Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 7,711 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
/-
Copyright (c) 2020 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import representation_theory.basic
import representation_theory.Action
import algebra.category.Module.abelian
import algebra.category.Module.colimits
import algebra.category.Module.monoidal
/-!
# `Rep k G` is the category of `k`-linear representations of `G`.
If `V : Rep k G`, there is a coercion that allows you to treat `V` as a type,
and this type comes equipped with a `module k V` instance.
Also `V.Ο` gives the homomorphism `G β* (V ββ[k] V)`.
Conversely, given a homomorphism `Ο : G β* (V ββ[k] V)`,
you can construct the bundled representation as `Rep.of Ο`.
We construct the categorical equivalence `Rep k G β Module (monoid_algebra k G)`.
We verify that `Rep k G` is a `k`-linear abelian symmetric monoidal category with all (co)limits.
-/
universes u
open category_theory
open category_theory.limits
/-- The category of `k`-linear representations of a monoid `G`. -/
@[derive [large_category, concrete_category, has_limits, has_colimits,
preadditive, abelian]]
abbreviation Rep (k G : Type u) [ring k] [monoid G] :=
Action (Module.{u} k) (Mon.of G)
instance (k G : Type u) [comm_ring k] [monoid G] : linear k (Rep k G) :=
by apply_instance
namespace Rep
variables {k G : Type u} [comm_ring k] [monoid G]
instance : has_coe_to_sort (Rep k G) (Type u) := concrete_category.has_coe_to_sort _
instance (V : Rep k G) : add_comm_group V :=
by { change add_comm_group ((forgetβ (Rep k G) (Module k)).obj V), apply_instance, }
instance (V : Rep k G) : module k V :=
by { change module k ((forgetβ (Rep k G) (Module k)).obj V), apply_instance, }
/--
Specialize the existing `Action.Ο`, changing the type to `representation k G V`.
-/
def Ο (V : Rep k G) : representation k G V := V.Ο
/-- Lift an unbundled representation to `Rep`. -/
def of {V : Type u} [add_comm_group V] [module k V] (Ο : G β* (V ββ[k] V)) : Rep k G :=
β¨Module.of k V, Οβ©
@[simp]
lemma coe_of {V : Type u} [add_comm_group V] [module k V] (Ο : G β* (V ββ[k] V)) :
(of Ο : Type u) = V := rfl
@[simp] lemma of_Ο {V : Type u} [add_comm_group V] [module k V] (Ο : G β* (V ββ[k] V)) :
(of Ο).Ο = Ο := rfl
-- Verify that limits are calculated correctly.
noncomputable example : preserves_limits (forgetβ (Rep k G) (Module.{u} k)) :=
by apply_instance
noncomputable example : preserves_colimits (forgetβ (Rep k G) (Module.{u} k)) :=
by apply_instance
end Rep
/-!
# The categorical equivalence `Rep k G β Module.{u} (monoid_algebra k G)`.
-/
namespace Rep
variables {k G : Type u} [comm_ring k] [monoid G]
-- Verify that the symmetric monoidal structure is available.
example : symmetric_category (Rep k G) := by apply_instance
example : monoidal_preadditive (Rep k G) := by apply_instance
example : monoidal_linear k (Rep k G) := by apply_instance
noncomputable theory
/-- Auxilliary lemma for `to_Module_monoid_algebra`. -/
lemma to_Module_monoid_algebra_map_aux {k G : Type*} [comm_ring k] [monoid G]
(V W : Type*) [add_comm_group V] [add_comm_group W] [module k V] [module k W]
(Ο : G β* V ββ[k] V) (Ο : G β* W ββ[k] W)
(f : V ββ[k] W) (w : β (g : G), f.comp (Ο g) = (Ο g).comp f)
(r : monoid_algebra k G) (x : V) :
f ((((monoid_algebra.lift k G (V ββ[k] V)) Ο) r) x) =
(((monoid_algebra.lift k G (W ββ[k] W)) Ο) r) (f x) :=
begin
apply monoid_algebra.induction_on r,
{ intro g,
simp only [one_smul, monoid_algebra.lift_single, monoid_algebra.of_apply],
exact linear_map.congr_fun (w g) x, },
{ intros g h gw hw, simp only [map_add, add_left_inj, linear_map.add_apply, hw, gw], },
{ intros r g w,
simp only [alg_hom.map_smul, w, ring_hom.id_apply,
linear_map.smul_apply, linear_map.map_smulββ], }
end
/-- Auxilliary definition for `to_Module_monoid_algebra`. -/
def to_Module_monoid_algebra_map {V W : Rep k G} (f : V βΆ W) :
Module.of (monoid_algebra k G) V.Ο.as_module βΆ Module.of (monoid_algebra k G) W.Ο.as_module :=
{ map_smul' := Ξ» r x, to_Module_monoid_algebra_map_aux V.V W.V V.Ο W.Ο f.hom f.comm r x,
..f.hom, }
/-- Functorially convert a representation of `G` into a module over `monoid_algebra k G`. -/
def to_Module_monoid_algebra : Rep k G β₯€ Module.{u} (monoid_algebra k G) :=
{ obj := Ξ» V, Module.of _ V.Ο.as_module ,
map := Ξ» V W f, to_Module_monoid_algebra_map f, }
/-- Functorially convert a module over `monoid_algebra k G` into a representation of `G`. -/
def of_Module_monoid_algebra : Module.{u} (monoid_algebra k G) β₯€ Rep k G :=
{ obj := Ξ» M, Rep.of (representation.of_module k G M),
map := Ξ» M N f,
{ hom :=
{ map_smul' := Ξ» r x, f.map_smul (algebra_map k _ r) x,
..f },
comm' := Ξ» g, by { ext, apply f.map_smul, }, }, }.
lemma of_Module_monoid_algebra_obj_coe (M : Module.{u} (monoid_algebra k G)) :
(of_Module_monoid_algebra.obj M : Type u) = restrict_scalars k (monoid_algebra k G) M := rfl
lemma of_Module_monoid_algebra_obj_Ο (M : Module.{u} (monoid_algebra k G)) :
(of_Module_monoid_algebra.obj M).Ο = representation.of_module k G M := rfl
/-- Auxilliary definition for `equivalence_Module_monoid_algebra`. -/
def counit_iso_add_equiv {M : Module.{u} (monoid_algebra k G)} :
((of_Module_monoid_algebra β to_Module_monoid_algebra).obj M) β+ M :=
begin
dsimp [of_Module_monoid_algebra, to_Module_monoid_algebra],
refine (representation.of_module k G β₯M).as_module_equiv.trans (restrict_scalars.add_equiv _ _ _),
end
/-- Auxilliary definition for `equivalence_Module_monoid_algebra`. -/
def unit_iso_add_equiv {V : Rep k G} :
V β+ ((to_Module_monoid_algebra β of_Module_monoid_algebra).obj V) :=
begin
dsimp [of_Module_monoid_algebra, to_Module_monoid_algebra],
refine V.Ο.as_module_equiv.symm.trans _,
exact (restrict_scalars.add_equiv _ _ _).symm,
end
/-- Auxilliary definition for `equivalence_Module_monoid_algebra`. -/
def counit_iso (M : Module.{u} (monoid_algebra k G)) :
(of_Module_monoid_algebra β to_Module_monoid_algebra).obj M β
M :=
linear_equiv.to_Module_iso'
{ map_smul' := Ξ» r x, begin
dsimp [counit_iso_add_equiv],
simp,
end,
..counit_iso_add_equiv, }
lemma unit_iso_comm (V : Rep k G) (g : G) (x : V) :
unit_iso_add_equiv (((V.Ο) g).to_fun x) =
(((of_Module_monoid_algebra.obj (to_Module_monoid_algebra.obj V)).Ο) g).to_fun
(unit_iso_add_equiv x) :=
begin
dsimp [unit_iso_add_equiv, of_Module_monoid_algebra, to_Module_monoid_algebra],
simp only [add_equiv.apply_eq_iff_eq, add_equiv.apply_symm_apply,
representation.as_module_equiv_symm_map_rho, representation.of_module_as_module_act],
end
/-- Auxilliary definition for `equivalence_Module_monoid_algebra`. -/
def unit_iso (V : Rep k G) :
V β
((to_Module_monoid_algebra β of_Module_monoid_algebra).obj V) :=
Action.mk_iso (linear_equiv.to_Module_iso'
{ map_smul' := Ξ» r x, begin
dsimp [unit_iso_add_equiv],
simp only [representation.as_module_equiv_symm_map_smul,
restrict_scalars.add_equiv_symm_map_algebra_map_smul],
end,
..unit_iso_add_equiv, })
(Ξ» g, by { ext, apply unit_iso_comm, })
/-- The categorical equivalence `Rep k G β Module (monoid_algebra k G)`. -/
def equivalence_Module_monoid_algebra : Rep k G β Module.{u} (monoid_algebra k G) :=
{ functor := to_Module_monoid_algebra,
inverse := of_Module_monoid_algebra,
unit_iso := nat_iso.of_components (Ξ» V, unit_iso V) (by tidy),
counit_iso := nat_iso.of_components (Ξ» M, counit_iso M) (by tidy), }
-- TODO Verify that the equivalence with `Module (monoid_algebra k G)` is a monoidal functor.
end Rep
|