Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 9,427 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Kenny Lau, Yury Kudryashov
-/
import dynamics.fixed_points.basic
import order.hom.order
/-!
# Fixed point construction on complete lattices
This file sets up the basic theory of fixed points of a monotone function in a complete lattice.
## Main definitions
* `order_hom.lfp`: The least fixed point of a bundled monotone function.
* `order_hom.gfp`: The greatest fixed point of a bundled monotone function.
* `order_hom.prev_fixed`: The greatest fixed point of a bundled monotone function smaller than or
equal to a given element.
* `order_hom.next_fixed`: The least fixed point of a bundled monotone function greater than or
equal to a given element.
* `fixed_points.complete_lattice`: The Knaster-Tarski theorem: fixed points of a monotone
self-map of a complete lattice form themselves a complete lattice.
## Tags
fixed point, complete lattice, monotone function
-/
universes u v w
variables {α : Type u} {β : Type v} {γ : Type w}
open function (fixed_points is_fixed_pt)
namespace order_hom
section basic
variables [complete_lattice α] (f : α →o α)
/-- Least fixed point of a monotone function -/
def lfp : (α →o α) →o α :=
{ to_fun := λ f, Inf {a | f a ≤ a},
monotone' := λ f g hle, Inf_le_Inf $ λ a ha, (hle a).trans ha }
/-- Greatest fixed point of a monotone function -/
def gfp : (α →o α) →o α :=
{ to_fun := λ f, Sup {a | a ≤ f a},
monotone' := λ f g hle, Sup_le_Sup $ λ a ha, le_trans ha (hle a) }
lemma lfp_le {a : α} (h : f a ≤ a) : lfp f ≤ a := Inf_le h
lemma lfp_le_fixed {a : α} (h : f a = a) : lfp f ≤ a := f.lfp_le h.le
lemma le_lfp {a : α} (h : ∀ b, f b ≤ b → a ≤ b) : a ≤ lfp f := le_Inf h
lemma map_le_lfp {a : α} (ha : a ≤ f.lfp) : f a ≤ f.lfp :=
f.le_lfp $ λ b hb, (f.mono $ le_Inf_iff.1 ha _ hb).trans hb
@[simp] lemma map_lfp : f (lfp f) = lfp f :=
have h : f (lfp f) ≤ lfp f, from f.map_le_lfp le_rfl,
h.antisymm $ f.lfp_le $ f.mono h
lemma is_fixed_pt_lfp : is_fixed_pt f f.lfp := f.map_lfp
lemma lfp_le_map {a : α} (ha : lfp f ≤ a) : lfp f ≤ f a :=
calc lfp f = f (lfp f) : f.map_lfp.symm
... ≤ f a : f.mono ha
lemma is_least_lfp_le : is_least {a | f a ≤ a} (lfp f) :=
⟨f.map_lfp.le, λ a, f.lfp_le⟩
lemma is_least_lfp : is_least (fixed_points f) (lfp f) :=
⟨f.is_fixed_pt_lfp, λ a, f.lfp_le_fixed⟩
lemma lfp_induction {p : α → Prop} (step : ∀ a, p a → a ≤ lfp f → p (f a))
(hSup : ∀ s, (∀ a ∈ s, p a) → p (Sup s)) :
p (lfp f) :=
begin
set s := {a | a ≤ lfp f ∧ p a},
specialize hSup s (λ a, and.right),
suffices : Sup s = lfp f, from this ▸ hSup,
have h : Sup s ≤ lfp f := Sup_le (λ b, and.left),
have hmem : f (Sup s) ∈ s, from ⟨f.map_le_lfp h, step _ hSup h⟩,
exact h.antisymm (f.lfp_le $ le_Sup hmem)
end
lemma le_gfp {a : α} (h : a ≤ f a) : a ≤ gfp f :=
le_Sup h
lemma gfp_le {a : α} (h : ∀ b, b ≤ f b → b ≤ a) : gfp f ≤ a :=
Sup_le h
lemma is_fixed_pt_gfp : is_fixed_pt f (gfp f) := f.dual.is_fixed_pt_lfp
@[simp] lemma map_gfp : f (gfp f) = gfp f := f.dual.map_lfp
lemma map_le_gfp {a : α} (ha : a ≤ gfp f) : f a ≤ gfp f := f.dual.lfp_le_map ha
lemma gfp_le_map {a : α} (ha : gfp f ≤ a) : gfp f ≤ f a := f.dual.map_le_lfp ha
lemma is_greatest_gfp_le : is_greatest {a | a ≤ f a} (gfp f) :=
f.dual.is_least_lfp_le
lemma is_greatest_gfp : is_greatest (fixed_points f) (gfp f) :=
f.dual.is_least_lfp
lemma gfp_induction {p : α → Prop} (step : ∀ a, p a → gfp f ≤ a → p (f a))
(hInf : ∀ s, (∀ a ∈ s, p a) → p (Inf s)) :
p (gfp f) :=
f.dual.lfp_induction step hInf
end basic
section eqn
variables [complete_lattice α] [complete_lattice β] (f : β →o α) (g : α →o β)
-- Rolling rule
lemma map_lfp_comp : f (lfp (g.comp f)) = lfp (f.comp g) :=
le_antisymm ((f.comp g).map_lfp ▸ f.mono (lfp_le_fixed _ $ congr_arg g (f.comp g).map_lfp)) $
lfp_le _ (congr_arg f (g.comp f).map_lfp).le
lemma map_gfp_comp : f ((g.comp f).gfp) = (f.comp g).gfp :=
f.dual.map_lfp_comp g.dual
-- Diagonal rule
lemma lfp_lfp (h : α →o α →o α) :
lfp (lfp.comp h) = lfp h.on_diag :=
begin
let a := lfp (lfp.comp h),
refine (lfp_le _ _).antisymm (lfp_le _ (eq.le _)),
{ exact lfp_le _ h.on_diag.map_lfp.le },
have ha : (lfp ∘ h) a = a := (lfp.comp h).map_lfp,
calc h a a = h a (lfp (h a)) : congr_arg (h a) ha.symm
... = lfp (h a) : (h a).map_lfp
... = a : ha
end
lemma gfp_gfp (h : α →o α →o α) : gfp (gfp.comp h) = gfp h.on_diag :=
@lfp_lfp αᵒᵈ _ $ (order_hom.dual_iso αᵒᵈ αᵒᵈ).symm.to_order_embedding.to_order_hom.comp h.dual
end eqn
section prev_next
variables [complete_lattice α] (f : α →o α)
lemma gfp_const_inf_le (x : α) : gfp (const α x ⊓ f) ≤ x :=
gfp_le _ $ λ b hb, hb.trans inf_le_left
/-- Previous fixed point of a monotone map. If `f` is a monotone self-map of a complete lattice and
`x` is a point such that `f x ≤ x`, then `f.prev_fixed x hx` is the greatest fixed point of `f`
that is less than or equal to `x`. -/
def prev_fixed (x : α) (hx : f x ≤ x) : fixed_points f :=
⟨gfp (const α x ⊓ f),
calc f (gfp (const α x ⊓ f)) = x ⊓ f (gfp (const α x ⊓ f)) :
eq.symm $ inf_of_le_right $ (f.mono $ f.gfp_const_inf_le x).trans hx
... = gfp (const α x ⊓ f) : (const α x ⊓ f).map_gfp ⟩
/-- Next fixed point of a monotone map. If `f` is a monotone self-map of a complete lattice and
`x` is a point such that `x ≤ f x`, then `f.next_fixed x hx` is the least fixed point of `f`
that is greater than or equal to `x`. -/
def next_fixed (x : α) (hx : x ≤ f x) : fixed_points f :=
{ val := (const α x ⊔ f).lfp,
.. f.dual.prev_fixed x hx }
lemma prev_fixed_le {x : α} (hx : f x ≤ x) : ↑(f.prev_fixed x hx) ≤ x :=
f.gfp_const_inf_le x
lemma le_next_fixed {x : α} (hx : x ≤ f x) : x ≤ f.next_fixed x hx :=
f.dual.prev_fixed_le hx
lemma next_fixed_le {x : α} (hx : x ≤ f x) {y : fixed_points f} (h : x ≤ y) :
f.next_fixed x hx ≤ y :=
subtype.coe_le_coe.1 $ lfp_le _ $ sup_le h y.2.le
@[simp] lemma next_fixed_le_iff {x : α} (hx : x ≤ f x) {y : fixed_points f} :
f.next_fixed x hx ≤ y ↔ x ≤ y :=
⟨λ h, (f.le_next_fixed hx).trans h, f.next_fixed_le hx⟩
@[simp] lemma le_prev_fixed_iff {x : α} (hx : f x ≤ x) {y : fixed_points f} :
y ≤ f.prev_fixed x hx ↔ ↑y ≤ x :=
f.dual.next_fixed_le_iff hx
lemma le_prev_fixed {x : α} (hx : f x ≤ x) {y : fixed_points f} (h : ↑y ≤ x) :
y ≤ f.prev_fixed x hx :=
(f.le_prev_fixed_iff hx).2 h
lemma le_map_sup_fixed_points (x y : fixed_points f) : (x ⊔ y : α) ≤ f (x ⊔ y) :=
calc (x ⊔ y : α) = f x ⊔ f y : congr_arg2 (⊔) x.2.symm y.2.symm
... ≤ f (x ⊔ y) : f.mono.le_map_sup x y
lemma map_inf_fixed_points_le (x y : fixed_points f) : f (x ⊓ y) ≤ x ⊓ y :=
f.dual.le_map_sup_fixed_points x y
lemma le_map_Sup_subset_fixed_points (A : set α) (hA : A ⊆ fixed_points f) : Sup A ≤ f (Sup A) :=
Sup_le $ λ x hx, hA hx ▸ (f.mono $ le_Sup hx)
lemma map_Inf_subset_fixed_points_le (A : set α) (hA : A ⊆ fixed_points f) : f (Inf A) ≤ Inf A :=
le_Inf $ λ x hx, (hA hx) ▸ (f.mono $ Inf_le hx)
end prev_next
end order_hom
namespace fixed_points
open order_hom
variables [complete_lattice α] (f : α →o α)
instance : semilattice_sup (fixed_points f) :=
{ sup := λ x y, f.next_fixed (x ⊔ y) (f.le_map_sup_fixed_points x y),
le_sup_left := λ x y, subtype.coe_le_coe.1 $ le_sup_left.trans (f.le_next_fixed _),
le_sup_right := λ x y, subtype.coe_le_coe.1 $ le_sup_right.trans (f.le_next_fixed _),
sup_le := λ x y z hxz hyz, f.next_fixed_le _ $ sup_le hxz hyz,
.. subtype.partial_order _ }
instance : semilattice_inf (fixed_points f) :=
{ inf := λ x y, f.prev_fixed (x ⊓ y) (f.map_inf_fixed_points_le x y),
.. subtype.partial_order _, .. (order_dual.semilattice_inf (fixed_points f.dual)) }
instance : complete_semilattice_Sup (fixed_points f) :=
{ Sup := λ s, f.next_fixed (Sup (coe '' s))
(f.le_map_Sup_subset_fixed_points (coe '' s) (λ z ⟨x, hx⟩, hx.2 ▸ x.2)),
le_Sup := λ s x hx, subtype.coe_le_coe.1 $ le_trans (le_Sup $ set.mem_image_of_mem _ hx)
(f.le_next_fixed _),
Sup_le := λ s x hx, f.next_fixed_le _ $ Sup_le $ set.ball_image_iff.2 hx,
.. subtype.partial_order _ }
instance : complete_semilattice_Inf (fixed_points f) :=
{ Inf := λ s, f.prev_fixed (Inf (coe '' s))
(f.map_Inf_subset_fixed_points_le (coe '' s) (λ z ⟨x, hx⟩, hx.2 ▸ x.2)),
le_Inf := λ s x hx, f.le_prev_fixed _ $ le_Inf $ set.ball_image_iff.2 hx,
Inf_le := λ s x hx, subtype.coe_le_coe.1 $ le_trans (f.prev_fixed_le _)
(Inf_le $ set.mem_image_of_mem _ hx),
.. subtype.partial_order _ }
/-- **Knaster-Tarski Theorem**: The fixed points of `f` form a complete lattice. -/
instance : complete_lattice (fixed_points f) :=
{ top := ⟨f.gfp, f.is_fixed_pt_gfp⟩,
bot := ⟨f.lfp, f.is_fixed_pt_lfp⟩,
le_top := λ x, f.le_gfp x.2.ge,
bot_le := λ x, f.lfp_le x.2.le,
.. subtype.partial_order _,
.. fixed_points.semilattice_sup f,
.. fixed_points.semilattice_inf f,
.. fixed_points.complete_semilattice_Sup f,
.. fixed_points.complete_semilattice_Inf f }
end fixed_points
|