Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 35,050 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 |
/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Mario Carneiro, Yaël Dillies
-/
import order.compare
import order.max
import order.rel_classes
/-!
# Monotonicity
This file defines (strictly) monotone/antitone functions. Contrary to standard mathematical usage,
"monotone"/"mono" here means "increasing", not "increasing or decreasing". We use "antitone"/"anti"
to mean "decreasing".
## Definitions
* `monotone f`: A function `f` between two preorders is monotone if `a ≤ b` implies `f a ≤ f b`.
* `antitone f`: A function `f` between two preorders is antitone if `a ≤ b` implies `f b ≤ f a`.
* `monotone_on f s`: Same as `monotone f`, but for all `a, b ∈ s`.
* `antitone_on f s`: Same as `antitone f`, but for all `a, b ∈ s`.
* `strict_mono f` : A function `f` between two preorders is strictly monotone if `a < b` implies
`f a < f b`.
* `strict_anti f` : A function `f` between two preorders is strictly antitone if `a < b` implies
`f b < f a`.
* `strict_mono_on f s`: Same as `strict_mono f`, but for all `a, b ∈ s`.
* `strict_anti_on f s`: Same as `strict_anti f`, but for all `a, b ∈ s`.
## Main theorems
* `monotone_nat_of_le_succ`, `monotone_int_of_le_succ`: If `f : ℕ → α` or `f : ℤ → α` and
`f n ≤ f (n + 1)` for all `n`, then `f` is monotone.
* `antitone_nat_of_succ_le`, `antitone_int_of_succ_le`: If `f : ℕ → α` or `f : ℤ → α` and
`f (n + 1) ≤ f n` for all `n`, then `f` is antitone.
* `strict_mono_nat_of_lt_succ`, `strict_mono_int_of_lt_succ`: If `f : ℕ → α` or `f : ℤ → α` and
`f n < f (n + 1)` for all `n`, then `f` is strictly monotone.
* `strict_anti_nat_of_succ_lt`, `strict_anti_int_of_succ_lt`: If `f : ℕ → α` or `f : ℤ → α` and
`f (n + 1) < f n` for all `n`, then `f` is strictly antitone.
## Implementation notes
Some of these definitions used to only require `has_le α` or `has_lt α`. The advantage of this is
unclear and it led to slight elaboration issues. Now, everything requires `preorder α` and seems to
work fine. Related Zulip discussion:
https://leanprover.zulipchat.com/#narrow/stream/113488-general/topic/Order.20diamond/near/254353352.
## TODO
The above theorems are also true in `ℕ+`, `fin n`... To make that work, we need `succ_order α`
and `succ_archimedean α`.
## Tags
monotone, strictly monotone, antitone, strictly antitone, increasing, strictly increasing,
decreasing, strictly decreasing
-/
open function order_dual
universes u v w
variables {α : Type u} {β : Type v} {γ : Type w} {δ : Type*} {r : α → α → Prop}
section monotone_def
variables [preorder α] [preorder β]
/-- A function `f` is monotone if `a ≤ b` implies `f a ≤ f b`. -/
def monotone (f : α → β) : Prop := ∀ ⦃a b⦄, a ≤ b → f a ≤ f b
/-- A function `f` is antitone if `a ≤ b` implies `f b ≤ f a`. -/
def antitone (f : α → β) : Prop := ∀ ⦃a b⦄, a ≤ b → f b ≤ f a
/-- A function `f` is monotone on `s` if, for all `a, b ∈ s`, `a ≤ b` implies `f a ≤ f b`. -/
def monotone_on (f : α → β) (s : set α) : Prop :=
∀ ⦃a⦄ (ha : a ∈ s) ⦃b⦄ (hb : b ∈ s), a ≤ b → f a ≤ f b
/-- A function `f` is antitone on `s` if, for all `a, b ∈ s`, `a ≤ b` implies `f b ≤ f a`. -/
def antitone_on (f : α → β) (s : set α) : Prop :=
∀ ⦃a⦄ (ha : a ∈ s) ⦃b⦄ (hb : b ∈ s), a ≤ b → f b ≤ f a
/-- A function `f` is strictly monotone if `a < b` implies `f a < f b`. -/
def strict_mono (f : α → β) : Prop :=
∀ ⦃a b⦄, a < b → f a < f b
/-- A function `f` is strictly antitone if `a < b` implies `f b < f a`. -/
def strict_anti (f : α → β) : Prop :=
∀ ⦃a b⦄, a < b → f b < f a
/-- A function `f` is strictly monotone on `s` if, for all `a, b ∈ s`, `a < b` implies
`f a < f b`. -/
def strict_mono_on (f : α → β) (s : set α) : Prop :=
∀ ⦃a⦄ (ha : a ∈ s) ⦃b⦄ (hb : b ∈ s), a < b → f a < f b
/-- A function `f` is strictly antitone on `s` if, for all `a, b ∈ s`, `a < b` implies
`f b < f a`. -/
def strict_anti_on (f : α → β) (s : set α) : Prop :=
∀ ⦃a⦄ (ha : a ∈ s) ⦃b⦄ (hb : b ∈ s), a < b → f b < f a
end monotone_def
/-! ### Monotonicity on the dual order
Strictly, many of the `*_on.dual` lemmas in this section should use `of_dual ⁻¹' s` instead of `s`,
but right now this is not possible as `set.preimage` is not defined yet, and importing it creates
an import cycle.
Often, you should not need the rewriting lemmas. Instead, you probably want to add `.dual`,
`.dual_left` or `.dual_right` to your `monotone`/`antitone` hypothesis.
-/
section order_dual
variables [preorder α] [preorder β] {f : α → β} {s : set α}
@[simp] lemma monotone_comp_of_dual_iff : monotone (f ∘ of_dual) ↔ antitone f := forall_swap
@[simp] lemma antitone_comp_of_dual_iff : antitone (f ∘ of_dual) ↔ monotone f := forall_swap
@[simp] lemma monotone_to_dual_comp_iff : monotone (to_dual ∘ f) ↔ antitone f := iff.rfl
@[simp] lemma antitone_to_dual_comp_iff : antitone (to_dual ∘ f) ↔ monotone f := iff.rfl
@[simp] lemma monotone_on_comp_of_dual_iff : monotone_on (f ∘ of_dual) s ↔ antitone_on f s :=
forall₂_swap
@[simp] lemma antitone_on_comp_of_dual_iff : antitone_on (f ∘ of_dual) s ↔ monotone_on f s :=
forall₂_swap
@[simp] lemma monotone_on_to_dual_comp_iff : monotone_on (to_dual ∘ f) s ↔ antitone_on f s :=
iff.rfl
@[simp] lemma antitone_on_to_dual_comp_iff : antitone_on (to_dual ∘ f) s ↔ monotone_on f s :=
iff.rfl
@[simp] lemma strict_mono_comp_of_dual_iff : strict_mono (f ∘ of_dual) ↔ strict_anti f :=
forall_swap
@[simp] lemma strict_anti_comp_of_dual_iff : strict_anti (f ∘ of_dual) ↔ strict_mono f :=
forall_swap
@[simp] lemma strict_mono_to_dual_comp_iff : strict_mono (to_dual ∘ f) ↔ strict_anti f := iff.rfl
@[simp] lemma strict_anti_to_dual_comp_iff : strict_anti (to_dual ∘ f) ↔ strict_mono f := iff.rfl
@[simp] lemma strict_mono_on_comp_of_dual_iff :
strict_mono_on (f ∘ of_dual) s ↔ strict_anti_on f s := forall₂_swap
@[simp] lemma strict_anti_on_comp_of_dual_iff :
strict_anti_on (f ∘ of_dual) s ↔ strict_mono_on f s := forall₂_swap
@[simp] lemma strict_mono_on_to_dual_comp_iff :
strict_mono_on (to_dual ∘ f) s ↔ strict_anti_on f s := iff.rfl
@[simp] lemma strict_anti_on_to_dual_comp_iff :
strict_anti_on (to_dual ∘ f) s ↔ strict_mono_on f s := iff.rfl
protected lemma monotone.dual (hf : monotone f) : monotone (to_dual ∘ f ∘ of_dual) := swap hf
protected lemma antitone.dual (hf : antitone f) : antitone (to_dual ∘ f ∘ of_dual) := swap hf
protected lemma monotone_on.dual (hf : monotone_on f s) : monotone_on (to_dual ∘ f ∘ of_dual) s :=
swap₂ hf
protected lemma antitone_on.dual (hf : antitone_on f s) : antitone_on (to_dual ∘ f ∘ of_dual) s :=
swap₂ hf
protected lemma strict_mono.dual (hf : strict_mono f) : strict_mono (to_dual ∘ f ∘ of_dual) :=
swap hf
protected lemma strict_anti.dual (hf : strict_anti f) : strict_anti (to_dual ∘ f ∘ of_dual) :=
swap hf
protected lemma strict_mono_on.dual (hf : strict_mono_on f s) :
strict_mono_on (to_dual ∘ f ∘ of_dual) s := swap₂ hf
protected lemma strict_anti_on.dual (hf : strict_anti_on f s) :
strict_anti_on (to_dual ∘ f ∘ of_dual) s := swap₂ hf
alias antitone_comp_of_dual_iff ↔ _ monotone.dual_left
alias monotone_comp_of_dual_iff ↔ _ antitone.dual_left
alias antitone_to_dual_comp_iff ↔ _ monotone.dual_right
alias monotone_to_dual_comp_iff ↔ _ antitone.dual_right
alias antitone_on_comp_of_dual_iff ↔ _ monotone_on.dual_left
alias monotone_on_comp_of_dual_iff ↔ _ antitone_on.dual_left
alias antitone_on_to_dual_comp_iff ↔ _ monotone_on.dual_right
alias monotone_on_to_dual_comp_iff ↔ _ antitone_on.dual_right
alias strict_anti_comp_of_dual_iff ↔ _ strict_mono.dual_left
alias strict_mono_comp_of_dual_iff ↔ _ strict_anti.dual_left
alias strict_anti_to_dual_comp_iff ↔ _ strict_mono.dual_right
alias strict_mono_to_dual_comp_iff ↔ _ strict_anti.dual_right
alias strict_anti_on_comp_of_dual_iff ↔ _ strict_mono_on.dual_left
alias strict_mono_on_comp_of_dual_iff ↔ _ strict_anti_on.dual_left
alias strict_anti_on_to_dual_comp_iff ↔ _ strict_mono_on.dual_right
alias strict_mono_on_to_dual_comp_iff ↔ _ strict_anti_on.dual_right
end order_dual
/-! ### Monotonicity in function spaces -/
section preorder
variables [preorder α]
theorem monotone.comp_le_comp_left [preorder β]
{f : β → α} {g h : γ → β} (hf : monotone f) (le_gh : g ≤ h) :
has_le.le.{max w u} (f ∘ g) (f ∘ h) :=
λ x, hf (le_gh x)
variables [preorder γ]
theorem monotone_lam {f : α → β → γ} (hf : ∀ b, monotone (λ a, f a b)) : monotone f :=
λ a a' h b, hf b h
theorem monotone_app (f : β → α → γ) (b : β) (hf : monotone (λ a b, f b a)) : monotone (f b) :=
λ a a' h, hf h b
theorem antitone_lam {f : α → β → γ} (hf : ∀ b, antitone (λ a, f a b)) : antitone f :=
λ a a' h b, hf b h
theorem antitone_app (f : β → α → γ) (b : β) (hf : antitone (λ a b, f b a)) : antitone (f b) :=
λ a a' h, hf h b
end preorder
lemma function.monotone_eval {ι : Type u} {α : ι → Type v} [∀ i, preorder (α i)] (i : ι) :
monotone (function.eval i : (Π i, α i) → α i) :=
λ f g H, H i
/-! ### Monotonicity hierarchy -/
section preorder
variables [preorder α]
section preorder
variables [preorder β] {f : α → β} {a b : α}
/-!
These four lemmas are there to strip off the semi-implicit arguments `⦃a b : α⦄`. This is useful
when you do not want to apply a `monotone` assumption (i.e. your goal is `a ≤ b → f a ≤ f b`).
However if you find yourself writing `hf.imp h`, then you should have written `hf h` instead.
-/
lemma monotone.imp (hf : monotone f) (h : a ≤ b) : f a ≤ f b := hf h
lemma antitone.imp (hf : antitone f) (h : a ≤ b) : f b ≤ f a := hf h
lemma strict_mono.imp (hf : strict_mono f) (h : a < b) : f a < f b := hf h
lemma strict_anti.imp (hf : strict_anti f) (h : a < b) : f b < f a := hf h
protected lemma monotone.monotone_on (hf : monotone f) (s : set α) : monotone_on f s :=
λ a _ b _, hf.imp
protected lemma antitone.antitone_on (hf : antitone f) (s : set α) : antitone_on f s :=
λ a _ b _, hf.imp
lemma monotone_on_univ : monotone_on f set.univ ↔ monotone f :=
⟨λ h a b, h trivial trivial, λ h, h.monotone_on _⟩
lemma antitone_on_univ : antitone_on f set.univ ↔ antitone f :=
⟨λ h a b, h trivial trivial, λ h, h.antitone_on _⟩
protected lemma strict_mono.strict_mono_on (hf : strict_mono f) (s : set α) : strict_mono_on f s :=
λ a _ b _, hf.imp
protected lemma strict_anti.strict_anti_on (hf : strict_anti f) (s : set α) : strict_anti_on f s :=
λ a _ b _, hf.imp
lemma strict_mono_on_univ : strict_mono_on f set.univ ↔ strict_mono f :=
⟨λ h a b, h trivial trivial, λ h, h.strict_mono_on _⟩
lemma strict_anti_on_univ : strict_anti_on f set.univ ↔ strict_anti f :=
⟨λ h a b, h trivial trivial, λ h, h.strict_anti_on _⟩
end preorder
section partial_order
variables [partial_order β] {f : α → β}
lemma monotone.strict_mono_of_injective (h₁ : monotone f) (h₂ : injective f) : strict_mono f :=
λ a b h, (h₁ h.le).lt_of_ne (λ H, h.ne $ h₂ H)
lemma antitone.strict_anti_of_injective (h₁ : antitone f) (h₂ : injective f) : strict_anti f :=
λ a b h, (h₁ h.le).lt_of_ne (λ H, h.ne $ h₂ H.symm)
end partial_order
end preorder
section partial_order
variables [partial_order α] [preorder β] {f : α → β} {s : set α}
lemma monotone_iff_forall_lt : monotone f ↔ ∀ ⦃a b⦄, a < b → f a ≤ f b :=
forall₂_congr $ λ a b, ⟨λ hf h, hf h.le, λ hf h, h.eq_or_lt.elim (λ H, (congr_arg _ H).le) hf⟩
lemma antitone_iff_forall_lt : antitone f ↔ ∀ ⦃a b⦄, a < b → f b ≤ f a :=
forall₂_congr $ λ a b, ⟨λ hf h, hf h.le, λ hf h, h.eq_or_lt.elim (λ H, (congr_arg _ H).ge) hf⟩
lemma monotone_on_iff_forall_lt :
monotone_on f s ↔ ∀ ⦃a⦄ (ha : a ∈ s) ⦃b⦄ (hb : b ∈ s), a < b → f a ≤ f b :=
⟨λ hf a ha b hb h, hf ha hb h.le,
λ hf a ha b hb h, h.eq_or_lt.elim (λ H, (congr_arg _ H).le) (hf ha hb)⟩
lemma antitone_on_iff_forall_lt :
antitone_on f s ↔ ∀ ⦃a⦄ (ha : a ∈ s) ⦃b⦄ (hb : b ∈ s), a < b → f b ≤ f a :=
⟨λ hf a ha b hb h, hf ha hb h.le,
λ hf a ha b hb h, h.eq_or_lt.elim (λ H, (congr_arg _ H).ge) (hf ha hb)⟩
-- `preorder α` isn't strong enough: if the preorder on `α` is an equivalence relation,
-- then `strict_mono f` is vacuously true.
protected lemma strict_mono_on.monotone_on (hf : strict_mono_on f s) : monotone_on f s :=
monotone_on_iff_forall_lt.2 $ λ a ha b hb h, (hf ha hb h).le
protected lemma strict_anti_on.antitone_on (hf : strict_anti_on f s) : antitone_on f s :=
antitone_on_iff_forall_lt.2 $ λ a ha b hb h, (hf ha hb h).le
protected lemma strict_mono.monotone (hf : strict_mono f) : monotone f :=
monotone_iff_forall_lt.2 $ λ a b h, (hf h).le
protected lemma strict_anti.antitone (hf : strict_anti f) : antitone f :=
antitone_iff_forall_lt.2 $ λ a b h, (hf h).le
end partial_order
/-! ### Monotonicity from and to subsingletons -/
namespace subsingleton
variables [preorder α] [preorder β]
protected lemma monotone [subsingleton α] (f : α → β) : monotone f :=
λ a b _, (congr_arg _ $ subsingleton.elim _ _).le
protected lemma antitone [subsingleton α] (f : α → β) : antitone f :=
λ a b _, (congr_arg _ $ subsingleton.elim _ _).le
lemma monotone' [subsingleton β] (f : α → β) : monotone f := λ a b _, (subsingleton.elim _ _).le
lemma antitone' [subsingleton β] (f : α → β) : antitone f := λ a b _, (subsingleton.elim _ _).le
protected lemma strict_mono [subsingleton α] (f : α → β) : strict_mono f :=
λ a b h, (h.ne $ subsingleton.elim _ _).elim
protected lemma strict_anti [subsingleton α] (f : α → β) : strict_anti f :=
λ a b h, (h.ne $ subsingleton.elim _ _).elim
end subsingleton
/-! ### Miscellaneous monotonicity results -/
lemma monotone_id [preorder α] : monotone (id : α → α) := λ a b, id
lemma monotone_on_id [preorder α] {s : set α} : monotone_on id s := λ a ha b hb, id
lemma strict_mono_id [preorder α] : strict_mono (id : α → α) := λ a b, id
lemma strict_mono_on_id [preorder α] {s : set α} : strict_mono_on id s := λ a ha b hb, id
theorem monotone_const [preorder α] [preorder β] {c : β} : monotone (λ (a : α), c) :=
λ a b _, le_rfl
theorem monotone_on_const [preorder α] [preorder β] {c : β} {s : set α} :
monotone_on (λ (a : α), c) s :=
λ a _ b _ _, le_rfl
theorem antitone_const [preorder α] [preorder β] {c : β} : antitone (λ (a : α), c) :=
λ a b _, le_refl c
theorem antitone_on_const [preorder α] [preorder β] {c : β} {s : set α} :
antitone_on (λ (a : α), c) s :=
λ a _ b _ _, le_rfl
lemma strict_mono_of_le_iff_le [preorder α] [preorder β] {f : α → β}
(h : ∀ x y, x ≤ y ↔ f x ≤ f y) : strict_mono f :=
λ a b, (lt_iff_lt_of_le_iff_le' (h _ _) (h _ _)).1
lemma strict_anti_of_le_iff_le [preorder α] [preorder β] {f : α → β}
(h : ∀ x y, x ≤ y ↔ f y ≤ f x) : strict_anti f :=
λ a b, (lt_iff_lt_of_le_iff_le' (h _ _) (h _ _)).1
lemma injective_of_lt_imp_ne [linear_order α] {f : α → β} (h : ∀ x y, x < y → f x ≠ f y) :
injective f :=
begin
intros x y hxy,
contrapose hxy,
cases ne.lt_or_lt hxy with hxy hxy,
exacts [h _ _ hxy, (h _ _ hxy).symm]
end
lemma injective_of_le_imp_le [partial_order α] [preorder β] (f : α → β)
(h : ∀ {x y}, f x ≤ f y → x ≤ y) : injective f :=
λ x y hxy, (h hxy.le).antisymm (h hxy.ge)
section preorder
variables [preorder α] [preorder β] {f g : α → β} {a : α}
lemma strict_mono.is_max_of_apply (hf : strict_mono f) (ha : is_max (f a)) : is_max a :=
of_not_not $ λ h, let ⟨b, hb⟩ := not_is_max_iff.1 h in (hf hb).not_is_max ha
lemma strict_mono.is_min_of_apply (hf : strict_mono f) (ha : is_min (f a)) : is_min a :=
of_not_not $ λ h, let ⟨b, hb⟩ := not_is_min_iff.1 h in (hf hb).not_is_min ha
lemma strict_anti.is_max_of_apply (hf : strict_anti f) (ha : is_min (f a)) : is_max a :=
of_not_not $ λ h, let ⟨b, hb⟩ := not_is_max_iff.1 h in (hf hb).not_is_min ha
lemma strict_anti.is_min_of_apply (hf : strict_anti f) (ha : is_max (f a)) : is_min a :=
of_not_not $ λ h, let ⟨b, hb⟩ := not_is_min_iff.1 h in (hf hb).not_is_max ha
protected lemma strict_mono.ite' (hf : strict_mono f) (hg : strict_mono g) {p : α → Prop}
[decidable_pred p] (hp : ∀ ⦃x y⦄, x < y → p y → p x)
(hfg : ∀ ⦃x y⦄, p x → ¬p y → x < y → f x < g y) :
strict_mono (λ x, if p x then f x else g x) :=
begin
intros x y h,
by_cases hy : p y,
{ have hx : p x := hp h hy,
simpa [hx, hy] using hf h },
by_cases hx : p x,
{ simpa [hx, hy] using hfg hx hy h },
{ simpa [hx, hy] using hg h}
end
protected lemma strict_mono.ite (hf : strict_mono f) (hg : strict_mono g) {p : α → Prop}
[decidable_pred p] (hp : ∀ ⦃x y⦄, x < y → p y → p x) (hfg : ∀ x, f x ≤ g x) :
strict_mono (λ x, if p x then f x else g x) :=
hf.ite' hg hp $ λ x y hx hy h, (hf h).trans_le (hfg y)
protected lemma strict_anti.ite' (hf : strict_anti f) (hg : strict_anti g) {p : α → Prop}
[decidable_pred p] (hp : ∀ ⦃x y⦄, x < y → p y → p x)
(hfg : ∀ ⦃x y⦄, p x → ¬p y → x < y → g y < f x) :
strict_anti (λ x, if p x then f x else g x) :=
(strict_mono.ite' hf.dual_right hg.dual_right hp hfg).dual_right
protected lemma strict_anti.ite (hf : strict_anti f) (hg : strict_anti g) {p : α → Prop}
[decidable_pred p] (hp : ∀ ⦃x y⦄, x < y → p y → p x) (hfg : ∀ x, g x ≤ f x) :
strict_anti (λ x, if p x then f x else g x) :=
hf.ite' hg hp $ λ x y hx hy h, (hfg y).trans_lt (hf h)
end preorder
/-! ### Monotonicity under composition -/
section composition
variables [preorder α] [preorder β] [preorder γ] {g : β → γ} {f : α → β} {s : set α}
protected lemma monotone.comp (hg : monotone g) (hf : monotone f) :
monotone (g ∘ f) :=
λ a b h, hg (hf h)
lemma monotone.comp_antitone (hg : monotone g) (hf : antitone f) :
antitone (g ∘ f) :=
λ a b h, hg (hf h)
protected lemma antitone.comp (hg : antitone g) (hf : antitone f) :
monotone (g ∘ f) :=
λ a b h, hg (hf h)
lemma antitone.comp_monotone (hg : antitone g) (hf : monotone f) :
antitone (g ∘ f) :=
λ a b h, hg (hf h)
protected lemma monotone.iterate {f : α → α} (hf : monotone f) (n : ℕ) : monotone (f^[n]) :=
nat.rec_on n monotone_id (λ n h, h.comp hf)
protected lemma monotone.comp_monotone_on (hg : monotone g) (hf : monotone_on f s) :
monotone_on (g ∘ f) s :=
λ a ha b hb h, hg (hf ha hb h)
lemma monotone.comp_antitone_on (hg : monotone g) (hf : antitone_on f s) :
antitone_on (g ∘ f) s :=
λ a ha b hb h, hg (hf ha hb h)
protected lemma antitone.comp_antitone_on (hg : antitone g) (hf : antitone_on f s) :
monotone_on (g ∘ f) s :=
λ a ha b hb h, hg (hf ha hb h)
lemma antitone.comp_monotone_on (hg : antitone g) (hf : monotone_on f s) :
antitone_on (g ∘ f) s :=
λ a ha b hb h, hg (hf ha hb h)
protected lemma strict_mono.comp (hg : strict_mono g) (hf : strict_mono f) :
strict_mono (g ∘ f) :=
λ a b h, hg (hf h)
lemma strict_mono.comp_strict_anti (hg : strict_mono g) (hf : strict_anti f) :
strict_anti (g ∘ f) :=
λ a b h, hg (hf h)
protected lemma strict_anti.comp (hg : strict_anti g) (hf : strict_anti f) :
strict_mono (g ∘ f) :=
λ a b h, hg (hf h)
lemma strict_anti.comp_strict_mono (hg : strict_anti g) (hf : strict_mono f) :
strict_anti (g ∘ f) :=
λ a b h, hg (hf h)
protected lemma strict_mono.iterate {f : α → α} (hf : strict_mono f) (n : ℕ) :
strict_mono (f^[n]) :=
nat.rec_on n strict_mono_id (λ n h, h.comp hf)
protected lemma strict_mono.comp_strict_mono_on (hg : strict_mono g) (hf : strict_mono_on f s) :
strict_mono_on (g ∘ f) s :=
λ a ha b hb h, hg (hf ha hb h)
lemma strict_mono.comp_strict_anti_on (hg : strict_mono g) (hf : strict_anti_on f s) :
strict_anti_on (g ∘ f) s :=
λ a ha b hb h, hg (hf ha hb h)
protected lemma strict_anti.comp_strict_anti_on (hg : strict_anti g) (hf : strict_anti_on f s) :
strict_mono_on (g ∘ f) s :=
λ a ha b hb h, hg (hf ha hb h)
lemma strict_anti.comp_strict_mono_on (hg : strict_anti g) (hf : strict_mono_on f s) :
strict_anti_on (g ∘ f) s :=
λ a ha b hb h, hg (hf ha hb h)
end composition
namespace list
section fold
theorem foldl_monotone [preorder α] {f : α → β → α} (H : ∀ b, monotone (λ a, f a b)) (l : list β) :
monotone (λ a, l.foldl f a) :=
list.rec_on l (λ _ _, id) (λ i l hl _ _ h, hl (H _ h))
theorem foldr_monotone [preorder β] {f : α → β → β} (H : ∀ a, monotone (f a)) (l : list α) :
monotone (λ b, l.foldr f b) :=
λ _ _ h, list.rec_on l h (λ i l hl, H i hl)
theorem foldl_strict_mono [preorder α] {f : α → β → α} (H : ∀ b, strict_mono (λ a, f a b))
(l : list β) : strict_mono (λ a, l.foldl f a) :=
list.rec_on l (λ _ _, id) (λ i l hl _ _ h, hl (H _ h))
theorem foldr_strict_mono [preorder β] {f : α → β → β} (H : ∀ a, strict_mono (f a)) (l : list α) :
strict_mono (λ b, l.foldr f b) :=
λ _ _ h, list.rec_on l h (λ i l hl, H i hl)
end fold
end list
/-! ### Monotonicity in linear orders -/
section linear_order
variables [linear_order α]
section preorder
variables [preorder β] {f : α → β} {s : set α}
open ordering
lemma monotone.reflect_lt (hf : monotone f) {a b : α} (h : f a < f b) : a < b :=
lt_of_not_ge (λ h', h.not_le (hf h'))
lemma antitone.reflect_lt (hf : antitone f) {a b : α} (h : f a < f b) : b < a :=
lt_of_not_ge (λ h', h.not_le (hf h'))
lemma monotone_on.reflect_lt (hf : monotone_on f s) {a b : α} (ha : a ∈ s) (hb : b ∈ s)
(h : f a < f b) :
a < b :=
lt_of_not_ge $ λ h', h.not_le $ hf hb ha h'
lemma antitone_on.reflect_lt (hf : antitone_on f s) {a b : α} (ha : a ∈ s) (hb : b ∈ s)
(h : f a < f b) :
b < a :=
lt_of_not_ge $ λ h', h.not_le $ hf ha hb h'
lemma strict_mono_on.le_iff_le (hf : strict_mono_on f s) {a b : α} (ha : a ∈ s) (hb : b ∈ s) :
f a ≤ f b ↔ a ≤ b :=
⟨λ h, le_of_not_gt $ λ h', (hf hb ha h').not_le h,
λ h, h.lt_or_eq_dec.elim (λ h', (hf ha hb h').le) (λ h', h' ▸ le_rfl)⟩
lemma strict_anti_on.le_iff_le (hf : strict_anti_on f s) {a b : α} (ha : a ∈ s) (hb : b ∈ s) :
f a ≤ f b ↔ b ≤ a :=
hf.dual_right.le_iff_le hb ha
lemma strict_mono_on.lt_iff_lt (hf : strict_mono_on f s) {a b : α} (ha : a ∈ s) (hb : b ∈ s) :
f a < f b ↔ a < b :=
by rw [lt_iff_le_not_le, lt_iff_le_not_le, hf.le_iff_le ha hb, hf.le_iff_le hb ha]
lemma strict_anti_on.lt_iff_lt (hf : strict_anti_on f s) {a b : α} (ha : a ∈ s) (hb : b ∈ s) :
f a < f b ↔ b < a :=
hf.dual_right.lt_iff_lt hb ha
lemma strict_mono.le_iff_le (hf : strict_mono f) {a b : α} :
f a ≤ f b ↔ a ≤ b :=
(hf.strict_mono_on set.univ).le_iff_le trivial trivial
lemma strict_anti.le_iff_le (hf : strict_anti f) {a b : α} :
f a ≤ f b ↔ b ≤ a :=
(hf.strict_anti_on set.univ).le_iff_le trivial trivial
lemma strict_mono.lt_iff_lt (hf : strict_mono f) {a b : α} :
f a < f b ↔ a < b :=
(hf.strict_mono_on set.univ).lt_iff_lt trivial trivial
lemma strict_anti.lt_iff_lt (hf : strict_anti f) {a b : α} :
f a < f b ↔ b < a :=
(hf.strict_anti_on set.univ).lt_iff_lt trivial trivial
protected theorem strict_mono_on.compares (hf : strict_mono_on f s) {a b : α} (ha : a ∈ s)
(hb : b ∈ s) :
∀ {o : ordering}, o.compares (f a) (f b) ↔ o.compares a b
| ordering.lt := hf.lt_iff_lt ha hb
| ordering.eq := ⟨λ h, ((hf.le_iff_le ha hb).1 h.le).antisymm ((hf.le_iff_le hb ha).1 h.symm.le),
congr_arg _⟩
| ordering.gt := hf.lt_iff_lt hb ha
protected theorem strict_anti_on.compares (hf : strict_anti_on f s) {a b : α} (ha : a ∈ s)
(hb : b ∈ s) {o : ordering} :
o.compares (f a) (f b) ↔ o.compares b a :=
to_dual_compares_to_dual.trans $ hf.dual_right.compares hb ha
protected theorem strict_mono.compares (hf : strict_mono f) {a b : α} {o : ordering} :
o.compares (f a) (f b) ↔ o.compares a b :=
(hf.strict_mono_on set.univ).compares trivial trivial
protected theorem strict_anti.compares (hf : strict_anti f) {a b : α} {o : ordering} :
o.compares (f a) (f b) ↔ o.compares b a :=
(hf.strict_anti_on set.univ).compares trivial trivial
lemma strict_mono.injective (hf : strict_mono f) : injective f :=
λ x y h, show compares eq x y, from hf.compares.1 h
lemma strict_anti.injective (hf : strict_anti f) : injective f :=
λ x y h, show compares eq x y, from hf.compares.1 h.symm
lemma strict_mono.maximal_of_maximal_image (hf : strict_mono f) {a} (hmax : ∀ p, p ≤ f a) (x : α) :
x ≤ a :=
hf.le_iff_le.mp (hmax (f x))
lemma strict_mono.minimal_of_minimal_image (hf : strict_mono f) {a} (hmin : ∀ p, f a ≤ p) (x : α) :
a ≤ x :=
hf.le_iff_le.mp (hmin (f x))
lemma strict_anti.minimal_of_maximal_image (hf : strict_anti f) {a} (hmax : ∀ p, p ≤ f a) (x : α) :
a ≤ x :=
hf.le_iff_le.mp (hmax (f x))
lemma strict_anti.maximal_of_minimal_image (hf : strict_anti f) {a} (hmin : ∀ p, f a ≤ p) (x : α) :
x ≤ a :=
hf.le_iff_le.mp (hmin (f x))
end preorder
section partial_order
variables [partial_order β] {f : α → β}
lemma monotone.strict_mono_iff_injective (hf : monotone f) :
strict_mono f ↔ injective f :=
⟨λ h, h.injective, hf.strict_mono_of_injective⟩
lemma antitone.strict_anti_iff_injective (hf : antitone f) :
strict_anti f ↔ injective f :=
⟨λ h, h.injective, hf.strict_anti_of_injective⟩
end partial_order
/-!
### Strictly monotone functions and `cmp`
-/
variables [linear_order β] {f : α → β} {s : set α} {x y : α}
lemma strict_mono_on.cmp_map_eq (hf : strict_mono_on f s) (hx : x ∈ s) (hy : y ∈ s) :
cmp (f x) (f y) = cmp x y :=
((hf.compares hx hy).2 (cmp_compares x y)).cmp_eq
lemma strict_mono.cmp_map_eq (hf : strict_mono f) (x y : α) : cmp (f x) (f y) = cmp x y :=
(hf.strict_mono_on set.univ).cmp_map_eq trivial trivial
lemma strict_anti_on.cmp_map_eq (hf : strict_anti_on f s) (hx : x ∈ s) (hy : y ∈ s) :
cmp (f x) (f y) = cmp y x :=
hf.dual_right.cmp_map_eq hy hx
lemma strict_anti.cmp_map_eq (hf : strict_anti f) (x y : α) : cmp (f x) (f y) = cmp y x :=
(hf.strict_anti_on set.univ).cmp_map_eq trivial trivial
end linear_order
/-! ### Monotonicity in `ℕ` and `ℤ` -/
section preorder
variables [preorder α]
lemma nat.rel_of_forall_rel_succ_of_le_of_lt (r : β → β → Prop) [is_trans β r]
{f : ℕ → β} {a : ℕ} (h : ∀ n, a ≤ n → r (f n) (f (n + 1))) ⦃b c : ℕ⦄
(hab : a ≤ b) (hbc : b < c) :
r (f b) (f c) :=
begin
induction hbc with k b_lt_k r_b_k,
exacts [h _ hab, trans r_b_k (h _ (hab.trans_lt b_lt_k).le)]
end
lemma nat.rel_of_forall_rel_succ_of_le_of_le (r : β → β → Prop) [is_refl β r] [is_trans β r]
{f : ℕ → β} {a : ℕ} (h : ∀ n, a ≤ n → r (f n) (f (n + 1))) ⦃b c : ℕ⦄
(hab : a ≤ b) (hbc : b ≤ c) :
r (f b) (f c) :=
hbc.eq_or_lt.elim (λ h, h ▸ refl _) (nat.rel_of_forall_rel_succ_of_le_of_lt r h hab)
lemma nat.rel_of_forall_rel_succ_of_lt (r : β → β → Prop) [is_trans β r]
{f : ℕ → β} (h : ∀ n, r (f n) (f (n + 1))) ⦃a b : ℕ⦄ (hab : a < b) : r (f a) (f b) :=
nat.rel_of_forall_rel_succ_of_le_of_lt r (λ n _, h n) le_rfl hab
lemma nat.rel_of_forall_rel_succ_of_le (r : β → β → Prop) [is_refl β r] [is_trans β r]
{f : ℕ → β} (h : ∀ n, r (f n) (f (n + 1))) ⦃a b : ℕ⦄ (hab : a ≤ b) : r (f a) (f b) :=
nat.rel_of_forall_rel_succ_of_le_of_le r (λ n _, h n) le_rfl hab
lemma monotone_nat_of_le_succ {f : ℕ → α} (hf : ∀ n, f n ≤ f (n + 1)) :
monotone f :=
nat.rel_of_forall_rel_succ_of_le (≤) hf
lemma antitone_nat_of_succ_le {f : ℕ → α} (hf : ∀ n, f (n + 1) ≤ f n) : antitone f :=
@monotone_nat_of_le_succ αᵒᵈ _ _ hf
lemma strict_mono_nat_of_lt_succ {f : ℕ → α} (hf : ∀ n, f n < f (n + 1)) : strict_mono f :=
nat.rel_of_forall_rel_succ_of_lt (<) hf
lemma strict_anti_nat_of_succ_lt {f : ℕ → α} (hf : ∀ n, f (n + 1) < f n) : strict_anti f :=
@strict_mono_nat_of_lt_succ αᵒᵈ _ f hf
namespace nat
/-- If `α` is a preorder with no maximal elements, then there exists a strictly monotone function
`ℕ → α` with any prescribed value of `f 0`. -/
lemma exists_strict_mono' [no_max_order α] (a : α) : ∃ f : ℕ → α, strict_mono f ∧ f 0 = a :=
begin
have := (λ x : α, exists_gt x),
choose g hg,
exact ⟨λ n, nat.rec_on n a (λ _, g), strict_mono_nat_of_lt_succ $ λ n, hg _, rfl⟩
end
/-- If `α` is a preorder with no maximal elements, then there exists a strictly antitone function
`ℕ → α` with any prescribed value of `f 0`. -/
lemma exists_strict_anti' [no_min_order α] (a : α) : ∃ f : ℕ → α, strict_anti f ∧ f 0 = a :=
exists_strict_mono' (order_dual.to_dual a)
variable (α)
/-- If `α` is a nonempty preorder with no maximal elements, then there exists a strictly monotone
function `ℕ → α`. -/
lemma exists_strict_mono [nonempty α] [no_max_order α] : ∃ f : ℕ → α, strict_mono f :=
let ⟨a⟩ := ‹nonempty α›, ⟨f, hf, hfa⟩ := exists_strict_mono' a in ⟨f, hf⟩
/-- If `α` is a nonempty preorder with no minimal elements, then there exists a strictly antitone
function `ℕ → α`. -/
lemma exists_strict_anti [nonempty α] [no_min_order α] : ∃ f : ℕ → α, strict_anti f :=
exists_strict_mono αᵒᵈ
end nat
lemma int.rel_of_forall_rel_succ_of_lt (r : β → β → Prop) [is_trans β r]
{f : ℤ → β} (h : ∀ n, r (f n) (f (n + 1))) ⦃a b : ℤ⦄ (hab : a < b) : r (f a) (f b) :=
begin
rcases hab.dest with ⟨n, rfl⟩, clear hab,
induction n with n ihn,
{ rw int.coe_nat_one, apply h },
{ rw [int.coe_nat_succ, ← int.add_assoc],
exact trans ihn (h _) }
end
lemma int.rel_of_forall_rel_succ_of_le (r : β → β → Prop) [is_refl β r] [is_trans β r]
{f : ℤ → β} (h : ∀ n, r (f n) (f (n + 1))) ⦃a b : ℤ⦄ (hab : a ≤ b) : r (f a) (f b) :=
hab.eq_or_lt.elim (λ h, h ▸ refl _) (λ h', int.rel_of_forall_rel_succ_of_lt r h h')
lemma monotone_int_of_le_succ {f : ℤ → α} (hf : ∀ n, f n ≤ f (n + 1)) : monotone f :=
int.rel_of_forall_rel_succ_of_le (≤) hf
lemma antitone_int_of_succ_le {f : ℤ → α} (hf : ∀ n, f (n + 1) ≤ f n) : antitone f :=
int.rel_of_forall_rel_succ_of_le (≥) hf
lemma strict_mono_int_of_lt_succ {f : ℤ → α} (hf : ∀ n, f n < f (n + 1)) : strict_mono f :=
int.rel_of_forall_rel_succ_of_lt (<) hf
lemma strict_anti_int_of_succ_lt {f : ℤ → α} (hf : ∀ n, f (n + 1) < f n) : strict_anti f :=
int.rel_of_forall_rel_succ_of_lt (>) hf
namespace int
variables (α) [nonempty α] [no_min_order α] [no_max_order α]
/-- If `α` is a nonempty preorder with no minimal or maximal elements, then there exists a strictly
monotone function `f : ℤ → α`. -/
lemma exists_strict_mono : ∃ f : ℤ → α, strict_mono f :=
begin
inhabit α,
rcases nat.exists_strict_mono' (default : α) with ⟨f, hf, hf₀⟩,
rcases nat.exists_strict_anti' (default : α) with ⟨g, hg, hg₀⟩,
refine ⟨λ n, int.cases_on n f (λ n, g (n + 1)), strict_mono_int_of_lt_succ _⟩,
rintro (n|_|n),
{ exact hf n.lt_succ_self },
{ show g 1 < f 0,
rw [hf₀, ← hg₀],
exact hg nat.zero_lt_one },
{ exact hg (nat.lt_succ_self _) }
end
/-- If `α` is a nonempty preorder with no minimal or maximal elements, then there exists a strictly
antitone function `f : ℤ → α`. -/
lemma exists_strict_anti : ∃ f : ℤ → α, strict_anti f := exists_strict_mono αᵒᵈ
end int
-- TODO@Yael: Generalize the following four to succ orders
/-- If `f` is a monotone function from `ℕ` to a preorder such that `x` lies between `f n` and
`f (n + 1)`, then `x` doesn't lie in the range of `f`. -/
lemma monotone.ne_of_lt_of_lt_nat {f : ℕ → α} (hf : monotone f) (n : ℕ) {x : α}
(h1 : f n < x) (h2 : x < f (n + 1)) (a : ℕ) :
f a ≠ x :=
by { rintro rfl, exact (hf.reflect_lt h1).not_le (nat.le_of_lt_succ $ hf.reflect_lt h2) }
/-- If `f` is an antitone function from `ℕ` to a preorder such that `x` lies between `f (n + 1)` and
`f n`, then `x` doesn't lie in the range of `f`. -/
lemma antitone.ne_of_lt_of_lt_nat {f : ℕ → α} (hf : antitone f)
(n : ℕ) {x : α} (h1 : f (n + 1) < x) (h2 : x < f n) (a : ℕ) : f a ≠ x :=
by { rintro rfl, exact (hf.reflect_lt h2).not_le (nat.le_of_lt_succ $ hf.reflect_lt h1) }
/-- If `f` is a monotone function from `ℤ` to a preorder and `x` lies between `f n` and
`f (n + 1)`, then `x` doesn't lie in the range of `f`. -/
lemma monotone.ne_of_lt_of_lt_int {f : ℤ → α} (hf : monotone f) (n : ℤ) {x : α}
(h1 : f n < x) (h2 : x < f (n + 1)) (a : ℤ) :
f a ≠ x :=
by { rintro rfl, exact (hf.reflect_lt h1).not_le (int.le_of_lt_add_one $ hf.reflect_lt h2) }
/-- If `f` is an antitone function from `ℤ` to a preorder and `x` lies between `f (n + 1)` and
`f n`, then `x` doesn't lie in the range of `f`. -/
lemma antitone.ne_of_lt_of_lt_int {f : ℤ → α} (hf : antitone f)
(n : ℤ) {x : α} (h1 : f (n + 1) < x) (h2 : x < f n) (a : ℤ) : f a ≠ x :=
by { rintro rfl, exact (hf.reflect_lt h2).not_le (int.le_of_lt_add_one $ hf.reflect_lt h1) }
lemma strict_mono.id_le {φ : ℕ → ℕ} (h : strict_mono φ) : ∀ n, n ≤ φ n :=
λ n, nat.rec_on n (nat.zero_le _)
(λ n hn, nat.succ_le_of_lt (hn.trans_lt $ h $ nat.lt_succ_self n))
end preorder
lemma subtype.mono_coe [preorder α] (t : set α) : monotone (coe : (subtype t) → α) :=
λ x y, id
lemma subtype.strict_mono_coe [preorder α] (t : set α) : strict_mono (coe : (subtype t) → α) :=
λ x y, id
section preorder
variables [preorder α] [preorder β] [preorder γ] [preorder δ] {f : α → γ} {g : β → δ} {a b : α}
lemma monotone_fst : monotone (@prod.fst α β) := λ a b, and.left
lemma monotone_snd : monotone (@prod.snd α β) := λ a b, and.right
lemma monotone.prod_map (hf : monotone f) (hg : monotone g) : monotone (prod.map f g) :=
λ a b h, ⟨hf h.1, hg h.2⟩
lemma antitone.prod_map (hf : antitone f) (hg : antitone g) : antitone (prod.map f g) :=
λ a b h, ⟨hf h.1, hg h.2⟩
end preorder
section partial_order
variables [partial_order α] [partial_order β] [preorder γ] [preorder δ]
{f : α → γ} {g : β → δ}
lemma strict_mono.prod_map (hf : strict_mono f) (hg : strict_mono g) : strict_mono (prod.map f g) :=
λ a b, by { simp_rw prod.lt_iff,
exact or.imp (and.imp hf.imp hg.monotone.imp) (and.imp hf.monotone.imp hg.imp) }
lemma strict_anti.prod_map (hf : strict_anti f) (hg : strict_anti g) : strict_anti (prod.map f g) :=
λ a b, by { simp_rw prod.lt_iff,
exact or.imp (and.imp hf.imp hg.antitone.imp) (and.imp hf.antitone.imp hg.imp) }
end partial_order
|