (polynomial_quotient_equiv_quotient_polynomial j)) },
  refine eq_bot_iff.2 (λ f hf, _),
  simpa [(λ hX, by simpa using congr_arg (λ f, coeff f 1) hX : (X : (R ⧸ j)[X]) ≠ 0)]
    using eq_C_of_degree_eq_zero (degree_eq_zero_of_is_unit ((mem_jacobson_bot.1 hf) X)),
end

lemma jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : ideal R) = ⊥) :
  jacobson (⊥ : ideal R[X]) = ⊥ :=
begin
  refine eq_bot_iff.2 (le_trans jacobson_bot_polynomial_le_Inf_map_maximal _),
  refine (λ f hf, ((submodule.mem_bot _).2 (polynomial.ext (λ n, trans _ (coeff_zero n).symm)))),
  suffices : f.coeff n ∈ ideal.jacobson ⊥, by rwa [h, submodule.mem_bot] at this,
  exact mem_Inf.2 (λ j hj, (mem_map_C_iff.1 ((mem_Inf.1 hf) ⟨j, ⟨hj.2, rfl⟩⟩)) n),
end

end polynomial

section is_local

variables [comm_ring R]

/-- An ideal `I` is local iff its Jacobson radical is maximal. -/
class is_local (I : ideal R) : Prop := (out : is_maximal (jacobson I))

theorem is_local_iff {I : ideal R} : is_local I ↔ is_maximal (jacobson I) :=
⟨λ h, h.1, λ h, ⟨h⟩⟩

theorem is_local_of_is_maximal_radical {I : ideal R} (hi : is_maximal (radical I)) : is_local I :=
⟨have radical I = jacobson I,
from le_antisymm (le_Inf $ λ M ⟨him, hm⟩, hm.is_prime.radical_le_iff.2 him)
  (Inf_le ⟨le_radical, hi⟩),
show is_maximal (jacobson I), from this ▸ hi⟩

theorem is_local.le_jacobson {I J : ideal R} (hi : is_local I) (hij : I ≤ J) (hj : J ≠ ⊤) :
  J ≤ jacobson I :=
let ⟨M, hm, hjm⟩ := exists_le_maximal J hj in
le_trans hjm $ le_of_eq $ eq.symm $ hi.1.eq_of_le hm.1.1 $ Inf_le ⟨le_trans hij hjm, hm⟩

theorem is_local.mem_jacobson_or_exists_inv {I : ideal R} (hi : is_local I) (x : R) :
  x ∈ jacobson I ∨ ∃ y, y * x - 1 ∈ I :=
classical.by_cases
  (assume h : I ⊔ span {x} = ⊤,
    let ⟨p, hpi, q, hq, hpq⟩ := submodule.mem_sup.1 ((eq_top_iff_one _).1 h) in
    let ⟨r, hr⟩ := mem_span_singleton.1 hq in
    or.inr ⟨r, by rw [← hpq, mul_comm, ← hr, ← neg_sub, add_sub_cancel]; exact I.neg_mem hpi⟩)
  (assume h : I ⊔ span {x} ≠ ⊤,
    or.inl $ le_trans le_sup_right (hi.le_jacobson le_sup_left h) $ mem_span_singleton.2 $
      dvd_refl x)

end is_local

theorem is_primary_of_is_maximal_radical [comm_ring R] {I : ideal R} (hi : is_maximal (radical I)) :
  is_primary I :=
have radical I = jacobson I,
from le_antisymm (le_Inf $ λ M ⟨him, hm⟩, hm.is_prime.radical_le_iff.2 him)
  (Inf_le ⟨le_radical, hi⟩),
⟨ne_top_of_lt $ lt_of_le_of_lt le_radical (lt_top_iff_ne_top.2 hi.1.1),
λ x y hxy, ((is_local_of_is_maximal_radical hi).mem_jacobson_or_exists_inv y).symm.imp
  (λ ⟨z, hz⟩, by rw [← mul_one x, ← sub_sub_cancel (z * y) 1, mul_sub, mul_left_comm]; exact
    I.sub_mem (I.mul_mem_left _ hxy) (I.mul_mem_left _ hz))
  (this ▸ id)⟩


end ideal