Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 30,394 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 |
/-
Copyright (c) 2018 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel, Johannes Hölzl, Rémy Degenne
-/
import order.filter.cofinite
/-!
# liminfs and limsups of functions and filters
Defines the Liminf/Limsup of a function taking values in a conditionally complete lattice, with
respect to an arbitrary filter.
We define `f.Limsup` (`f.Liminf`) where `f` is a filter taking values in a conditionally complete
lattice. `f.Limsup` is the smallest element `a` such that, eventually, `u ≤ a` (and vice versa for
`f.Liminf`). To work with the Limsup along a function `u` use `(f.map u).Limsup`.
Usually, one defines the Limsup as `Inf (Sup s)` where the Inf is taken over all sets in the filter.
For instance, in ℕ along a function `u`, this is `Inf_n (Sup_{k ≥ n} u k)` (and the latter quantity
decreases with `n`, so this is in fact a limit.). There is however a difficulty: it is well possible
that `u` is not bounded on the whole space, only eventually (think of `Limsup (λx, 1/x)` on ℝ. Then
there is no guarantee that the quantity above really decreases (the value of the `Sup` beforehand is
not really well defined, as one can not use ∞), so that the Inf could be anything. So one can not
use this `Inf Sup ...` definition in conditionally complete lattices, and one has to use a less
tractable definition.
In conditionally complete lattices, the definition is only useful for filters which are eventually
bounded above (otherwise, the Limsup would morally be +∞, which does not belong to the space) and
which are frequently bounded below (otherwise, the Limsup would morally be -∞, which is not in the
space either). We start with definitions of these concepts for arbitrary filters, before turning to
the definitions of Limsup and Liminf.
In complete lattices, however, it coincides with the `Inf Sup` definition.
-/
open filter set
open_locale filter
variables {α β γ ι : Type*}
namespace filter
section relation
/-- `f.is_bounded (≺)`: the filter `f` is eventually bounded w.r.t. the relation `≺`, i.e.
eventually, it is bounded by some uniform bound.
`r` will be usually instantiated with `≤` or `≥`. -/
def is_bounded (r : α → α → Prop) (f : filter α) := ∃ b, ∀ᶠ x in f, r x b
/-- `f.is_bounded_under (≺) u`: the image of the filter `f` under `u` is eventually bounded w.r.t.
the relation `≺`, i.e. eventually, it is bounded by some uniform bound. -/
def is_bounded_under (r : α → α → Prop) (f : filter β) (u : β → α) := (f.map u).is_bounded r
variables {r : α → α → Prop} {f g : filter α}
/-- `f` is eventually bounded if and only if, there exists an admissible set on which it is
bounded. -/
lemma is_bounded_iff : f.is_bounded r ↔ (∃s∈f.sets, ∃b, s ⊆ {x | r x b}) :=
iff.intro
(assume ⟨b, hb⟩, ⟨{a | r a b}, hb, b, subset.refl _⟩)
(assume ⟨s, hs, b, hb⟩, ⟨b, mem_of_superset hs hb⟩)
/-- A bounded function `u` is in particular eventually bounded. -/
lemma is_bounded_under_of {f : filter β} {u : β → α} :
(∃b, ∀x, r (u x) b) → f.is_bounded_under r u
| ⟨b, hb⟩ := ⟨b, show ∀ᶠ x in f, r (u x) b, from eventually_of_forall hb⟩
lemma is_bounded_bot : is_bounded r ⊥ ↔ nonempty α :=
by simp [is_bounded, exists_true_iff_nonempty]
lemma is_bounded_top : is_bounded r ⊤ ↔ (∃t, ∀x, r x t) :=
by simp [is_bounded, eq_univ_iff_forall]
lemma is_bounded_principal (s : set α) : is_bounded r (𝓟 s) ↔ (∃t, ∀x∈s, r x t) :=
by simp [is_bounded, subset_def]
lemma is_bounded_sup [is_trans α r] (hr : ∀b₁ b₂, ∃b, r b₁ b ∧ r b₂ b) :
is_bounded r f → is_bounded r g → is_bounded r (f ⊔ g)
| ⟨b₁, h₁⟩ ⟨b₂, h₂⟩ := let ⟨b, rb₁b, rb₂b⟩ := hr b₁ b₂ in
⟨b, eventually_sup.mpr ⟨h₁.mono (λ x h, trans h rb₁b), h₂.mono (λ x h, trans h rb₂b)⟩⟩
lemma is_bounded.mono (h : f ≤ g) : is_bounded r g → is_bounded r f
| ⟨b, hb⟩ := ⟨b, h hb⟩
lemma is_bounded_under.mono {f g : filter β} {u : β → α} (h : f ≤ g) :
g.is_bounded_under r u → f.is_bounded_under r u :=
λ hg, hg.mono (map_mono h)
lemma is_bounded_under.mono_le [preorder β] {l : filter α} {u v : α → β}
(hu : is_bounded_under (≤) l u) (hv : v ≤ᶠ[l] u) : is_bounded_under (≤) l v :=
hu.imp $ λ b hb, (eventually_map.1 hb).mp $ hv.mono $ λ x, le_trans
lemma is_bounded_under.mono_ge [preorder β] {l : filter α} {u v : α → β}
(hu : is_bounded_under (≥) l u) (hv : u ≤ᶠ[l] v) : is_bounded_under (≥) l v :=
@is_bounded_under.mono_le α βᵒᵈ _ _ _ _ hu hv
lemma is_bounded.is_bounded_under {q : β → β → Prop} {u : α → β}
(hf : ∀a₀ a₁, r a₀ a₁ → q (u a₀) (u a₁)) : f.is_bounded r → f.is_bounded_under q u
| ⟨b, h⟩ := ⟨u b, show ∀ᶠ x in f, q (u x) (u b), from h.mono (λ x, hf x b)⟩
lemma not_is_bounded_under_of_tendsto_at_top [preorder β] [no_max_order β] {f : α → β}
{l : filter α} [l.ne_bot] (hf : tendsto f l at_top) :
¬ is_bounded_under (≤) l f :=
begin
rintro ⟨b, hb⟩,
rw eventually_map at hb,
obtain ⟨b', h⟩ := exists_gt b,
have hb' := (tendsto_at_top.mp hf) b',
have : {x : α | f x ≤ b} ∩ {x : α | b' ≤ f x} = ∅ :=
eq_empty_of_subset_empty (λ x hx, (not_le_of_lt h) (le_trans hx.2 hx.1)),
exact (nonempty_of_mem (hb.and hb')).ne_empty this
end
lemma not_is_bounded_under_of_tendsto_at_bot [preorder β] [no_min_order β] {f : α → β}
{l : filter α} [l.ne_bot](hf : tendsto f l at_bot) :
¬ is_bounded_under (≥) l f :=
@not_is_bounded_under_of_tendsto_at_top α βᵒᵈ _ _ _ _ _ hf
lemma is_bounded_under.bdd_above_range_of_cofinite [semilattice_sup β] {f : α → β}
(hf : is_bounded_under (≤) cofinite f) : bdd_above (range f) :=
begin
rcases hf with ⟨b, hb⟩,
haveI : nonempty β := ⟨b⟩,
rw [← image_univ, ← union_compl_self {x | f x ≤ b}, image_union, bdd_above_union],
exact ⟨⟨b, ball_image_iff.2 $ λ x, id⟩, (hb.image f).bdd_above⟩
end
lemma is_bounded_under.bdd_below_range_of_cofinite [semilattice_inf β] {f : α → β}
(hf : is_bounded_under (≥) cofinite f) : bdd_below (range f) :=
@is_bounded_under.bdd_above_range_of_cofinite α βᵒᵈ _ _ hf
lemma is_bounded_under.bdd_above_range [semilattice_sup β] {f : ℕ → β}
(hf : is_bounded_under (≤) at_top f) : bdd_above (range f) :=
by { rw ← nat.cofinite_eq_at_top at hf, exact hf.bdd_above_range_of_cofinite }
lemma is_bounded_under.bdd_below_range [semilattice_inf β] {f : ℕ → β}
(hf : is_bounded_under (≥) at_top f) : bdd_below (range f) :=
@is_bounded_under.bdd_above_range βᵒᵈ _ _ hf
/-- `is_cobounded (≺) f` states that the filter `f` does not tend to infinity w.r.t. `≺`. This is
also called frequently bounded. Will be usually instantiated with `≤` or `≥`.
There is a subtlety in this definition: we want `f.is_cobounded` to hold for any `f` in the case of
complete lattices. This will be relevant to deduce theorems on complete lattices from their
versions on conditionally complete lattices with additional assumptions. We have to be careful in
the edge case of the trivial filter containing the empty set: the other natural definition
`¬ ∀ a, ∀ᶠ n in f, a ≤ n`
would not work as well in this case.
-/
def is_cobounded (r : α → α → Prop) (f : filter α) := ∃b, ∀a, (∀ᶠ x in f, r x a) → r b a
/-- `is_cobounded_under (≺) f u` states that the image of the filter `f` under the map `u` does not
tend to infinity w.r.t. `≺`. This is also called frequently bounded. Will be usually instantiated
with `≤` or `≥`. -/
def is_cobounded_under (r : α → α → Prop) (f : filter β) (u : β → α) := (f.map u).is_cobounded r
/-- To check that a filter is frequently bounded, it suffices to have a witness
which bounds `f` at some point for every admissible set.
This is only an implication, as the other direction is wrong for the trivial filter.-/
lemma is_cobounded.mk [is_trans α r] (a : α) (h : ∀s∈f, ∃x∈s, r a x) : f.is_cobounded r :=
⟨a, assume y s, let ⟨x, h₁, h₂⟩ := h _ s in trans h₂ h₁⟩
/-- A filter which is eventually bounded is in particular frequently bounded (in the opposite
direction). At least if the filter is not trivial. -/
lemma is_bounded.is_cobounded_flip [is_trans α r] [ne_bot f] :
f.is_bounded r → f.is_cobounded (flip r)
| ⟨a, ha⟩ := ⟨a, assume b hb,
let ⟨x, rxa, rbx⟩ := (ha.and hb).exists in
show r b a, from trans rbx rxa⟩
lemma is_bounded.is_cobounded_ge [preorder α] [ne_bot f] (h : f.is_bounded (≤)) :
f.is_cobounded (≥) :=
h.is_cobounded_flip
lemma is_bounded.is_cobounded_le [preorder α] [ne_bot f] (h : f.is_bounded (≥)) :
f.is_cobounded (≤) :=
h.is_cobounded_flip
lemma is_cobounded_bot : is_cobounded r ⊥ ↔ (∃b, ∀x, r b x) :=
by simp [is_cobounded]
lemma is_cobounded_top : is_cobounded r ⊤ ↔ nonempty α :=
by simp [is_cobounded, eq_univ_iff_forall, exists_true_iff_nonempty] {contextual := tt}
lemma is_cobounded_principal (s : set α) :
(𝓟 s).is_cobounded r ↔ (∃b, ∀a, (∀x∈s, r x a) → r b a) :=
by simp [is_cobounded, subset_def]
lemma is_cobounded.mono (h : f ≤ g) : f.is_cobounded r → g.is_cobounded r
| ⟨b, hb⟩ := ⟨b, assume a ha, hb a (h ha)⟩
end relation
lemma is_cobounded_le_of_bot [preorder α] [order_bot α] {f : filter α} : f.is_cobounded (≤) :=
⟨⊥, assume a h, bot_le⟩
lemma is_cobounded_ge_of_top [preorder α] [order_top α] {f : filter α} : f.is_cobounded (≥) :=
⟨⊤, assume a h, le_top⟩
lemma is_bounded_le_of_top [preorder α] [order_top α] {f : filter α} : f.is_bounded (≤) :=
⟨⊤, eventually_of_forall $ λ _, le_top⟩
lemma is_bounded_ge_of_bot [preorder α] [order_bot α] {f : filter α} : f.is_bounded (≥) :=
⟨⊥, eventually_of_forall $ λ _, bot_le⟩
@[simp] lemma _root_.order_iso.is_bounded_under_le_comp [preorder α] [preorder β] (e : α ≃o β)
{l : filter γ} {u : γ → α} :
is_bounded_under (≤) l (λ x, e (u x)) ↔ is_bounded_under (≤) l u :=
e.surjective.exists.trans $ exists_congr $ λ a, by simp only [eventually_map, e.le_iff_le]
@[simp] lemma _root_.order_iso.is_bounded_under_ge_comp [preorder α] [preorder β] (e : α ≃o β)
{l : filter γ} {u : γ → α} :
is_bounded_under (≥) l (λ x, e (u x)) ↔ is_bounded_under (≥) l u :=
e.dual.is_bounded_under_le_comp
@[simp, to_additive]
lemma is_bounded_under_le_inv [ordered_comm_group α] {l : filter β} {u : β → α} :
is_bounded_under (≤) l (λ x, (u x)⁻¹) ↔ is_bounded_under (≥) l u :=
(order_iso.inv α).is_bounded_under_ge_comp
@[simp, to_additive]
lemma is_bounded_under_ge_inv [ordered_comm_group α] {l : filter β} {u : β → α} :
is_bounded_under (≥) l (λ x, (u x)⁻¹) ↔ is_bounded_under (≤) l u :=
(order_iso.inv α).is_bounded_under_le_comp
lemma is_bounded_under.sup [semilattice_sup α] {f : filter β} {u v : β → α} :
f.is_bounded_under (≤) u → f.is_bounded_under (≤) v → f.is_bounded_under (≤) (λa, u a ⊔ v a)
| ⟨bu, (hu : ∀ᶠ x in f, u x ≤ bu)⟩ ⟨bv, (hv : ∀ᶠ x in f, v x ≤ bv)⟩ :=
⟨bu ⊔ bv, show ∀ᶠ x in f, u x ⊔ v x ≤ bu ⊔ bv,
by filter_upwards [hu, hv] with _ using sup_le_sup⟩
@[simp] lemma is_bounded_under_le_sup [semilattice_sup α] {f : filter β} {u v : β → α} :
f.is_bounded_under (≤) (λ a, u a ⊔ v a) ↔ f.is_bounded_under (≤) u ∧ f.is_bounded_under (≤) v :=
⟨λ h, ⟨h.mono_le $ eventually_of_forall $ λ _, le_sup_left,
h.mono_le $ eventually_of_forall $ λ _, le_sup_right⟩, λ h, h.1.sup h.2⟩
lemma is_bounded_under.inf [semilattice_inf α] {f : filter β} {u v : β → α} :
f.is_bounded_under (≥) u → f.is_bounded_under (≥) v → f.is_bounded_under (≥) (λa, u a ⊓ v a) :=
@is_bounded_under.sup αᵒᵈ β _ _ _ _
@[simp] lemma is_bounded_under_ge_inf [semilattice_inf α] {f : filter β} {u v : β → α} :
f.is_bounded_under (≥) (λ a, u a ⊓ v a) ↔ f.is_bounded_under (≥) u ∧ f.is_bounded_under (≥) v :=
@is_bounded_under_le_sup αᵒᵈ _ _ _ _ _
lemma is_bounded_under_le_abs [linear_ordered_add_comm_group α] {f : filter β} {u : β → α} :
f.is_bounded_under (≤) (λ a, |u a|) ↔ f.is_bounded_under (≤) u ∧ f.is_bounded_under (≥) u :=
is_bounded_under_le_sup.trans $ and_congr iff.rfl is_bounded_under_le_neg
/-- Filters are automatically bounded or cobounded in complete lattices. To use the same statements
in complete and conditionally complete lattices but let automation fill automatically the
boundedness proofs in complete lattices, we use the tactic `is_bounded_default` in the statements,
in the form `(hf : f.is_bounded (≥) . is_bounded_default)`. -/
meta def is_bounded_default : tactic unit :=
tactic.applyc ``is_cobounded_le_of_bot <|>
tactic.applyc ``is_cobounded_ge_of_top <|>
tactic.applyc ``is_bounded_le_of_top <|>
tactic.applyc ``is_bounded_ge_of_bot
section conditionally_complete_lattice
variables [conditionally_complete_lattice α]
/-- The `Limsup` of a filter `f` is the infimum of the `a` such that, eventually for `f`,
holds `x ≤ a`. -/
def Limsup (f : filter α) : α := Inf { a | ∀ᶠ n in f, n ≤ a }
/-- The `Liminf` of a filter `f` is the supremum of the `a` such that, eventually for `f`,
holds `x ≥ a`. -/
def Liminf (f : filter α) : α := Sup { a | ∀ᶠ n in f, a ≤ n }
/-- The `limsup` of a function `u` along a filter `f` is the infimum of the `a` such that,
eventually for `f`, holds `u x ≤ a`. -/
def limsup (f : filter β) (u : β → α) : α := (f.map u).Limsup
/-- The `liminf` of a function `u` along a filter `f` is the supremum of the `a` such that,
eventually for `f`, holds `u x ≥ a`. -/
def liminf (f : filter β) (u : β → α) : α := (f.map u).Liminf
section
variables {f : filter β} {u : β → α}
theorem limsup_eq : f.limsup u = Inf { a | ∀ᶠ n in f, u n ≤ a } := rfl
theorem liminf_eq : f.liminf u = Sup { a | ∀ᶠ n in f, a ≤ u n } := rfl
end
theorem Limsup_le_of_le {f : filter α} {a}
(hf : f.is_cobounded (≤) . is_bounded_default) (h : ∀ᶠ n in f, n ≤ a) : f.Limsup ≤ a :=
cInf_le hf h
theorem le_Liminf_of_le {f : filter α} {a}
(hf : f.is_cobounded (≥) . is_bounded_default) (h : ∀ᶠ n in f, a ≤ n) : a ≤ f.Liminf :=
le_cSup hf h
theorem le_Limsup_of_le {f : filter α} {a}
(hf : f.is_bounded (≤) . is_bounded_default) (h : ∀ b, (∀ᶠ n in f, n ≤ b) → a ≤ b) :
a ≤ f.Limsup :=
le_cInf hf h
theorem Liminf_le_of_le {f : filter α} {a}
(hf : f.is_bounded (≥) . is_bounded_default) (h : ∀ b, (∀ᶠ n in f, b ≤ n) → b ≤ a) :
f.Liminf ≤ a :=
cSup_le hf h
theorem Liminf_le_Limsup {f : filter α} [ne_bot f]
(h₁ : f.is_bounded (≤) . is_bounded_default) (h₂ : f.is_bounded (≥) . is_bounded_default) :
f.Liminf ≤ f.Limsup :=
Liminf_le_of_le h₂ $ assume a₀ ha₀, le_Limsup_of_le h₁ $ assume a₁ ha₁,
show a₀ ≤ a₁, from let ⟨b, hb₀, hb₁⟩ := (ha₀.and ha₁).exists in le_trans hb₀ hb₁
lemma Liminf_le_Liminf {f g : filter α}
(hf : f.is_bounded (≥) . is_bounded_default) (hg : g.is_cobounded (≥) . is_bounded_default)
(h : ∀ a, (∀ᶠ n in f, a ≤ n) → ∀ᶠ n in g, a ≤ n) : f.Liminf ≤ g.Liminf :=
cSup_le_cSup hg hf h
lemma Limsup_le_Limsup {f g : filter α}
(hf : f.is_cobounded (≤) . is_bounded_default) (hg : g.is_bounded (≤) . is_bounded_default)
(h : ∀ a, (∀ᶠ n in g, n ≤ a) → ∀ᶠ n in f, n ≤ a) : f.Limsup ≤ g.Limsup :=
cInf_le_cInf hf hg h
lemma Limsup_le_Limsup_of_le {f g : filter α} (h : f ≤ g)
(hf : f.is_cobounded (≤) . is_bounded_default) (hg : g.is_bounded (≤) . is_bounded_default) :
f.Limsup ≤ g.Limsup :=
Limsup_le_Limsup hf hg (assume a ha, h ha)
lemma Liminf_le_Liminf_of_le {f g : filter α} (h : g ≤ f)
(hf : f.is_bounded (≥) . is_bounded_default) (hg : g.is_cobounded (≥) . is_bounded_default) :
f.Liminf ≤ g.Liminf :=
Liminf_le_Liminf hf hg (assume a ha, h ha)
lemma limsup_le_limsup {α : Type*} [conditionally_complete_lattice β] {f : filter α} {u v : α → β}
(h : u ≤ᶠ[f] v)
(hu : f.is_cobounded_under (≤) u . is_bounded_default)
(hv : f.is_bounded_under (≤) v . is_bounded_default) :
f.limsup u ≤ f.limsup v :=
Limsup_le_Limsup hu hv $ assume b, h.trans
lemma liminf_le_liminf {α : Type*} [conditionally_complete_lattice β] {f : filter α} {u v : α → β}
(h : ∀ᶠ a in f, u a ≤ v a)
(hu : f.is_bounded_under (≥) u . is_bounded_default)
(hv : f.is_cobounded_under (≥) v . is_bounded_default) :
f.liminf u ≤ f.liminf v :=
@limsup_le_limsup βᵒᵈ α _ _ _ _ h hv hu
lemma limsup_le_limsup_of_le {α β} [conditionally_complete_lattice β] {f g : filter α} (h : f ≤ g)
{u : α → β} (hf : f.is_cobounded_under (≤) u . is_bounded_default)
(hg : g.is_bounded_under (≤) u . is_bounded_default) :
f.limsup u ≤ g.limsup u :=
Limsup_le_Limsup_of_le (map_mono h) hf hg
lemma liminf_le_liminf_of_le {α β} [conditionally_complete_lattice β] {f g : filter α} (h : g ≤ f)
{u : α → β} (hf : f.is_bounded_under (≥) u . is_bounded_default)
(hg : g.is_cobounded_under (≥) u . is_bounded_default) :
f.liminf u ≤ g.liminf u :=
Liminf_le_Liminf_of_le (map_mono h) hf hg
theorem Limsup_principal {s : set α} (h : bdd_above s) (hs : s.nonempty) :
(𝓟 s).Limsup = Sup s :=
by simp [Limsup]; exact cInf_upper_bounds_eq_cSup h hs
theorem Liminf_principal {s : set α} (h : bdd_below s) (hs : s.nonempty) :
(𝓟 s).Liminf = Inf s :=
@Limsup_principal αᵒᵈ _ s h hs
lemma limsup_congr {α : Type*} [conditionally_complete_lattice β] {f : filter α} {u v : α → β}
(h : ∀ᶠ a in f, u a = v a) : limsup f u = limsup f v :=
begin
rw limsup_eq,
congr' with b,
exact eventually_congr (h.mono $ λ x hx, by simp [hx])
end
lemma liminf_congr {α : Type*} [conditionally_complete_lattice β] {f : filter α} {u v : α → β}
(h : ∀ᶠ a in f, u a = v a) : liminf f u = liminf f v :=
@limsup_congr βᵒᵈ _ _ _ _ _ h
lemma limsup_const {α : Type*} [conditionally_complete_lattice β] {f : filter α} [ne_bot f]
(b : β) : limsup f (λ x, b) = b :=
by simpa only [limsup_eq, eventually_const] using cInf_Ici
lemma liminf_const {α : Type*} [conditionally_complete_lattice β] {f : filter α} [ne_bot f]
(b : β) : liminf f (λ x, b) = b :=
@limsup_const βᵒᵈ α _ f _ b
lemma liminf_le_limsup {f : filter β} [ne_bot f] {u : β → α}
(h : f.is_bounded_under (≤) u . is_bounded_default)
(h' : f.is_bounded_under (≥) u . is_bounded_default) :
liminf f u ≤ limsup f u :=
Liminf_le_Limsup h h'
end conditionally_complete_lattice
section complete_lattice
variables [complete_lattice α]
@[simp] theorem Limsup_bot : (⊥ : filter α).Limsup = ⊥ :=
bot_unique $ Inf_le $ by simp
@[simp] theorem Liminf_bot : (⊥ : filter α).Liminf = ⊤ :=
top_unique $ le_Sup $ by simp
@[simp] theorem Limsup_top : (⊤ : filter α).Limsup = ⊤ :=
top_unique $ le_Inf $
by simp [eq_univ_iff_forall]; exact assume b hb, (top_unique $ hb _)
@[simp] theorem Liminf_top : (⊤ : filter α).Liminf = ⊥ :=
bot_unique $ Sup_le $
by simp [eq_univ_iff_forall]; exact assume b hb, (bot_unique $ hb _)
/-- Same as limsup_const applied to `⊥` but without the `ne_bot f` assumption -/
lemma limsup_const_bot {f : filter β} : limsup f (λ x : β, (⊥ : α)) = (⊥ : α) :=
begin
rw [limsup_eq, eq_bot_iff],
exact Inf_le (eventually_of_forall (λ x, le_rfl)),
end
/-- Same as limsup_const applied to `⊤` but without the `ne_bot f` assumption -/
lemma liminf_const_top {f : filter β} : liminf f (λ x : β, (⊤ : α)) = (⊤ : α) :=
@limsup_const_bot αᵒᵈ β _ _
theorem has_basis.Limsup_eq_infi_Sup {ι} {p : ι → Prop} {s} {f : filter α} (h : f.has_basis p s) :
f.Limsup = ⨅ i (hi : p i), Sup (s i) :=
le_antisymm
(le_infi₂ $ λ i hi, Inf_le $ h.eventually_iff.2 ⟨i, hi, λ x, le_Sup⟩)
(le_Inf $ assume a ha, let ⟨i, hi, ha⟩ := h.eventually_iff.1 ha in
infi₂_le_of_le _ hi $ Sup_le ha)
theorem has_basis.Liminf_eq_supr_Inf {p : ι → Prop} {s : ι → set α} {f : filter α}
(h : f.has_basis p s) : f.Liminf = ⨆ i (hi : p i), Inf (s i) :=
@has_basis.Limsup_eq_infi_Sup αᵒᵈ _ _ _ _ _ h
theorem Limsup_eq_infi_Sup {f : filter α} : f.Limsup = ⨅ s ∈ f, Sup s :=
f.basis_sets.Limsup_eq_infi_Sup
theorem Liminf_eq_supr_Inf {f : filter α} : f.Liminf = ⨆ s ∈ f, Inf s :=
@Limsup_eq_infi_Sup αᵒᵈ _ _
/-- In a complete lattice, the limsup of a function is the infimum over sets `s` in the filter
of the supremum of the function over `s` -/
theorem limsup_eq_infi_supr {f : filter β} {u : β → α} : f.limsup u = ⨅ s ∈ f, ⨆ a ∈ s, u a :=
(f.basis_sets.map u).Limsup_eq_infi_Sup.trans $
by simp only [Sup_image, id]
lemma limsup_eq_infi_supr_of_nat {u : ℕ → α} : limsup at_top u = ⨅ n : ℕ, ⨆ i ≥ n, u i :=
(at_top_basis.map u).Limsup_eq_infi_Sup.trans $
by simp only [Sup_image, infi_const]; refl
lemma limsup_eq_infi_supr_of_nat' {u : ℕ → α} : limsup at_top u = ⨅ n : ℕ, ⨆ i : ℕ, u (i + n) :=
by simp only [limsup_eq_infi_supr_of_nat, supr_ge_eq_supr_nat_add]
theorem has_basis.limsup_eq_infi_supr {p : ι → Prop} {s : ι → set β} {f : filter β} {u : β → α}
(h : f.has_basis p s) : f.limsup u = ⨅ i (hi : p i), ⨆ a ∈ s i, u a :=
(h.map u).Limsup_eq_infi_Sup.trans $ by simp only [Sup_image, id]
/-- In a complete lattice, the liminf of a function is the infimum over sets `s` in the filter
of the supremum of the function over `s` -/
theorem liminf_eq_supr_infi {f : filter β} {u : β → α} : f.liminf u = ⨆ s ∈ f, ⨅ a ∈ s, u a :=
@limsup_eq_infi_supr αᵒᵈ β _ _ _
lemma liminf_eq_supr_infi_of_nat {u : ℕ → α} : liminf at_top u = ⨆ n : ℕ, ⨅ i ≥ n, u i :=
@limsup_eq_infi_supr_of_nat αᵒᵈ _ u
lemma liminf_eq_supr_infi_of_nat' {u : ℕ → α} : liminf at_top u = ⨆ n : ℕ, ⨅ i : ℕ, u (i + n) :=
@limsup_eq_infi_supr_of_nat' αᵒᵈ _ _
theorem has_basis.liminf_eq_supr_infi {p : ι → Prop} {s : ι → set β} {f : filter β} {u : β → α}
(h : f.has_basis p s) : f.liminf u = ⨆ i (hi : p i), ⨅ a ∈ s i, u a :=
@has_basis.limsup_eq_infi_supr αᵒᵈ _ _ _ _ _ _ _ h
lemma limsup_eq_Inf_Sup {ι R : Type*} (F : filter ι) [complete_lattice R] (a : ι → R) :
F.limsup a = Inf ((λ I, Sup (a '' I)) '' F.sets) :=
begin
refine le_antisymm _ _,
{ rw limsup_eq,
refine Inf_le_Inf (λ x hx, _),
rcases (mem_image _ F.sets x).mp hx with ⟨I, ⟨I_mem_F, hI⟩⟩,
filter_upwards [I_mem_F] with i hi,
exact hI ▸ le_Sup (mem_image_of_mem _ hi), },
{ refine le_Inf_iff.mpr (λ b hb, Inf_le_of_le (mem_image_of_mem _ $ filter.mem_sets.mpr hb)
$ Sup_le _),
rintros _ ⟨_, h, rfl⟩,
exact h, },
end
lemma liminf_eq_Sup_Inf {ι R : Type*} (F : filter ι) [complete_lattice R] (a : ι → R) :
F.liminf a = Sup ((λ I, Inf (a '' I)) '' F.sets) :=
@filter.limsup_eq_Inf_Sup ι (order_dual R) _ _ a
@[simp] lemma liminf_nat_add (f : ℕ → α) (k : ℕ) :
at_top.liminf (λ i, f (i + k)) = at_top.liminf f :=
by { simp_rw liminf_eq_supr_infi_of_nat, exact supr_infi_ge_nat_add f k }
@[simp] lemma limsup_nat_add (f : ℕ → α) (k : ℕ) :
at_top.limsup (λ i, f (i + k)) = at_top.limsup f :=
@liminf_nat_add αᵒᵈ _ f k
lemma liminf_le_of_frequently_le' {α β} [complete_lattice β]
{f : filter α} {u : α → β} {x : β} (h : ∃ᶠ a in f, u a ≤ x) :
f.liminf u ≤ x :=
begin
rw liminf_eq,
refine Sup_le (λ b hb, _),
have hbx : ∃ᶠ a in f, b ≤ x,
{ revert h,
rw [←not_imp_not, not_frequently, not_frequently],
exact λ h, hb.mp (h.mono (λ a hbx hba hax, hbx (hba.trans hax))), },
exact hbx.exists.some_spec,
end
lemma le_limsup_of_frequently_le' {α β} [complete_lattice β]
{f : filter α} {u : α → β} {x : β} (h : ∃ᶠ a in f, x ≤ u a) :
x ≤ f.limsup u :=
@liminf_le_of_frequently_le' _ βᵒᵈ _ _ _ _ h
end complete_lattice
section conditionally_complete_linear_order
lemma frequently_lt_of_lt_Limsup {f : filter α} [conditionally_complete_linear_order α] {a : α}
(hf : f.is_cobounded (≤) . is_bounded_default) (h : a < f.Limsup) : ∃ᶠ n in f, a < n :=
begin
contrapose! h,
simp only [not_frequently, not_lt] at h,
exact Limsup_le_of_le hf h,
end
lemma frequently_lt_of_Liminf_lt {f : filter α} [conditionally_complete_linear_order α] {a : α}
(hf : f.is_cobounded (≥) . is_bounded_default) (h : f.Liminf < a) : ∃ᶠ n in f, n < a :=
@frequently_lt_of_lt_Limsup (order_dual α) f _ a hf h
lemma eventually_lt_of_lt_liminf {f : filter α} [conditionally_complete_linear_order β]
{u : α → β} {b : β} (h : b < liminf f u) (hu : f.is_bounded_under (≥) u . is_bounded_default) :
∀ᶠ a in f, b < u a :=
begin
obtain ⟨c, hc, hbc⟩ : ∃ (c : β) (hc : c ∈ {c : β | ∀ᶠ (n : α) in f, c ≤ u n}), b < c :=
exists_lt_of_lt_cSup hu h,
exact hc.mono (λ x hx, lt_of_lt_of_le hbc hx)
end
lemma eventually_lt_of_limsup_lt {f : filter α} [conditionally_complete_linear_order β]
{u : α → β} {b : β} (h : limsup f u < b) (hu : f.is_bounded_under (≤) u . is_bounded_default) :
∀ᶠ a in f, u a < b :=
@eventually_lt_of_lt_liminf _ βᵒᵈ _ _ _ _ h hu
lemma le_limsup_of_frequently_le {α β} [conditionally_complete_linear_order β] {f : filter α}
{u : α → β} {b : β} (hu_le : ∃ᶠ x in f, b ≤ u x)
(hu : f.is_bounded_under (≤) u . is_bounded_default) :
b ≤ f.limsup u :=
begin
revert hu_le,
rw [←not_imp_not, not_frequently],
simp_rw ←lt_iff_not_ge,
exact λ h, eventually_lt_of_limsup_lt h hu,
end
lemma liminf_le_of_frequently_le {α β} [conditionally_complete_linear_order β] {f : filter α}
{u : α → β} {b : β} (hu_le : ∃ᶠ x in f, u x ≤ b)
(hu : f.is_bounded_under (≥) u . is_bounded_default) :
f.liminf u ≤ b :=
@le_limsup_of_frequently_le _ βᵒᵈ _ f u b hu_le hu
lemma frequently_lt_of_lt_limsup {α β} [conditionally_complete_linear_order β] {f : filter α}
{u : α → β} {b : β}
(hu : f.is_cobounded_under (≤) u . is_bounded_default) (h : b < f.limsup u) :
∃ᶠ x in f, b < u x :=
begin
contrapose! h,
apply Limsup_le_of_le hu,
simpa using h,
end
lemma frequently_lt_of_liminf_lt {α β} [conditionally_complete_linear_order β] {f : filter α}
{u : α → β} {b : β}
(hu : f.is_cobounded_under (≥) u . is_bounded_default) (h : f.liminf u < b) :
∃ᶠ x in f, u x < b :=
@frequently_lt_of_lt_limsup _ βᵒᵈ _ f u b hu h
end conditionally_complete_linear_order
end filter
section order
open filter
lemma monotone.is_bounded_under_le_comp [nonempty β] [linear_order β] [preorder γ]
[no_max_order γ] {g : β → γ} {f : α → β} {l : filter α} (hg : monotone g)
(hg' : tendsto g at_top at_top) :
is_bounded_under (≤) l (g ∘ f) ↔ is_bounded_under (≤) l f :=
begin
refine ⟨_, λ h, h.is_bounded_under hg⟩,
rintro ⟨c, hc⟩, rw eventually_map at hc,
obtain ⟨b, hb⟩ : ∃ b, ∀ a ≥ b, c < g a := eventually_at_top.1 (hg'.eventually_gt_at_top c),
exact ⟨b, hc.mono $ λ x hx, not_lt.1 (λ h, (hb _ h.le).not_le hx)⟩
end
lemma monotone.is_bounded_under_ge_comp [nonempty β] [linear_order β] [preorder γ]
[no_min_order γ] {g : β → γ} {f : α → β} {l : filter α} (hg : monotone g)
(hg' : tendsto g at_bot at_bot) :
is_bounded_under (≥) l (g ∘ f) ↔ is_bounded_under (≥) l f :=
hg.dual.is_bounded_under_le_comp hg'
lemma antitone.is_bounded_under_le_comp [nonempty β] [linear_order β] [preorder γ]
[no_max_order γ] {g : β → γ} {f : α → β} {l : filter α} (hg : antitone g)
(hg' : tendsto g at_bot at_top) :
is_bounded_under (≤) l (g ∘ f) ↔ is_bounded_under (≥) l f :=
hg.dual_right.is_bounded_under_ge_comp hg'
lemma antitone.is_bounded_under_ge_comp [nonempty β] [linear_order β] [preorder γ]
[no_min_order γ] {g : β → γ} {f : α → β} {l : filter α} (hg : antitone g)
(hg' : tendsto g at_top at_bot) :
is_bounded_under (≥) l (g ∘ f) ↔ is_bounded_under (≤) l f :=
hg.dual_right.is_bounded_under_le_comp hg'
lemma galois_connection.l_limsup_le [conditionally_complete_lattice β]
[conditionally_complete_lattice γ] {f : filter α} {v : α → β}
{l : β → γ} {u : γ → β} (gc : galois_connection l u)
(hlv : f.is_bounded_under (≤) (λ x, l (v x)) . is_bounded_default)
(hv_co : f.is_cobounded_under (≤) v . is_bounded_default) :
l (f.limsup v) ≤ f.limsup (λ x, l (v x)) :=
begin
refine le_Limsup_of_le hlv (λ c hc, _),
rw filter.eventually_map at hc,
simp_rw (gc _ _) at hc ⊢,
exact Limsup_le_of_le hv_co hc,
end
lemma order_iso.limsup_apply {γ} [conditionally_complete_lattice β]
[conditionally_complete_lattice γ] {f : filter α} {u : α → β} (g : β ≃o γ)
(hu : f.is_bounded_under (≤) u . is_bounded_default)
(hu_co : f.is_cobounded_under (≤) u . is_bounded_default)
(hgu : f.is_bounded_under (≤) (λ x, g (u x)) . is_bounded_default)
(hgu_co : f.is_cobounded_under (≤) (λ x, g (u x)) . is_bounded_default) :
g (f.limsup u) = f.limsup (λ x, g (u x)) :=
begin
refine le_antisymm (g.to_galois_connection.l_limsup_le hgu hu_co) _,
rw [←(g.symm.symm_apply_apply (f.limsup (λ (x : α), g (u x)))), g.symm_symm],
refine g.monotone _,
have hf : u = λ i, g.symm (g (u i)), from funext (λ i, (g.symm_apply_apply (u i)).symm),
nth_rewrite 0 hf,
refine g.symm.to_galois_connection.l_limsup_le _ hgu_co,
simp_rw g.symm_apply_apply,
exact hu,
end
lemma order_iso.liminf_apply {γ} [conditionally_complete_lattice β]
[conditionally_complete_lattice γ] {f : filter α} {u : α → β} (g : β ≃o γ)
(hu : f.is_bounded_under (≥) u . is_bounded_default)
(hu_co : f.is_cobounded_under (≥) u . is_bounded_default)
(hgu : f.is_bounded_under (≥) (λ x, g (u x)) . is_bounded_default)
(hgu_co : f.is_cobounded_under (≥) (λ x, g (u x)) . is_bounded_default) :
g (f.liminf u) = f.liminf (λ x, g (u x)) :=
@order_iso.limsup_apply α βᵒᵈ γᵒᵈ _ _ f u g.dual hu hu_co hgu hgu_co
end order
|