Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 9,427 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Kenny Lau, Yury Kudryashov
-/
import dynamics.fixed_points.basic
import order.hom.order

/-!
# Fixed point construction on complete lattices

This file sets up the basic theory of fixed points of a monotone function in a complete lattice.

## Main definitions

* `order_hom.lfp`: The least fixed point of a bundled monotone function.
* `order_hom.gfp`: The greatest fixed point of a bundled monotone function.
* `order_hom.prev_fixed`: The greatest fixed point of a bundled monotone function smaller than or
  equal to a given element.
* `order_hom.next_fixed`: The least fixed point of a bundled monotone function greater than or
  equal to a given element.
* `fixed_points.complete_lattice`: The Knaster-Tarski theorem: fixed points of a monotone
  self-map of a complete lattice form themselves a complete lattice.

## Tags

fixed point, complete lattice, monotone function
-/

universes u v w
variables {α : Type u} {β : Type v} {γ : Type w}

open function (fixed_points is_fixed_pt)

namespace order_hom

section basic

variables [complete_lattice α] (f : α →o α)

/-- Least fixed point of a monotone function -/
def lfp : (α →o α) →o α :=
{ to_fun := λ f, Inf {a | f a ≤ a},
  monotone' := λ f g hle, Inf_le_Inf $ λ a ha, (hle a).trans ha }

/-- Greatest fixed point of a monotone function -/
def gfp : (α →o α) →o α :=
{ to_fun := λ f, Sup {a | a ≤ f a},
  monotone' := λ f g hle, Sup_le_Sup $ λ a ha, le_trans ha (hle a) }

lemma lfp_le {a : α} (h : f a ≤ a) : lfp f ≤ a := Inf_le h

lemma lfp_le_fixed {a : α} (h : f a = a) : lfp f ≤ a := f.lfp_le h.le

lemma le_lfp {a : α} (h : ∀ b, f b ≤ b → a ≤ b) : a ≤ lfp f := le_Inf h

lemma map_le_lfp {a : α} (ha : a ≤ f.lfp) : f a ≤ f.lfp :=
f.le_lfp $ λ b hb, (f.mono $ le_Inf_iff.1 ha _ hb).trans hb

@[simp] lemma map_lfp : f (lfp f) = lfp f :=
have h : f (lfp f) ≤ lfp f, from f.map_le_lfp le_rfl,
h.antisymm $ f.lfp_le $ f.mono h

lemma is_fixed_pt_lfp : is_fixed_pt f f.lfp := f.map_lfp

lemma lfp_le_map {a : α} (ha : lfp f ≤ a) : lfp f ≤ f a :=
calc lfp f = f (lfp f) : f.map_lfp.symm
       ... ≤ f a       : f.mono ha

lemma is_least_lfp_le : is_least {a | f a ≤ a} (lfp f) :=
⟨f.map_lfp.le, λ a, f.lfp_le⟩

lemma is_least_lfp : is_least (fixed_points f) (lfp f) :=
⟨f.is_fixed_pt_lfp, λ a, f.lfp_le_fixed⟩

lemma lfp_induction {p : α → Prop} (step : ∀ a, p a → a ≤ lfp f → p (f a))
  (hSup : ∀ s, (∀ a ∈ s, p a) → p (Sup s)) :
  p (lfp f) :=
begin
  set s := {a | a ≤ lfp f ∧ p a},
  specialize hSup s (λ a, and.right),
  suffices : Sup s = lfp f, from this ▸ hSup,
  have h : Sup s ≤ lfp f := Sup_le (λ b, and.left),
  have hmem : f (Sup s) ∈ s, from ⟨f.map_le_lfp h, step _ hSup h⟩,
  exact h.antisymm (f.lfp_le $ le_Sup hmem)
end

lemma le_gfp {a : α} (h : a ≤ f a) : a ≤ gfp f :=
le_Sup h

lemma gfp_le {a : α} (h : ∀ b, b ≤ f b → b ≤ a) : gfp f ≤ a :=
Sup_le h

lemma is_fixed_pt_gfp : is_fixed_pt f (gfp f) := f.dual.is_fixed_pt_lfp

@[simp] lemma map_gfp : f (gfp f) = gfp f := f.dual.map_lfp

lemma map_le_gfp {a : α} (ha : a ≤ gfp f) : f a ≤ gfp f := f.dual.lfp_le_map ha

lemma gfp_le_map {a : α} (ha : gfp f ≤ a) : gfp f ≤ f a := f.dual.map_le_lfp ha

lemma is_greatest_gfp_le : is_greatest {a | a ≤ f a} (gfp f) :=
f.dual.is_least_lfp_le

lemma is_greatest_gfp : is_greatest (fixed_points f) (gfp f) :=
f.dual.is_least_lfp

lemma gfp_induction {p : α → Prop} (step : ∀ a, p a → gfp f ≤ a → p (f a))
  (hInf : ∀ s, (∀ a ∈ s, p a) → p (Inf s)) :
  p (gfp f) :=
f.dual.lfp_induction step hInf

end basic

section eqn

variables [complete_lattice α] [complete_lattice β] (f : β →o α) (g : α →o β)

-- Rolling rule
lemma map_lfp_comp : f (lfp (g.comp f)) = lfp (f.comp g) :=
le_antisymm ((f.comp g).map_lfp ▸ f.mono (lfp_le_fixed _ $ congr_arg g (f.comp g).map_lfp)) $
  lfp_le _ (congr_arg f (g.comp f).map_lfp).le

lemma map_gfp_comp : f ((g.comp f).gfp) = (f.comp g).gfp :=
f.dual.map_lfp_comp g.dual

-- Diagonal rule
lemma lfp_lfp (h : α →o α →o α) :
  lfp (lfp.comp h) = lfp h.on_diag :=
begin
  let a := lfp (lfp.comp h),
  refine (lfp_le _ _).antisymm (lfp_le _ (eq.le _)),
  { exact lfp_le _ h.on_diag.map_lfp.le },
  have ha : (lfp ∘ h) a = a := (lfp.comp h).map_lfp,
  calc h a a = h a (lfp (h a)) : congr_arg (h a) ha.symm
         ... = lfp (h a)       : (h a).map_lfp
         ... = a               : ha
end

lemma gfp_gfp (h : α →o α →o α) : gfp (gfp.comp h) = gfp h.on_diag :=
@lfp_lfp αᵒᵈ _ $ (order_hom.dual_iso αᵒᵈ αᵒᵈ).symm.to_order_embedding.to_order_hom.comp h.dual

end eqn

section prev_next
variables [complete_lattice α] (f : α →o α)

lemma gfp_const_inf_le (x : α) : gfp (const α x ⊓ f) ≤ x :=
gfp_le _ $ λ b hb, hb.trans inf_le_left

/-- Previous fixed point of a monotone map. If `f` is a monotone self-map of a complete lattice and
`x` is a point such that `f x ≤ x`, then `f.prev_fixed x hx` is the greatest fixed point of `f`
that is less than or equal to `x`. -/
def prev_fixed (x : α) (hx : f x ≤ x) : fixed_points f :=
⟨gfp (const α x ⊓ f),
  calc f (gfp (const α x ⊓ f)) = x ⊓ f (gfp (const α x ⊓ f)) :
    eq.symm $ inf_of_le_right $ (f.mono $ f.gfp_const_inf_le x).trans hx
  ... = gfp (const α x ⊓ f) : (const α x ⊓ f).map_gfp ⟩

/-- Next fixed point of a monotone map. If `f` is a monotone self-map of a complete lattice and
`x` is a point such that `x ≤ f x`, then `f.next_fixed x hx` is the least fixed point of `f`
that is greater than or equal to `x`. -/
def next_fixed (x : α) (hx : x ≤ f x) : fixed_points f :=
{ val := (const α x ⊔ f).lfp,
  .. f.dual.prev_fixed x hx }

lemma prev_fixed_le {x : α} (hx : f x ≤ x) : ↑(f.prev_fixed x hx) ≤ x :=
f.gfp_const_inf_le x

lemma le_next_fixed {x : α} (hx : x ≤ f x) : x ≤ f.next_fixed x hx :=
f.dual.prev_fixed_le hx

lemma next_fixed_le {x : α} (hx : x ≤ f x) {y : fixed_points f} (h : x ≤ y) :
  f.next_fixed x hx ≤ y :=
subtype.coe_le_coe.1 $ lfp_le _ $ sup_le h y.2.le

@[simp] lemma next_fixed_le_iff {x : α} (hx : x ≤ f x) {y : fixed_points f} :
  f.next_fixed x hx ≤ y ↔ x ≤ y :=
⟨λ h, (f.le_next_fixed hx).trans h, f.next_fixed_le hx⟩

@[simp] lemma le_prev_fixed_iff {x : α} (hx : f x ≤ x) {y : fixed_points f} :
  y ≤ f.prev_fixed x hx ↔ ↑y ≤ x :=
f.dual.next_fixed_le_iff hx

lemma le_prev_fixed {x : α} (hx : f x ≤ x) {y : fixed_points f} (h : ↑y ≤ x) :
  y ≤ f.prev_fixed x hx :=
(f.le_prev_fixed_iff hx).2 h

lemma le_map_sup_fixed_points (x y : fixed_points f) : (x ⊔ y : α) ≤ f (x ⊔ y) :=
calc (x ⊔ y : α) = f x ⊔ f y : congr_arg2 (⊔) x.2.symm y.2.symm
             ... ≤ f (x ⊔ y) : f.mono.le_map_sup x y

lemma map_inf_fixed_points_le (x y : fixed_points f) : f (x ⊓ y) ≤ x ⊓ y :=
f.dual.le_map_sup_fixed_points x y

lemma le_map_Sup_subset_fixed_points (A : set α) (hA : A ⊆ fixed_points f) : Sup A ≤ f (Sup A) :=
Sup_le $ λ x hx, hA hx ▸ (f.mono $ le_Sup hx)

lemma map_Inf_subset_fixed_points_le (A : set α) (hA : A ⊆ fixed_points f) : f (Inf A) ≤ Inf A :=
le_Inf $ λ x hx, (hA hx) ▸ (f.mono $ Inf_le hx)

end prev_next

end order_hom

namespace fixed_points

open order_hom

variables [complete_lattice α] (f : α →o α)

instance : semilattice_sup (fixed_points f) :=
{ sup := λ x y, f.next_fixed (x ⊔ y) (f.le_map_sup_fixed_points x y),
  le_sup_left := λ x y, subtype.coe_le_coe.1 $ le_sup_left.trans (f.le_next_fixed _),
  le_sup_right := λ x y, subtype.coe_le_coe.1 $ le_sup_right.trans (f.le_next_fixed _),
  sup_le := λ x y z hxz hyz, f.next_fixed_le _ $ sup_le hxz hyz,
  .. subtype.partial_order _ }

instance : semilattice_inf (fixed_points f) :=
{ inf := λ x y, f.prev_fixed (x ⊓ y) (f.map_inf_fixed_points_le x y),
  .. subtype.partial_order _, .. (order_dual.semilattice_inf (fixed_points f.dual))  }

instance : complete_semilattice_Sup (fixed_points f) :=
{ Sup := λ s, f.next_fixed (Sup (coe '' s))
    (f.le_map_Sup_subset_fixed_points (coe '' s) (λ z ⟨x, hx⟩, hx.2 ▸ x.2)),
  le_Sup := λ s x hx, subtype.coe_le_coe.1 $ le_trans (le_Sup $ set.mem_image_of_mem _ hx)
    (f.le_next_fixed _),
  Sup_le := λ s x hx, f.next_fixed_le _ $ Sup_le $ set.ball_image_iff.2 hx,
  .. subtype.partial_order _ }

instance : complete_semilattice_Inf (fixed_points f) :=
{ Inf := λ s, f.prev_fixed (Inf (coe '' s))
    (f.map_Inf_subset_fixed_points_le (coe '' s) (λ z ⟨x, hx⟩, hx.2 ▸ x.2)),
  le_Inf := λ s x hx, f.le_prev_fixed _ $ le_Inf $ set.ball_image_iff.2 hx,
  Inf_le := λ s x hx, subtype.coe_le_coe.1 $ le_trans (f.prev_fixed_le _)
    (Inf_le $ set.mem_image_of_mem _ hx),
  .. subtype.partial_order _ }

/-- **Knaster-Tarski Theorem**: The fixed points of `f` form a complete lattice. -/
instance : complete_lattice (fixed_points f) :=
{ top := ⟨f.gfp, f.is_fixed_pt_gfp⟩,
  bot := ⟨f.lfp, f.is_fixed_pt_lfp⟩,
  le_top := λ x, f.le_gfp x.2.ge,
  bot_le := λ x, f.lfp_le x.2.le,
  .. subtype.partial_order _,
  .. fixed_points.semilattice_sup f,
  .. fixed_points.semilattice_inf f,
  .. fixed_points.complete_semilattice_Sup f,
  .. fixed_points.complete_semilattice_Inf f }

end fixed_points