Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 12,863 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies, Violeta Hernández Palacios, Grayson Burton, Floris van Doorn
-/
import data.set.intervals.ord_connected
/-!
# The covering relation
This file defines the covering relation in an order. `b` is said to cover `a` if `a < b` and there
is no element in between. We say that `b` weakly covers `a` if `a ≤ b` and there is no element
between `a` and `b`. In a partial order this is equivalent to `a ⋖ b ∨ a = b`, in a preorder this
is equivalent to `a ⋖ b ∨ (a ≤ b ∧ b ≤ a)`
## Notation
* `a ⋖ b` means that `b` covers `a`.
* `a ⩿ b` means that `b` weakly covers `a`.
-/
open set order_dual
variables {α β : Type*}
section weakly_covers
section preorder
variables [preorder α] [preorder β] {a b c: α}
/-- `wcovby a b` means that `a = b` or `b` covers `a`.
This means that `a ≤ b` and there is no element in between.
-/
def wcovby (a b : α) : Prop := a ≤ b ∧ ∀ ⦃c⦄, a < c → ¬ c < b
infix ` ⩿ `:50 := wcovby
lemma wcovby.le (h : a ⩿ b) : a ≤ b := h.1
lemma wcovby.refl (a : α) : a ⩿ a := ⟨le_rfl, λ c hc, hc.not_lt⟩
lemma wcovby.rfl : a ⩿ a := wcovby.refl a
protected lemma eq.wcovby (h : a = b) : a ⩿ b := h ▸ wcovby.rfl
lemma wcovby_of_le_of_le (h1 : a ≤ b) (h2 : b ≤ a) : a ⩿ b :=
⟨h1, λ c hac hcb, (hac.trans hcb).not_le h2⟩
alias wcovby_of_le_of_le ← has_le.le.wcovby_of_le
lemma wcovby.wcovby_iff_le (hab : a ⩿ b) : b ⩿ a ↔ b ≤ a :=
⟨λ h, h.le, λ h, h.wcovby_of_le hab.le⟩
lemma wcovby_of_eq_or_eq (hab : a ≤ b) (h : ∀ c, a ≤ c → c ≤ b → c = a ∨ c = b) : a ⩿ b :=
⟨hab, λ c ha hb, (h c ha.le hb.le).elim ha.ne' hb.ne⟩
/-- If `a ≤ b`, then `b` does not cover `a` iff there's an element in between. -/
lemma not_wcovby_iff (h : a ≤ b) : ¬ a ⩿ b ↔ ∃ c, a < c ∧ c < b :=
by simp_rw [wcovby, h, true_and, not_forall, exists_prop, not_not]
instance wcovby.is_refl : is_refl α (⩿) := ⟨wcovby.refl⟩
lemma wcovby.Ioo_eq (h : a ⩿ b) : Ioo a b = ∅ :=
eq_empty_iff_forall_not_mem.2 $ λ x hx, h.2 hx.1 hx.2
lemma wcovby.of_image (f : α ↪o β) (h : f a ⩿ f b) : a ⩿ b :=
⟨f.le_iff_le.mp h.le, λ c hac hcb, h.2 (f.lt_iff_lt.mpr hac) (f.lt_iff_lt.mpr hcb)⟩
lemma wcovby.image (f : α ↪o β) (hab : a ⩿ b) (h : (range f).ord_connected) : f a ⩿ f b :=
begin
refine ⟨f.monotone hab.le, λ c ha hb, _⟩,
obtain ⟨c, rfl⟩ := h.out (mem_range_self _) (mem_range_self _) ⟨ha.le, hb.le⟩,
rw f.lt_iff_lt at ha hb,
exact hab.2 ha hb,
end
lemma set.ord_connected.apply_wcovby_apply_iff (f : α ↪o β) (h : (range f).ord_connected) :
f a ⩿ f b ↔ a ⩿ b :=
⟨λ h2, h2.of_image f, λ hab, hab.image f h⟩
@[simp] lemma apply_wcovby_apply_iff {E : Type*} [order_iso_class E α β] (e : E) :
e a ⩿ e b ↔ a ⩿ b :=
(ord_connected_range (e : α ≃o β)).apply_wcovby_apply_iff ((e : α ≃o β) : α ↪o β)
@[simp] lemma to_dual_wcovby_to_dual_iff : to_dual b ⩿ to_dual a ↔ a ⩿ b :=
and_congr_right' $ forall_congr $ λ c, forall_swap
@[simp] lemma of_dual_wcovby_of_dual_iff {a b : αᵒᵈ} :
of_dual a ⩿ of_dual b ↔ b ⩿ a :=
and_congr_right' $ forall_congr $ λ c, forall_swap
alias to_dual_wcovby_to_dual_iff ↔ _ wcovby.to_dual
alias of_dual_wcovby_of_dual_iff ↔ _ wcovby.of_dual
end preorder
section partial_order
variables [partial_order α] {a b c : α}
lemma wcovby.eq_or_eq (h : a ⩿ b) (h2 : a ≤ c) (h3 : c ≤ b) : c = a ∨ c = b :=
begin
rcases h2.eq_or_lt with h2|h2, { exact or.inl h2.symm },
rcases h3.eq_or_lt with h3|h3, { exact or.inr h3 },
exact (h.2 h2 h3).elim
end
lemma wcovby.le_and_le_iff (h : a ⩿ b) : a ≤ c ∧ c ≤ b ↔ c = a ∨ c = b :=
begin
refine ⟨λ h2, h.eq_or_eq h2.1 h2.2, _⟩, rintro (rfl|rfl), exacts [⟨le_rfl, h.le⟩, ⟨h.le, le_rfl⟩]
end
lemma wcovby.Icc_eq (h : a ⩿ b) : Icc a b = {a, b} :=
by { ext c, exact h.le_and_le_iff }
lemma wcovby.Ico_subset (h : a ⩿ b) : Ico a b ⊆ {a} :=
by rw [← Icc_diff_right, h.Icc_eq, diff_singleton_subset_iff, pair_comm]
lemma wcovby.Ioc_subset (h : a ⩿ b) : Ioc a b ⊆ {b} :=
by rw [← Icc_diff_left, h.Icc_eq, diff_singleton_subset_iff]
end partial_order
end weakly_covers
section has_lt
variables [has_lt α] {a b : α}
/-- `covby a b` means that `b` covers `a`: `a < b` and there is no element in between. -/
def covby (a b : α) : Prop := a < b ∧ ∀ ⦃c⦄, a < c → ¬ c < b
infix ` ⋖ `:50 := covby
lemma covby.lt (h : a ⋖ b) : a < b := h.1
/-- If `a < b`, then `b` does not cover `a` iff there's an element in between. -/
lemma not_covby_iff (h : a < b) : ¬a ⋖ b ↔ ∃ c, a < c ∧ c < b :=
by simp_rw [covby, h, true_and, not_forall, exists_prop, not_not]
alias not_covby_iff ↔ exists_lt_lt_of_not_covby _
alias exists_lt_lt_of_not_covby ← has_lt.lt.exists_lt_lt
/-- In a dense order, nothing covers anything. -/
lemma not_covby [densely_ordered α] : ¬ a ⋖ b :=
λ h, let ⟨c, hc⟩ := exists_between h.1 in h.2 hc.1 hc.2
lemma densely_ordered_iff_forall_not_covby : densely_ordered α ↔ ∀ a b : α, ¬ a ⋖ b :=
⟨λ h a b, @not_covby _ _ _ _ h, λ h, ⟨λ a b hab, exists_lt_lt_of_not_covby hab $ h _ _⟩⟩
@[simp] lemma to_dual_covby_to_dual_iff : to_dual b ⋖ to_dual a ↔ a ⋖ b :=
and_congr_right' $ forall_congr $ λ c, forall_swap
@[simp] lemma of_dual_covby_of_dual_iff {a b : αᵒᵈ} : of_dual a ⋖ of_dual b ↔ b ⋖ a :=
and_congr_right' $ forall_congr $ λ c, forall_swap
alias to_dual_covby_to_dual_iff ↔ _ covby.to_dual
alias of_dual_covby_of_dual_iff ↔ _ covby.of_dual
end has_lt
section preorder
variables [preorder α] [preorder β] {a b : α}
lemma covby.le (h : a ⋖ b) : a ≤ b := h.1.le
protected lemma covby.ne (h : a ⋖ b) : a ≠ b := h.lt.ne
lemma covby.ne' (h : a ⋖ b) : b ≠ a := h.lt.ne'
protected lemma covby.wcovby (h : a ⋖ b) : a ⩿ b := ⟨h.le, h.2⟩
lemma wcovby.covby_of_not_le (h : a ⩿ b) (h2 : ¬ b ≤ a) : a ⋖ b := ⟨h.le.lt_of_not_le h2, h.2⟩
lemma wcovby.covby_of_lt (h : a ⩿ b) (h2 : a < b) : a ⋖ b := ⟨h2, h.2⟩
lemma covby_iff_wcovby_and_lt : a ⋖ b ↔ a ⩿ b ∧ a < b :=
⟨λ h, ⟨h.wcovby, h.lt⟩, λ h, h.1.covby_of_lt h.2⟩
lemma covby_iff_wcovby_and_not_le : a ⋖ b ↔ a ⩿ b ∧ ¬ b ≤ a :=
⟨λ h, ⟨h.wcovby, h.lt.not_le⟩, λ h, h.1.covby_of_not_le h.2⟩
lemma wcovby_iff_covby_or_le_and_le : a ⩿ b ↔ a ⋖ b ∨ (a ≤ b ∧ b ≤ a) :=
⟨λ h, or_iff_not_imp_right.mpr $ λ h', h.covby_of_not_le $ λ hba, h' ⟨h.le, hba⟩,
λ h', h'.elim (λ h, h.wcovby) (λ h, h.1.wcovby_of_le h.2)⟩
instance : is_nonstrict_strict_order α (⩿) (⋖) :=
⟨λ a b, covby_iff_wcovby_and_not_le.trans $ and_congr_right $ λ h, h.wcovby_iff_le.not.symm⟩
instance covby.is_irrefl : is_irrefl α (⋖) := ⟨λ a ha, ha.ne rfl⟩
lemma covby.Ioo_eq (h : a ⋖ b) : Ioo a b = ∅ :=
h.wcovby.Ioo_eq
lemma covby.of_image (f : α ↪o β) (h : f a ⋖ f b) : a ⋖ b :=
⟨f.lt_iff_lt.mp h.lt, λ c hac hcb, h.2 (f.lt_iff_lt.mpr hac) (f.lt_iff_lt.mpr hcb)⟩
lemma covby.image (f : α ↪o β) (hab : a ⋖ b) (h : (range f).ord_connected) : f a ⋖ f b :=
(hab.wcovby.image f h).covby_of_lt $ f.strict_mono hab.lt
lemma set.ord_connected.apply_covby_apply_iff (f : α ↪o β) (h : (range f).ord_connected) :
f a ⋖ f b ↔ a ⋖ b :=
⟨covby.of_image f, λ hab, hab.image f h⟩
@[simp] lemma apply_covby_apply_iff {E : Type*} [order_iso_class E α β] (e : E) :
e a ⋖ e b ↔ a ⋖ b :=
(ord_connected_range (e : α ≃o β)).apply_covby_apply_iff ((e : α ≃o β) : α ↪o β)
end preorder
section partial_order
variables [partial_order α] {a b : α}
lemma wcovby.covby_of_ne (h : a ⩿ b) (h2 : a ≠ b) : a ⋖ b := ⟨h.le.lt_of_ne h2, h.2⟩
lemma covby_iff_wcovby_and_ne : a ⋖ b ↔ a ⩿ b ∧ a ≠ b :=
⟨λ h, ⟨h.wcovby, h.ne⟩, λ h, h.1.covby_of_ne h.2⟩
lemma wcovby_iff_covby_or_eq : a ⩿ b ↔ a ⋖ b ∨ a = b :=
by rw [le_antisymm_iff, wcovby_iff_covby_or_le_and_le]
lemma covby.Ico_eq (h : a ⋖ b) : Ico a b = {a} :=
by rw [←Ioo_union_left h.lt, h.Ioo_eq, empty_union]
lemma covby.Ioc_eq (h : a ⋖ b) : Ioc a b = {b} :=
by rw [←Ioo_union_right h.lt, h.Ioo_eq, empty_union]
lemma covby.Icc_eq (h : a ⋖ b) : Icc a b = {a, b} :=
h.wcovby.Icc_eq
end partial_order
section linear_order
variables [linear_order α] {a b c : α}
lemma covby.Ioi_eq (h : a ⋖ b) : Ioi a = Ici b :=
by rw [← Ioo_union_Ici_eq_Ioi h.lt, h.Ioo_eq, empty_union]
lemma covby.Iio_eq (h : a ⋖ b) : Iio b = Iic a :=
by rw [← Iic_union_Ioo_eq_Iio h.lt, h.Ioo_eq, union_empty]
lemma wcovby.le_of_lt (hab : a ⩿ b) (hcb : c < b) : c ≤ a := not_lt.1 $ λ hac, hab.2 hac hcb
lemma wcovby.ge_of_gt (hab : a ⩿ b) (hac : a < c) : b ≤ c := not_lt.1 $ hab.2 hac
lemma covby.le_of_lt (hab : a ⋖ b) : c < b → c ≤ a := hab.wcovby.le_of_lt
lemma covby.ge_of_gt (hab : a ⋖ b) : a < c → b ≤ c := hab.wcovby.ge_of_gt
lemma covby.unique_left (ha : a ⋖ c) (hb : b ⋖ c) : a = b :=
(hb.le_of_lt ha.lt).antisymm $ ha.le_of_lt hb.lt
lemma covby.unique_right (hb : a ⋖ b) (hc : a ⋖ c) : b = c :=
(hb.ge_of_gt hc.lt).antisymm $ hc.ge_of_gt hb.lt
end linear_order
namespace set
lemma wcovby_insert (x : α) (s : set α) : s ⩿ insert x s :=
begin
refine wcovby_of_eq_or_eq (subset_insert x s) (λ t hst h2t, _),
by_cases h : x ∈ t,
{ exact or.inr (subset_antisymm h2t $ insert_subset.mpr ⟨h, hst⟩) },
{ refine or.inl (subset_antisymm _ hst),
rwa [← diff_singleton_eq_self h, diff_singleton_subset_iff] }
end
lemma covby_insert {x : α} {s : set α} (hx : x ∉ s) : s ⋖ insert x s :=
(wcovby_insert x s).covby_of_lt $ ssubset_insert hx
end set
namespace prod
variables [partial_order α] [partial_order β] {a a₁ a₂ : α} {b b₁ b₂ : β} {x y : α × β}
@[simp] lemma swap_wcovby_swap : x.swap ⩿ y.swap ↔ x ⩿ y :=
apply_wcovby_apply_iff (order_iso.prod_comm : α × β ≃o β × α)
@[simp] lemma swap_covby_swap : x.swap ⋖ y.swap ↔ x ⋖ y :=
apply_covby_apply_iff (order_iso.prod_comm : α × β ≃o β × α)
lemma fst_eq_or_snd_eq_of_wcovby : x ⩿ y → x.1 = y.1 ∨ x.2 = y.2 :=
begin
refine λ h, of_not_not (λ hab, _),
push_neg at hab,
exact h.2 (mk_lt_mk.2 $ or.inl ⟨hab.1.lt_of_le h.1.1, le_rfl⟩)
(mk_lt_mk.2 $ or.inr ⟨le_rfl, hab.2.lt_of_le h.1.2⟩),
end
lemma _root_.wcovby.fst (h : x ⩿ y) : x.1 ⩿ y.1 :=
⟨h.1.1, λ c h₁ h₂, h.2 (mk_lt_mk_iff_left.2 h₁) ⟨⟨h₂.le, h.1.2⟩, λ hc, h₂.not_le hc.1⟩⟩
lemma _root_.wcovby.snd (h : x ⩿ y) : x.2 ⩿ y.2 :=
⟨h.1.2, λ c h₁ h₂, h.2 (mk_lt_mk_iff_right.2 h₁) ⟨⟨h.1.1, h₂.le⟩, λ hc, h₂.not_le hc.2⟩⟩
lemma mk_wcovby_mk_iff_left : (a₁, b) ⩿ (a₂, b) ↔ a₁ ⩿ a₂ :=
begin
refine ⟨wcovby.fst, and.imp mk_le_mk_iff_left.2 $ λ h c h₁ h₂, _⟩,
have : c.2 = b:= h₂.le.2.antisymm h₁.le.2,
rw [←@prod.mk.eta _ _ c, this, mk_lt_mk_iff_left] at h₁ h₂,
exact h h₁ h₂,
end
lemma mk_wcovby_mk_iff_right : (a, b₁) ⩿ (a, b₂) ↔ b₁ ⩿ b₂ :=
swap_wcovby_swap.trans mk_wcovby_mk_iff_left
lemma mk_covby_mk_iff_left : (a₁, b) ⋖ (a₂, b) ↔ a₁ ⋖ a₂ :=
by simp_rw [covby_iff_wcovby_and_lt, mk_wcovby_mk_iff_left, mk_lt_mk_iff_left]
lemma mk_covby_mk_iff_right : (a, b₁) ⋖ (a, b₂) ↔ b₁ ⋖ b₂ :=
by simp_rw [covby_iff_wcovby_and_lt, mk_wcovby_mk_iff_right, mk_lt_mk_iff_right]
lemma mk_wcovby_mk_iff : (a₁, b₁) ⩿ (a₂, b₂) ↔ a₁ ⩿ a₂ ∧ b₁ = b₂ ∨ b₁ ⩿ b₂ ∧ a₁ = a₂ :=
begin
refine ⟨λ h, _, _⟩,
{ obtain rfl | rfl : a₁ = a₂ ∨ b₁ = b₂ := fst_eq_or_snd_eq_of_wcovby h,
{ exact or.inr ⟨mk_wcovby_mk_iff_right.1 h, rfl⟩ },
{ exact or.inl ⟨mk_wcovby_mk_iff_left.1 h, rfl⟩ } },
{ rintro (⟨h, rfl⟩ | ⟨h, rfl⟩),
{ exact mk_wcovby_mk_iff_left.2 h },
{ exact mk_wcovby_mk_iff_right.2 h } }
end
lemma mk_covby_mk_iff : (a₁, b₁) ⋖ (a₂, b₂) ↔ a₁ ⋖ a₂ ∧ b₁ = b₂ ∨ b₁ ⋖ b₂ ∧ a₁ = a₂ :=
begin
refine ⟨λ h, _, _⟩,
{ obtain rfl | rfl : a₁ = a₂ ∨ b₁ = b₂ := fst_eq_or_snd_eq_of_wcovby h.wcovby,
{ exact or.inr ⟨mk_covby_mk_iff_right.1 h, rfl⟩ },
{ exact or.inl ⟨mk_covby_mk_iff_left.1 h, rfl⟩ } },
{ rintro (⟨h, rfl⟩ | ⟨h, rfl⟩),
{ exact mk_covby_mk_iff_left.2 h },
{ exact mk_covby_mk_iff_right.2 h } }
end
lemma wcovby_iff : x ⩿ y ↔ x.1 ⩿ y.1 ∧ x.2 = y.2 ∨ x.2 ⩿ y.2 ∧ x.1 = y.1 :=
by { cases x, cases y, exact mk_wcovby_mk_iff }
lemma covby_iff : x ⋖ y ↔ x.1 ⋖ y.1 ∧ x.2 = y.2 ∨ x.2 ⋖ y.2 ∧ x.1 = y.1 :=
by { cases x, cases y, exact mk_covby_mk_iff }
end prod
|