Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 35,050 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Mario Carneiro, Yaël Dillies
-/
import order.compare
import order.max
import order.rel_classes

/-!
# Monotonicity

This file defines (strictly) monotone/antitone functions. Contrary to standard mathematical usage,
"monotone"/"mono" here means "increasing", not "increasing or decreasing". We use "antitone"/"anti"
to mean "decreasing".

## Definitions

* `monotone f`: A function `f` between two preorders is monotone if `a ≤ b` implies `f a ≤ f b`.
* `antitone f`: A function `f` between two preorders is antitone if `a ≤ b` implies `f b ≤ f a`.
* `monotone_on f s`: Same as `monotone f`, but for all `a, b ∈ s`.
* `antitone_on f s`: Same as `antitone f`, but for all `a, b ∈ s`.
* `strict_mono f` : A function `f` between two preorders is strictly monotone if `a < b` implies
  `f a < f b`.
* `strict_anti f` : A function `f` between two preorders is strictly antitone if `a < b` implies
  `f b < f a`.
* `strict_mono_on f s`: Same as `strict_mono f`, but for all `a, b ∈ s`.
* `strict_anti_on f s`: Same as `strict_anti f`, but for all `a, b ∈ s`.

## Main theorems

* `monotone_nat_of_le_succ`, `monotone_int_of_le_succ`: If `f : ℕ → α` or `f : ℤ → α` and
  `f n ≤ f (n + 1)` for all `n`, then `f` is monotone.
* `antitone_nat_of_succ_le`, `antitone_int_of_succ_le`: If `f : ℕ → α` or `f : ℤ → α` and
  `f (n + 1) ≤ f n` for all `n`, then `f` is antitone.
* `strict_mono_nat_of_lt_succ`, `strict_mono_int_of_lt_succ`: If `f : ℕ → α` or `f : ℤ → α` and
  `f n < f (n + 1)` for all `n`, then `f` is strictly monotone.
* `strict_anti_nat_of_succ_lt`, `strict_anti_int_of_succ_lt`: If `f : ℕ → α` or `f : ℤ → α` and
  `f (n + 1) < f n` for all `n`, then `f` is strictly antitone.

## Implementation notes

Some of these definitions used to only require `has_le α` or `has_lt α`. The advantage of this is
unclear and it led to slight elaboration issues. Now, everything requires `preorder α` and seems to
work fine. Related Zulip discussion:
https://leanprover.zulipchat.com/#narrow/stream/113488-general/topic/Order.20diamond/near/254353352.

## TODO

The above theorems are also true in `ℕ+`, `fin n`... To make that work, we need `succ_order α`
and `succ_archimedean α`.

## Tags

monotone, strictly monotone, antitone, strictly antitone, increasing, strictly increasing,
decreasing, strictly decreasing
-/

open function order_dual

universes u v w
variables {α : Type u} {β : Type v} {γ : Type w} {δ : Type*} {r : α → α → Prop}

section monotone_def
variables [preorder α] [preorder β]

/-- A function `f` is monotone if `a ≤ b` implies `f a ≤ f b`. -/
def monotone (f : α → β) : Prop := ∀ ⦃a b⦄, a ≤ b → f a ≤ f b

/-- A function `f` is antitone if `a ≤ b` implies `f b ≤ f a`. -/
def antitone (f : α → β) : Prop := ∀ ⦃a b⦄, a ≤ b → f b ≤ f a

/-- A function `f` is monotone on `s` if, for all `a, b ∈ s`, `a ≤ b` implies `f a ≤ f b`. -/
def monotone_on (f : α → β) (s : set α) : Prop :=
∀ ⦃a⦄ (ha : a ∈ s) ⦃b⦄ (hb : b ∈ s), a ≤ b → f a ≤ f b

/-- A function `f` is antitone on `s` if, for all `a, b ∈ s`, `a ≤ b` implies `f b ≤ f a`. -/
def antitone_on (f : α → β) (s : set α) : Prop :=
∀ ⦃a⦄ (ha : a ∈ s) ⦃b⦄ (hb : b ∈ s), a ≤ b → f b ≤ f a

/-- A function `f` is strictly monotone if `a < b` implies `f a < f b`. -/
def strict_mono (f : α → β) : Prop :=
∀ ⦃a b⦄, a < b → f a < f b

/-- A function `f` is strictly antitone if `a < b` implies `f b < f a`. -/
def strict_anti (f : α → β) : Prop :=
∀ ⦃a b⦄, a < b → f b < f a

/-- A function `f` is strictly monotone on `s` if, for all `a, b ∈ s`, `a < b` implies
`f a < f b`. -/
def strict_mono_on (f : α → β) (s : set α) : Prop :=
∀ ⦃a⦄ (ha : a ∈ s) ⦃b⦄ (hb : b ∈ s), a < b → f a < f b

/-- A function `f` is strictly antitone on `s` if, for all `a, b ∈ s`, `a < b` implies
`f b < f a`. -/
def strict_anti_on (f : α → β) (s : set α) : Prop :=
∀ ⦃a⦄ (ha : a ∈ s) ⦃b⦄ (hb : b ∈ s), a < b → f b < f a

end monotone_def

/-! ### Monotonicity on the dual order

Strictly, many of the `*_on.dual` lemmas in this section should use `of_dual ⁻¹' s` instead of `s`,
but right now this is not possible as `set.preimage` is not defined yet, and importing it creates
an import cycle.

Often, you should not need the rewriting lemmas. Instead, you probably want to add `.dual`,
`.dual_left` or `.dual_right` to your `monotone`/`antitone` hypothesis.
-/

section order_dual

variables [preorder α] [preorder β] {f : α → β} {s : set α}

@[simp] lemma monotone_comp_of_dual_iff : monotone (f ∘ of_dual) ↔ antitone f := forall_swap
@[simp] lemma antitone_comp_of_dual_iff : antitone (f ∘ of_dual) ↔ monotone f := forall_swap
@[simp] lemma monotone_to_dual_comp_iff : monotone (to_dual ∘ f) ↔ antitone f := iff.rfl
@[simp] lemma antitone_to_dual_comp_iff : antitone (to_dual ∘ f) ↔ monotone f := iff.rfl

@[simp] lemma monotone_on_comp_of_dual_iff : monotone_on (f ∘ of_dual) s ↔ antitone_on f s :=
forall₂_swap
@[simp] lemma antitone_on_comp_of_dual_iff : antitone_on (f ∘ of_dual) s ↔ monotone_on f s :=
forall₂_swap
@[simp] lemma monotone_on_to_dual_comp_iff : monotone_on (to_dual ∘ f) s ↔ antitone_on f s :=
iff.rfl
@[simp] lemma antitone_on_to_dual_comp_iff : antitone_on (to_dual ∘ f) s ↔ monotone_on f s :=
iff.rfl

@[simp] lemma strict_mono_comp_of_dual_iff : strict_mono (f ∘ of_dual) ↔ strict_anti f :=
forall_swap
@[simp] lemma strict_anti_comp_of_dual_iff : strict_anti (f ∘ of_dual) ↔ strict_mono f :=
forall_swap
@[simp] lemma strict_mono_to_dual_comp_iff : strict_mono (to_dual ∘ f) ↔ strict_anti f := iff.rfl
@[simp] lemma strict_anti_to_dual_comp_iff : strict_anti (to_dual ∘ f) ↔ strict_mono f := iff.rfl

@[simp] lemma strict_mono_on_comp_of_dual_iff :
  strict_mono_on (f ∘ of_dual) s ↔ strict_anti_on f s := forall₂_swap
@[simp] lemma strict_anti_on_comp_of_dual_iff :
  strict_anti_on (f ∘ of_dual) s ↔ strict_mono_on f s := forall₂_swap
@[simp] lemma strict_mono_on_to_dual_comp_iff :
  strict_mono_on (to_dual ∘ f) s ↔ strict_anti_on f s := iff.rfl
@[simp] lemma strict_anti_on_to_dual_comp_iff :
  strict_anti_on (to_dual ∘ f) s ↔ strict_mono_on f s := iff.rfl

protected lemma monotone.dual (hf : monotone f) : monotone (to_dual ∘ f ∘ of_dual) := swap hf
protected lemma antitone.dual (hf : antitone f) : antitone (to_dual ∘ f ∘ of_dual) := swap hf
protected lemma monotone_on.dual (hf : monotone_on f s) : monotone_on (to_dual ∘ f ∘ of_dual) s :=
swap₂ hf
protected lemma antitone_on.dual (hf : antitone_on f s) : antitone_on (to_dual ∘ f ∘ of_dual) s :=
swap₂ hf
protected lemma strict_mono.dual (hf : strict_mono f) : strict_mono (to_dual ∘ f ∘ of_dual) :=
swap hf
protected lemma strict_anti.dual (hf : strict_anti f) : strict_anti (to_dual ∘ f ∘ of_dual) :=
swap hf
protected lemma strict_mono_on.dual (hf : strict_mono_on f s) :
  strict_mono_on (to_dual ∘ f ∘ of_dual) s := swap₂ hf
protected lemma strict_anti_on.dual (hf : strict_anti_on f s) :
  strict_anti_on (to_dual ∘ f ∘ of_dual) s := swap₂ hf

alias antitone_comp_of_dual_iff ↔ _ monotone.dual_left
alias monotone_comp_of_dual_iff ↔ _ antitone.dual_left
alias antitone_to_dual_comp_iff ↔ _ monotone.dual_right
alias monotone_to_dual_comp_iff ↔ _ antitone.dual_right
alias antitone_on_comp_of_dual_iff ↔ _ monotone_on.dual_left
alias monotone_on_comp_of_dual_iff ↔ _ antitone_on.dual_left
alias antitone_on_to_dual_comp_iff ↔ _ monotone_on.dual_right
alias monotone_on_to_dual_comp_iff ↔ _ antitone_on.dual_right
alias strict_anti_comp_of_dual_iff ↔ _ strict_mono.dual_left
alias strict_mono_comp_of_dual_iff ↔ _ strict_anti.dual_left
alias strict_anti_to_dual_comp_iff ↔ _ strict_mono.dual_right
alias strict_mono_to_dual_comp_iff ↔ _ strict_anti.dual_right
alias strict_anti_on_comp_of_dual_iff ↔ _ strict_mono_on.dual_left
alias strict_mono_on_comp_of_dual_iff ↔ _ strict_anti_on.dual_left
alias strict_anti_on_to_dual_comp_iff ↔ _ strict_mono_on.dual_right
alias strict_mono_on_to_dual_comp_iff ↔ _ strict_anti_on.dual_right

end order_dual

/-! ### Monotonicity in function spaces -/

section preorder
variables [preorder α]

theorem monotone.comp_le_comp_left [preorder β]
  {f : β → α} {g h : γ → β} (hf : monotone f) (le_gh : g ≤ h) :
  has_le.le.{max w u} (f ∘ g) (f ∘ h) :=
λ x, hf (le_gh x)

variables [preorder γ]

theorem monotone_lam {f : α → β → γ} (hf : ∀ b, monotone (λ a, f a b)) : monotone f :=
λ a a' h b, hf b h

theorem monotone_app (f : β → α → γ) (b : β) (hf : monotone (λ a b, f b a)) : monotone (f b) :=
λ a a' h, hf h b

theorem antitone_lam {f : α → β → γ} (hf : ∀ b, antitone (λ a, f a b)) : antitone f :=
λ a a' h b, hf b h

theorem antitone_app (f : β → α → γ) (b : β) (hf : antitone (λ a b, f b a)) : antitone (f b) :=
λ a a' h, hf h b

end preorder

lemma function.monotone_eval {ι : Type u} {α : ι → Type v} [∀ i, preorder (α i)] (i : ι) :
  monotone (function.eval i : (Π i, α i) → α i) :=
λ f g H, H i

/-! ### Monotonicity hierarchy -/

section preorder
variables [preorder α]

section preorder
variables [preorder β] {f : α → β} {a b : α}

/-!
These four lemmas are there to strip off the semi-implicit arguments `⦃a b : α⦄`. This is useful
when you do not want to apply a `monotone` assumption (i.e. your goal is `a ≤ b → f a ≤ f b`).
However if you find yourself writing `hf.imp h`, then you should have written `hf h` instead.
-/

lemma monotone.imp (hf : monotone f) (h : a ≤ b) : f a ≤ f b := hf h
lemma antitone.imp (hf : antitone f) (h : a ≤ b) : f b ≤ f a := hf h
lemma strict_mono.imp (hf : strict_mono f) (h : a < b) : f a < f b := hf h
lemma strict_anti.imp (hf : strict_anti f) (h : a < b) : f b < f a := hf h

protected lemma monotone.monotone_on (hf : monotone f) (s : set α) : monotone_on f s :=
λ a _ b _, hf.imp

protected lemma antitone.antitone_on (hf : antitone f) (s : set α) : antitone_on f s :=
λ a _ b _, hf.imp

lemma monotone_on_univ : monotone_on f set.univ ↔ monotone f :=
⟨λ h a b, h trivial trivial, λ h, h.monotone_on _⟩

lemma antitone_on_univ : antitone_on f set.univ ↔ antitone f :=
⟨λ h a b, h trivial trivial, λ h, h.antitone_on _⟩

protected lemma strict_mono.strict_mono_on (hf : strict_mono f) (s : set α) : strict_mono_on f s :=
λ a _ b _, hf.imp

protected lemma strict_anti.strict_anti_on (hf : strict_anti f) (s : set α) : strict_anti_on f s :=
λ a _ b _, hf.imp

lemma strict_mono_on_univ : strict_mono_on f set.univ ↔ strict_mono f :=
⟨λ h a b, h trivial trivial, λ h, h.strict_mono_on _⟩

lemma strict_anti_on_univ : strict_anti_on f set.univ ↔ strict_anti f :=
⟨λ h a b, h trivial trivial, λ h, h.strict_anti_on _⟩

end preorder

section partial_order
variables [partial_order β] {f : α → β}

lemma monotone.strict_mono_of_injective (h₁ : monotone f) (h₂ : injective f) : strict_mono f :=
λ a b h, (h₁ h.le).lt_of_ne (λ H, h.ne $ h₂ H)

lemma antitone.strict_anti_of_injective (h₁ : antitone f) (h₂ : injective f) : strict_anti f :=
λ a b h, (h₁ h.le).lt_of_ne (λ H, h.ne $ h₂ H.symm)

end partial_order
end preorder

section partial_order
variables [partial_order α] [preorder β] {f : α → β} {s : set α}

lemma monotone_iff_forall_lt : monotone f ↔ ∀ ⦃a b⦄, a < b → f a ≤ f b :=
forall₂_congr $ λ a b, ⟨λ hf h, hf h.le, λ hf h, h.eq_or_lt.elim (λ H, (congr_arg _ H).le) hf⟩

lemma antitone_iff_forall_lt : antitone f ↔ ∀ ⦃a b⦄, a < b → f b ≤ f a :=
forall₂_congr $ λ a b, ⟨λ hf h, hf h.le, λ hf h, h.eq_or_lt.elim (λ H, (congr_arg _ H).ge) hf⟩

lemma monotone_on_iff_forall_lt :
  monotone_on f s ↔ ∀ ⦃a⦄ (ha : a ∈ s) ⦃b⦄ (hb : b ∈ s), a < b → f a ≤ f b :=
⟨λ hf a ha b hb h, hf ha hb h.le,
  λ hf a ha b hb h, h.eq_or_lt.elim (λ H, (congr_arg _ H).le) (hf ha hb)⟩

lemma antitone_on_iff_forall_lt :
  antitone_on f s ↔ ∀ ⦃a⦄ (ha : a ∈ s) ⦃b⦄ (hb : b ∈ s), a < b → f b ≤ f a :=
⟨λ hf a ha b hb h, hf ha hb h.le,
  λ hf a ha b hb h, h.eq_or_lt.elim (λ H, (congr_arg _ H).ge) (hf ha hb)⟩

-- `preorder α` isn't strong enough: if the preorder on `α` is an equivalence relation,
-- then `strict_mono f` is vacuously true.
protected lemma strict_mono_on.monotone_on (hf : strict_mono_on f s) : monotone_on f s :=
monotone_on_iff_forall_lt.2 $ λ a ha b hb h, (hf ha hb h).le

protected lemma strict_anti_on.antitone_on (hf : strict_anti_on f s) : antitone_on f s :=
antitone_on_iff_forall_lt.2 $ λ a ha b hb h, (hf ha hb h).le

protected lemma strict_mono.monotone (hf : strict_mono f) : monotone f :=
monotone_iff_forall_lt.2 $ λ a b h, (hf h).le

protected lemma strict_anti.antitone (hf : strict_anti f) : antitone f :=
antitone_iff_forall_lt.2 $ λ a b h, (hf h).le

end partial_order

/-! ### Monotonicity from and to subsingletons -/

namespace subsingleton
variables [preorder α] [preorder β]

protected lemma monotone [subsingleton α] (f : α → β) : monotone f :=
λ a b _, (congr_arg _ $ subsingleton.elim _ _).le

protected lemma antitone [subsingleton α] (f : α → β) : antitone f :=
λ a b _, (congr_arg _ $ subsingleton.elim _ _).le

lemma monotone' [subsingleton β] (f : α → β) : monotone f := λ a b _, (subsingleton.elim _ _).le
lemma antitone' [subsingleton β] (f : α → β) : antitone f := λ a b _, (subsingleton.elim _ _).le

protected lemma strict_mono [subsingleton α] (f : α → β) : strict_mono f :=
λ a b h, (h.ne $ subsingleton.elim _ _).elim

protected lemma strict_anti [subsingleton α] (f : α → β) : strict_anti f :=
λ a b h, (h.ne $ subsingleton.elim _ _).elim

end subsingleton

/-! ### Miscellaneous monotonicity results -/

lemma monotone_id [preorder α] : monotone (id : α → α) := λ a b, id

lemma monotone_on_id [preorder α] {s : set α} : monotone_on id s := λ a ha b hb, id

lemma strict_mono_id [preorder α] : strict_mono (id : α → α) := λ a b, id

lemma strict_mono_on_id [preorder α] {s : set α} : strict_mono_on id s := λ a ha b hb, id

theorem monotone_const [preorder α] [preorder β] {c : β} : monotone (λ (a : α), c) :=
λ a b _, le_rfl

theorem monotone_on_const [preorder α] [preorder β] {c : β} {s : set α} :
  monotone_on (λ (a : α), c) s :=
λ a _ b _ _, le_rfl

theorem antitone_const [preorder α] [preorder β] {c : β} : antitone (λ (a : α), c) :=
λ a b _, le_refl c

theorem antitone_on_const [preorder α] [preorder β] {c : β} {s : set α} :
  antitone_on (λ (a : α), c) s :=
λ a _ b _ _, le_rfl

lemma strict_mono_of_le_iff_le [preorder α] [preorder β] {f : α → β}
  (h : ∀ x y, x ≤ y ↔ f x ≤ f y) : strict_mono f :=
λ a b, (lt_iff_lt_of_le_iff_le' (h _ _) (h _ _)).1

lemma strict_anti_of_le_iff_le [preorder α] [preorder β] {f : α → β}
  (h : ∀ x y, x ≤ y ↔ f y ≤ f x) : strict_anti f :=
λ a b, (lt_iff_lt_of_le_iff_le' (h _ _) (h _ _)).1

lemma injective_of_lt_imp_ne [linear_order α] {f : α → β} (h : ∀ x y, x < y → f x ≠ f y) :
  injective f :=
begin
  intros x y hxy,
  contrapose hxy,
  cases ne.lt_or_lt hxy with hxy hxy,
  exacts [h _ _ hxy, (h _ _ hxy).symm]
end

lemma injective_of_le_imp_le [partial_order α] [preorder β] (f : α → β)
  (h : ∀ {x y}, f x ≤ f y → x ≤ y) : injective f :=
λ x y hxy, (h hxy.le).antisymm (h hxy.ge)

section preorder
variables [preorder α] [preorder β] {f g : α → β} {a : α}

lemma strict_mono.is_max_of_apply (hf : strict_mono f) (ha : is_max (f a)) : is_max a :=
of_not_not $ λ h, let ⟨b, hb⟩ := not_is_max_iff.1 h in (hf hb).not_is_max ha

lemma strict_mono.is_min_of_apply (hf : strict_mono f) (ha : is_min (f a)) : is_min a :=
of_not_not $ λ h, let ⟨b, hb⟩ := not_is_min_iff.1 h in (hf hb).not_is_min ha

lemma strict_anti.is_max_of_apply (hf : strict_anti f) (ha : is_min (f a)) : is_max a :=
of_not_not $ λ h, let ⟨b, hb⟩ := not_is_max_iff.1 h in (hf hb).not_is_min ha

lemma strict_anti.is_min_of_apply (hf : strict_anti f) (ha : is_max (f a)) : is_min a :=
of_not_not $ λ h, let ⟨b, hb⟩ := not_is_min_iff.1 h in (hf hb).not_is_max ha

protected lemma strict_mono.ite' (hf : strict_mono f) (hg : strict_mono g) {p : α → Prop}
  [decidable_pred p] (hp : ∀ ⦃x y⦄, x < y → p y → p x)
  (hfg : ∀ ⦃x y⦄, p x → ¬p y → x < y → f x < g y) :
  strict_mono (λ x, if p x then f x else g x) :=
begin
  intros x y h,
  by_cases hy : p y,
  { have hx : p x := hp h hy,
    simpa [hx, hy] using hf h },
  by_cases hx : p x,
  { simpa [hx, hy] using hfg hx hy h },
  { simpa [hx, hy] using hg h}
end

protected lemma strict_mono.ite (hf : strict_mono f) (hg : strict_mono g) {p : α → Prop}
  [decidable_pred p] (hp : ∀ ⦃x y⦄, x < y → p y → p x) (hfg : ∀ x, f x ≤ g x) :
  strict_mono (λ x, if p x then f x else g x) :=
hf.ite' hg hp $ λ x y hx hy h, (hf h).trans_le (hfg y)

protected lemma strict_anti.ite' (hf : strict_anti f) (hg : strict_anti g) {p : α → Prop}
  [decidable_pred p] (hp : ∀ ⦃x y⦄, x < y → p y → p x)
  (hfg : ∀ ⦃x y⦄, p x → ¬p y → x < y → g y < f x) :
  strict_anti (λ x, if p x then f x else g x) :=
(strict_mono.ite' hf.dual_right hg.dual_right hp hfg).dual_right

protected lemma strict_anti.ite (hf : strict_anti f) (hg : strict_anti g) {p : α → Prop}
  [decidable_pred p] (hp : ∀ ⦃x y⦄, x < y → p y → p x) (hfg : ∀ x, g x ≤ f x) :
  strict_anti (λ x, if p x then f x else g x) :=
hf.ite' hg hp $ λ x y hx hy h, (hfg y).trans_lt (hf h)

end preorder

/-! ### Monotonicity under composition -/

section composition
variables [preorder α] [preorder β] [preorder γ] {g : β → γ} {f : α → β} {s : set α}

protected lemma monotone.comp (hg : monotone g) (hf : monotone f) :
  monotone (g ∘ f) :=
λ a b h, hg (hf h)

lemma monotone.comp_antitone (hg : monotone g) (hf : antitone f) :
  antitone (g ∘ f) :=
λ a b h, hg (hf h)

protected lemma antitone.comp (hg : antitone g) (hf : antitone f) :
  monotone (g ∘ f) :=
λ a b h, hg (hf h)

lemma antitone.comp_monotone (hg : antitone g) (hf : monotone f) :
  antitone (g ∘ f) :=
λ a b h, hg (hf h)

protected lemma monotone.iterate {f : α → α} (hf : monotone f) (n : ℕ) : monotone (f^[n]) :=
nat.rec_on n monotone_id (λ n h, h.comp hf)

protected lemma monotone.comp_monotone_on (hg : monotone g) (hf : monotone_on f s) :
  monotone_on (g ∘ f) s :=
λ a ha b hb h, hg (hf ha hb h)

lemma monotone.comp_antitone_on (hg : monotone g) (hf : antitone_on f s) :
  antitone_on (g ∘ f) s :=
λ a ha b hb h, hg (hf ha hb h)

protected lemma antitone.comp_antitone_on (hg : antitone g) (hf : antitone_on f s) :
  monotone_on (g ∘ f) s :=
λ a ha b hb h, hg (hf ha hb h)

lemma antitone.comp_monotone_on (hg : antitone g) (hf : monotone_on f s) :
  antitone_on (g ∘ f) s :=
λ a ha b hb h, hg (hf ha hb h)

protected lemma strict_mono.comp (hg : strict_mono g) (hf : strict_mono f) :
  strict_mono (g ∘ f) :=
λ a b h, hg (hf h)

lemma strict_mono.comp_strict_anti (hg : strict_mono g) (hf : strict_anti f) :
  strict_anti (g ∘ f) :=
λ a b h, hg (hf h)

protected lemma strict_anti.comp (hg : strict_anti g) (hf : strict_anti f) :
  strict_mono (g ∘ f) :=
λ a b h, hg (hf h)

lemma strict_anti.comp_strict_mono (hg : strict_anti g) (hf : strict_mono f) :
  strict_anti (g ∘ f) :=
λ a b h, hg (hf h)

protected lemma strict_mono.iterate {f : α → α} (hf : strict_mono f) (n : ℕ) :
  strict_mono (f^[n]) :=
nat.rec_on n strict_mono_id (λ n h, h.comp hf)

protected lemma strict_mono.comp_strict_mono_on (hg : strict_mono g) (hf : strict_mono_on f s) :
  strict_mono_on (g ∘ f) s :=
λ a ha b hb h, hg (hf ha hb h)

lemma strict_mono.comp_strict_anti_on (hg : strict_mono g) (hf : strict_anti_on f s) :
  strict_anti_on (g ∘ f) s :=
λ a ha b hb h, hg (hf ha hb h)

protected lemma strict_anti.comp_strict_anti_on (hg : strict_anti g) (hf : strict_anti_on f s) :
  strict_mono_on (g ∘ f) s :=
λ a ha b hb h, hg (hf ha hb h)

lemma strict_anti.comp_strict_mono_on (hg : strict_anti g) (hf : strict_mono_on f s) :
  strict_anti_on (g ∘ f) s :=
λ a ha b hb h, hg (hf ha hb h)

end composition

namespace list

section fold

theorem foldl_monotone [preorder α] {f : α → β → α} (H : ∀ b, monotone (λ a, f a b)) (l : list β) :
  monotone (λ a, l.foldl f a) :=
list.rec_on l (λ _ _, id) (λ i l hl _ _ h, hl (H _ h))

theorem foldr_monotone [preorder β] {f : α → β → β} (H : ∀ a, monotone (f a)) (l : list α) :
  monotone (λ b, l.foldr f b) :=
λ _ _ h, list.rec_on l h (λ i l hl, H i hl)

theorem foldl_strict_mono [preorder α] {f : α → β → α} (H : ∀ b, strict_mono (λ a, f a b))
  (l : list β) : strict_mono (λ a, l.foldl f a) :=
list.rec_on l (λ _ _, id) (λ i l hl _ _ h, hl (H _ h))

theorem foldr_strict_mono [preorder β] {f : α → β → β} (H : ∀ a, strict_mono (f a)) (l : list α) :
  strict_mono (λ b, l.foldr f b) :=
λ _ _ h, list.rec_on l h (λ i l hl, H i hl)

end fold

end list

/-! ### Monotonicity in linear orders  -/

section linear_order
variables [linear_order α]

section preorder
variables [preorder β] {f : α → β} {s : set α}

open ordering

lemma monotone.reflect_lt (hf : monotone f) {a b : α} (h : f a < f b) : a < b :=
lt_of_not_ge (λ h', h.not_le (hf h'))

lemma antitone.reflect_lt (hf : antitone f) {a b : α} (h : f a < f b) : b < a :=
lt_of_not_ge (λ h', h.not_le (hf h'))

lemma monotone_on.reflect_lt (hf : monotone_on f s) {a b : α} (ha : a ∈ s) (hb : b ∈ s)
  (h : f a < f b) :
  a < b :=
lt_of_not_ge $ λ h', h.not_le $ hf hb ha h'

lemma antitone_on.reflect_lt (hf : antitone_on f s) {a b : α}  (ha : a ∈ s) (hb : b ∈ s)
  (h : f a < f b) :
  b < a :=
lt_of_not_ge $ λ h', h.not_le $ hf ha hb h'

lemma strict_mono_on.le_iff_le (hf : strict_mono_on f s) {a b : α} (ha : a ∈ s) (hb : b ∈ s) :
  f a ≤ f b ↔ a ≤ b :=
⟨λ h, le_of_not_gt $ λ h', (hf hb ha h').not_le h,
 λ h, h.lt_or_eq_dec.elim (λ h', (hf ha hb h').le) (λ h', h' ▸ le_rfl)⟩

lemma strict_anti_on.le_iff_le (hf : strict_anti_on f s) {a b : α} (ha : a ∈ s) (hb : b ∈ s) :
  f a ≤ f b ↔ b ≤ a :=
hf.dual_right.le_iff_le hb ha

lemma strict_mono_on.lt_iff_lt (hf : strict_mono_on f s) {a b : α} (ha : a ∈ s) (hb : b ∈ s) :
  f a < f b ↔ a < b :=
by rw [lt_iff_le_not_le, lt_iff_le_not_le, hf.le_iff_le ha hb, hf.le_iff_le hb ha]

lemma strict_anti_on.lt_iff_lt (hf : strict_anti_on f s) {a b : α} (ha : a ∈ s) (hb : b ∈ s) :
  f a < f b ↔ b < a :=
hf.dual_right.lt_iff_lt hb ha

lemma strict_mono.le_iff_le (hf : strict_mono f) {a b : α} :
  f a ≤ f b ↔ a ≤ b :=
(hf.strict_mono_on set.univ).le_iff_le trivial trivial

lemma strict_anti.le_iff_le (hf : strict_anti f) {a b : α} :
  f a ≤ f b ↔ b ≤ a :=
(hf.strict_anti_on set.univ).le_iff_le trivial trivial

lemma strict_mono.lt_iff_lt (hf : strict_mono f) {a b : α} :
  f a < f b ↔ a < b :=
(hf.strict_mono_on set.univ).lt_iff_lt trivial trivial

lemma strict_anti.lt_iff_lt (hf : strict_anti f) {a b : α} :
  f a < f b ↔ b < a :=
(hf.strict_anti_on set.univ).lt_iff_lt trivial trivial

protected theorem strict_mono_on.compares (hf : strict_mono_on f s) {a b : α} (ha : a ∈ s)
  (hb : b ∈ s) :
  ∀ {o : ordering}, o.compares (f a) (f b) ↔ o.compares a b
| ordering.lt := hf.lt_iff_lt ha hb
| ordering.eq := ⟨λ h, ((hf.le_iff_le ha hb).1 h.le).antisymm ((hf.le_iff_le hb ha).1 h.symm.le),
                   congr_arg _⟩
| ordering.gt := hf.lt_iff_lt hb ha

protected theorem strict_anti_on.compares (hf : strict_anti_on f s) {a b : α} (ha : a ∈ s)
  (hb : b ∈ s) {o : ordering} :
  o.compares (f a) (f b) ↔ o.compares b a :=
to_dual_compares_to_dual.trans $ hf.dual_right.compares hb ha

protected theorem strict_mono.compares (hf : strict_mono f) {a b : α} {o : ordering} :
  o.compares (f a) (f b) ↔ o.compares a b :=
(hf.strict_mono_on set.univ).compares trivial trivial

protected theorem strict_anti.compares (hf : strict_anti f) {a b : α} {o : ordering} :
  o.compares (f a) (f b) ↔ o.compares b a :=
(hf.strict_anti_on set.univ).compares trivial trivial

lemma strict_mono.injective (hf : strict_mono f) : injective f :=
λ x y h, show compares eq x y, from hf.compares.1 h

lemma strict_anti.injective (hf : strict_anti f) : injective f :=
λ x y h, show compares eq x y, from hf.compares.1 h.symm

lemma strict_mono.maximal_of_maximal_image (hf : strict_mono f) {a} (hmax : ∀ p, p ≤ f a) (x : α) :
  x ≤ a :=
hf.le_iff_le.mp (hmax (f x))

lemma strict_mono.minimal_of_minimal_image (hf : strict_mono f) {a} (hmin : ∀ p, f a ≤ p) (x : α) :
  a ≤ x :=
hf.le_iff_le.mp (hmin (f x))

lemma strict_anti.minimal_of_maximal_image (hf : strict_anti f) {a} (hmax : ∀ p, p ≤ f a) (x : α) :
  a ≤ x :=
hf.le_iff_le.mp (hmax (f x))

lemma strict_anti.maximal_of_minimal_image (hf : strict_anti f) {a} (hmin : ∀ p, f a ≤ p) (x : α) :
  x ≤ a :=
hf.le_iff_le.mp (hmin (f x))

end preorder

section partial_order
variables [partial_order β] {f : α → β}

lemma monotone.strict_mono_iff_injective (hf : monotone f) :
  strict_mono f ↔ injective f :=
⟨λ h, h.injective, hf.strict_mono_of_injective⟩

lemma antitone.strict_anti_iff_injective (hf : antitone f) :
  strict_anti f ↔ injective f :=
⟨λ h, h.injective, hf.strict_anti_of_injective⟩

end partial_order

/-!
### Strictly monotone functions and `cmp`
-/

variables [linear_order β] {f : α → β} {s : set α} {x y : α}

lemma strict_mono_on.cmp_map_eq (hf : strict_mono_on f s) (hx : x ∈ s) (hy : y ∈ s) :
  cmp (f x) (f y) = cmp x y :=
((hf.compares hx hy).2 (cmp_compares x y)).cmp_eq

lemma strict_mono.cmp_map_eq (hf : strict_mono f) (x y : α) : cmp (f x) (f y) = cmp x y :=
(hf.strict_mono_on set.univ).cmp_map_eq trivial trivial

lemma strict_anti_on.cmp_map_eq (hf : strict_anti_on f s) (hx : x ∈ s) (hy : y ∈ s) :
  cmp (f x) (f y) = cmp y x :=
hf.dual_right.cmp_map_eq hy hx

lemma strict_anti.cmp_map_eq (hf : strict_anti f) (x y : α) : cmp (f x) (f y) = cmp y x :=
(hf.strict_anti_on set.univ).cmp_map_eq trivial trivial

end linear_order

/-! ### Monotonicity in `ℕ` and `ℤ` -/

section preorder
variables [preorder α]

lemma nat.rel_of_forall_rel_succ_of_le_of_lt (r : β → β → Prop) [is_trans β r]
  {f : ℕ → β} {a : ℕ} (h : ∀ n, a ≤ n → r (f n) (f (n + 1))) ⦃b c : ℕ⦄
  (hab : a ≤ b) (hbc : b < c) :
  r (f b) (f c) :=
begin
  induction hbc with k b_lt_k r_b_k,
  exacts [h _ hab, trans r_b_k (h _ (hab.trans_lt b_lt_k).le)]
end

lemma nat.rel_of_forall_rel_succ_of_le_of_le (r : β → β → Prop) [is_refl β r] [is_trans β r]
  {f : ℕ → β} {a : ℕ} (h : ∀ n, a ≤ n → r (f n) (f (n + 1))) ⦃b c : ℕ⦄
  (hab : a ≤ b) (hbc : b ≤ c) :
  r (f b) (f c) :=
hbc.eq_or_lt.elim (λ h, h ▸ refl _) (nat.rel_of_forall_rel_succ_of_le_of_lt r h hab)

lemma nat.rel_of_forall_rel_succ_of_lt (r : β → β → Prop) [is_trans β r]
  {f : ℕ → β} (h : ∀ n, r (f n) (f (n + 1))) ⦃a b : ℕ⦄ (hab : a < b) : r (f a) (f b) :=
nat.rel_of_forall_rel_succ_of_le_of_lt r (λ n _, h n) le_rfl hab

lemma nat.rel_of_forall_rel_succ_of_le (r : β → β → Prop) [is_refl β r] [is_trans β r]
  {f : ℕ → β} (h : ∀ n, r (f n) (f (n + 1))) ⦃a b : ℕ⦄ (hab : a ≤ b) : r (f a) (f b) :=
nat.rel_of_forall_rel_succ_of_le_of_le r (λ n _, h n) le_rfl hab

lemma monotone_nat_of_le_succ {f : ℕ → α} (hf : ∀ n, f n ≤ f (n + 1)) :
  monotone f :=
nat.rel_of_forall_rel_succ_of_le (≤) hf

lemma antitone_nat_of_succ_le {f : ℕ → α} (hf : ∀ n, f (n + 1) ≤ f n) : antitone f :=
@monotone_nat_of_le_succ αᵒᵈ _ _ hf

lemma strict_mono_nat_of_lt_succ {f : ℕ → α} (hf : ∀ n, f n < f (n + 1)) : strict_mono f :=
nat.rel_of_forall_rel_succ_of_lt (<) hf

lemma strict_anti_nat_of_succ_lt {f : ℕ → α} (hf : ∀ n, f (n + 1) < f n) : strict_anti f :=
@strict_mono_nat_of_lt_succ αᵒᵈ _ f hf

namespace nat

/-- If `α` is a preorder with no maximal elements, then there exists a strictly monotone function
`ℕ → α` with any prescribed value of `f 0`. -/
lemma exists_strict_mono' [no_max_order α] (a : α) : ∃ f : ℕ → α, strict_mono f ∧ f 0 = a :=
begin
  have := (λ x : α, exists_gt x),
  choose g hg,
  exact ⟨λ n, nat.rec_on n a (λ _, g), strict_mono_nat_of_lt_succ $ λ n, hg _, rfl⟩
end

/-- If `α` is a preorder with no maximal elements, then there exists a strictly antitone function
`ℕ → α` with any prescribed value of `f 0`. -/
lemma exists_strict_anti' [no_min_order α] (a : α) : ∃ f : ℕ → α, strict_anti f ∧ f 0 = a :=
exists_strict_mono' (order_dual.to_dual a)

variable (α)

/-- If `α` is a nonempty preorder with no maximal elements, then there exists a strictly monotone
function `ℕ → α`. -/
lemma exists_strict_mono [nonempty α] [no_max_order α] : ∃ f : ℕ → α, strict_mono f :=
let ⟨a⟩ := ‹nonempty α›, ⟨f, hf, hfa⟩ := exists_strict_mono' a in ⟨f, hf⟩

/-- If `α` is a nonempty preorder with no minimal elements, then there exists a strictly antitone
function `ℕ → α`. -/
lemma exists_strict_anti [nonempty α] [no_min_order α] : ∃ f : ℕ → α, strict_anti f :=
exists_strict_mono αᵒᵈ

end nat

lemma int.rel_of_forall_rel_succ_of_lt (r : β → β → Prop) [is_trans β r]
  {f : ℤ → β} (h : ∀ n, r (f n) (f (n + 1))) ⦃a b : ℤ⦄ (hab : a < b) : r (f a) (f b) :=
begin
  rcases hab.dest with ⟨n, rfl⟩, clear hab,
  induction n with n ihn,
  { rw int.coe_nat_one, apply h },
  { rw [int.coe_nat_succ, ← int.add_assoc],
    exact trans ihn (h _) }
end

lemma int.rel_of_forall_rel_succ_of_le (r : β → β → Prop) [is_refl β r] [is_trans β r]
  {f : ℤ → β} (h : ∀ n, r (f n) (f (n + 1))) ⦃a b : ℤ⦄ (hab : a ≤ b) : r (f a) (f b) :=
hab.eq_or_lt.elim (λ h, h ▸ refl _) (λ h', int.rel_of_forall_rel_succ_of_lt r h h')

lemma monotone_int_of_le_succ {f : ℤ → α} (hf : ∀ n, f n ≤ f (n + 1)) : monotone f :=
int.rel_of_forall_rel_succ_of_le (≤) hf

lemma antitone_int_of_succ_le {f : ℤ → α} (hf : ∀ n, f (n + 1) ≤ f n) : antitone f :=
int.rel_of_forall_rel_succ_of_le (≥) hf

lemma strict_mono_int_of_lt_succ {f : ℤ → α} (hf : ∀ n, f n < f (n + 1)) : strict_mono f :=
int.rel_of_forall_rel_succ_of_lt (<) hf

lemma strict_anti_int_of_succ_lt {f : ℤ → α} (hf : ∀ n, f (n + 1) < f n) : strict_anti f :=
int.rel_of_forall_rel_succ_of_lt (>) hf

namespace int

variables (α) [nonempty α] [no_min_order α] [no_max_order α]

/-- If `α` is a nonempty preorder with no minimal or maximal elements, then there exists a strictly
monotone function `f : ℤ → α`. -/
lemma exists_strict_mono : ∃ f : ℤ → α, strict_mono f :=
begin
  inhabit α,
  rcases nat.exists_strict_mono' (default : α) with ⟨f, hf, hf₀⟩,
  rcases nat.exists_strict_anti' (default : α) with ⟨g, hg, hg₀⟩,
  refine ⟨λ n, int.cases_on n f (λ n, g (n + 1)), strict_mono_int_of_lt_succ _⟩,
  rintro (n|_|n),
  { exact hf n.lt_succ_self },
  { show g 1 < f 0,
    rw [hf₀, ← hg₀],
    exact hg nat.zero_lt_one },
  { exact hg (nat.lt_succ_self _) }
end

/-- If `α` is a nonempty preorder with no minimal or maximal elements, then there exists a strictly
antitone function `f : ℤ → α`. -/
lemma exists_strict_anti : ∃ f : ℤ → α, strict_anti f := exists_strict_mono αᵒᵈ

end int

-- TODO@Yael: Generalize the following four to succ orders
/-- If `f` is a monotone function from `ℕ` to a preorder such that `x` lies between `f n` and
  `f (n + 1)`, then `x` doesn't lie in the range of `f`. -/
lemma monotone.ne_of_lt_of_lt_nat {f : ℕ → α} (hf : monotone f) (n : ℕ) {x : α}
  (h1 : f n < x) (h2 : x < f (n + 1)) (a : ℕ) :
  f a ≠ x :=
by { rintro rfl, exact (hf.reflect_lt h1).not_le (nat.le_of_lt_succ $ hf.reflect_lt h2) }

/-- If `f` is an antitone function from `ℕ` to a preorder such that `x` lies between `f (n + 1)` and
`f n`, then `x` doesn't lie in the range of `f`. -/
lemma antitone.ne_of_lt_of_lt_nat {f : ℕ → α} (hf : antitone f)
  (n : ℕ) {x : α} (h1 : f (n + 1) < x) (h2 : x < f n) (a : ℕ) : f a ≠ x :=
by { rintro rfl, exact (hf.reflect_lt h2).not_le (nat.le_of_lt_succ $ hf.reflect_lt h1) }

/-- If `f` is a monotone function from `ℤ` to a preorder and `x` lies between `f n` and
  `f (n + 1)`, then `x` doesn't lie in the range of `f`. -/
lemma monotone.ne_of_lt_of_lt_int {f : ℤ → α} (hf : monotone f) (n : ℤ) {x : α}
  (h1 : f n < x) (h2 : x < f (n + 1)) (a : ℤ) :
  f a ≠ x :=
by { rintro rfl, exact (hf.reflect_lt h1).not_le (int.le_of_lt_add_one $ hf.reflect_lt h2) }

/-- If `f` is an antitone function from `ℤ` to a preorder and `x` lies between `f (n + 1)` and
`f n`, then `x` doesn't lie in the range of `f`. -/
lemma antitone.ne_of_lt_of_lt_int {f : ℤ → α} (hf : antitone f)
  (n : ℤ) {x : α} (h1 : f (n + 1) < x) (h2 : x < f n) (a : ℤ) : f a ≠ x :=
by { rintro rfl, exact (hf.reflect_lt h2).not_le (int.le_of_lt_add_one $ hf.reflect_lt h1) }

lemma strict_mono.id_le {φ : ℕ → ℕ} (h : strict_mono φ) : ∀ n, n ≤ φ n :=
λ n, nat.rec_on n (nat.zero_le _)
  (λ n hn, nat.succ_le_of_lt (hn.trans_lt $ h $ nat.lt_succ_self n))

end preorder

lemma subtype.mono_coe [preorder α] (t : set α) : monotone (coe : (subtype t) → α) :=
λ x y, id

lemma subtype.strict_mono_coe [preorder α] (t : set α) : strict_mono (coe : (subtype t) → α) :=
λ x y, id


section preorder
variables [preorder α] [preorder β] [preorder γ] [preorder δ] {f : α → γ} {g : β → δ} {a b : α}

lemma monotone_fst : monotone (@prod.fst α β) := λ a b, and.left
lemma monotone_snd : monotone (@prod.snd α β) := λ a b, and.right

lemma monotone.prod_map (hf : monotone f) (hg : monotone g) : monotone (prod.map f g) :=
λ a b h, ⟨hf h.1, hg h.2⟩

lemma antitone.prod_map (hf : antitone f) (hg : antitone g) : antitone (prod.map f g) :=
λ a b h, ⟨hf h.1, hg h.2⟩

end preorder

section partial_order
variables [partial_order α] [partial_order β] [preorder γ] [preorder δ]
  {f : α → γ} {g : β → δ}

lemma strict_mono.prod_map (hf : strict_mono f) (hg : strict_mono g) : strict_mono (prod.map f g) :=
λ a b, by { simp_rw prod.lt_iff,
  exact or.imp (and.imp hf.imp hg.monotone.imp) (and.imp hf.monotone.imp hg.imp) }

lemma strict_anti.prod_map (hf : strict_anti f) (hg : strict_anti g) : strict_anti (prod.map f g) :=
λ a b, by { simp_rw prod.lt_iff,
  exact or.imp (and.imp hf.imp hg.antitone.imp) (and.imp hf.antitone.imp hg.imp) }

end partial_order