Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 13,586 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/

import model_theory.finitely_generated
import model_theory.direct_limit
import model_theory.bundled

/-!
# Fraïssé Classes and Fraïssé Limits

This file pertains to the ages of countable first-order structures. The age of a structure is the
class of all finitely-generated structures that embed into it.

Of particular interest are Fraïssé classes, which are exactly the ages of countable
ultrahomogeneous structures. To each is associated a unique (up to nonunique isomorphism)
Fraïssé limit - the countable ultrahomogeneous structure with that age.

## Main Definitions
* `first_order.language.age` is the class of finitely-generated structures that embed into a
particular structure.
* A class `K` has the `first_order.language.hereditary` when all finitely-generated
structures that embed into structures in `K` are also in `K`.
* A class `K` has the `first_order.language.joint_embedding` when for every `M`, `N` in
`K`, there is another structure in `K` into which both `M` and `N` embed.
* A class `K` has the `first_order.language.amalgamation` when for any pair of embeddings
of a structure `M` in `K` into other structures in `K`, those two structures can be embedded into a
fourth structure in `K` such that the resulting square of embeddings commutes.
* `first_order.language.is_fraisse` indicates that a class is nonempty, isomorphism-invariant,
essentially countable, and satisfies the hereditary, joint embedding, and amalgamation properties.
* `first_order.language.is_fraisse_limit` indicates that a structure is a Fraïssé limit for a given
class.

## Main Results
* We show that the age of any structure is isomorphism-invariant and satisfies the hereditary and
joint-embedding properties.
* `first_order.language.age.countable_quotient` shows that the age of any countable structure is
essentially countable.
* `first_order.language.exists_countable_is_age_of_iff` gives necessary and sufficient conditions
for a class to be the age of a countable structure in a language with countably many functions.

## Implementation Notes
* Classes of structures are formalized with `set (bundled L.Structure)`.
* Some results pertain to countable limit structures, others to countably-generated limit
structures. In the case of a language with countably many function symbols, these are equivalent.

## References
- [W. Hodges, *A Shorter Model Theory*][Hodges97]
- [K. Tent, M. Ziegler, *A Course in Model Theory*][Tent_Ziegler]

## TODO
* Show existence and uniqueness of Fraïssé limits

-/

universes u v w w'

open_locale first_order
open set category_theory

namespace first_order
namespace language
open Structure substructure

variables (L : language.{u v})

/-! ### The Age of a Structure and Fraïssé Classes-/

/-- The age of a structure `M` is the class of finitely-generated structures that embed into it. -/
def age (M : Type w) [L.Structure M] : set (bundled.{w} L.Structure) :=
{ N | Structure.fg L N ∧ nonempty (N ↪[L] M) }

variables {L} (K : set (bundled.{w} L.Structure))

/-- A class `K` has the hereditary property when all finitely-generated structures that embed into
  structures in `K` are also in `K`.  -/
def hereditary : Prop :=
∀ (M : bundled.{w} L.Structure), M ∈ K → L.age M ⊆ K

/-- A class `K` has the joint embedding property when for every `M`, `N` in `K`, there is another
  structure in `K` into which both `M` and `N` embed. -/
def joint_embedding : Prop :=
directed_on (λ M N : bundled.{w} L.Structure, nonempty (M ↪[L] N)) K

/-- A class `K` has the amalgamation property when for any pair of embeddings of a structure `M` in
  `K` into other structures in `K`, those two structures can be embedded into a fourth structure in
  `K` such that the resulting square of embeddings commutes. -/
def amalgamation : Prop :=
∀ (M N P : bundled.{w} L.Structure) (MN : M ↪[L] N) (MP : M ↪[L] P), M ∈ K → N ∈ K → P ∈ K →
  ∃ (Q : bundled.{w} L.Structure) (NQ : N ↪[L] Q) (PQ : P ↪[L] Q), Q ∈ K ∧ NQ.comp MN = PQ.comp MP

/-- A Fraïssé class is a nonempty, isomorphism-invariant, essentially countable class of structures
satisfying the hereditary, joint embedding, and amalgamation properties. -/
class is_fraisse : Prop :=
(is_nonempty : K.nonempty)
(fg : ∀ M : bundled.{w} L.Structure, M ∈ K → Structure.fg L M)
(is_equiv_invariant : ∀ (M N : bundled.{w} L.Structure), nonempty (M ≃[L] N) → (M ∈ K ↔ N ∈ K))
(is_essentially_countable : (quotient.mk '' K).countable)
(hereditary : hereditary K)
(joint_embedding : joint_embedding K)
(amalgamation : amalgamation K)

variables {K} (L) (M : Type w) [L.Structure M]

lemma age.is_equiv_invariant (N P : bundled.{w} L.Structure) (h : nonempty (N ≃[L] P)) :
  N ∈ L.age M ↔ P ∈ L.age M :=
and_congr h.some.fg_iff
  ⟨nonempty.map (λ x, embedding.comp x h.some.symm.to_embedding),
  nonempty.map (λ x, embedding.comp x h.some.to_embedding)⟩

variables {L} {M} {N : Type w} [L.Structure N]

lemma embedding.age_subset_age (MN : M ↪[L] N) : L.age M ⊆ L.age N :=
λ _, and.imp_right (nonempty.map MN.comp)

lemma equiv.age_eq_age (MN : M ≃[L] N) : L.age M = L.age N :=
le_antisymm MN.to_embedding.age_subset_age MN.symm.to_embedding.age_subset_age

lemma Structure.fg.mem_age_of_equiv {M N : bundled L.Structure} (h : Structure.fg L M)
  (MN : nonempty (M ≃[L] N)) : N ∈ L.age M :=
⟨MN.some.fg_iff.1 h, ⟨MN.some.symm.to_embedding⟩⟩

lemma hereditary.is_equiv_invariant_of_fg (h : hereditary K)
  (fg : ∀ (M : bundled.{w} L.Structure), M ∈ K → Structure.fg L M)
  (M N : bundled.{w} L.Structure) (hn : nonempty (M ≃[L] N)) : M ∈ K ↔ N ∈ K :=
⟨λ MK, h M MK ((fg M MK).mem_age_of_equiv hn),
  λ NK, h N NK ((fg N NK).mem_age_of_equiv ⟨hn.some.symm⟩)⟩

variable (M)

lemma age.nonempty : (L.age M).nonempty :=
⟨bundled.of (substructure.closure L (∅ : set M)),
  (fg_iff_Structure_fg _).1 (fg_closure set.finite_empty), ⟨substructure.subtype _⟩⟩

lemma age.hereditary : hereditary (L.age M) :=
λ N hN P hP, hN.2.some.age_subset_age hP

lemma age.joint_embedding : joint_embedding (L.age M) :=
λ N hN P hP, ⟨bundled.of ↥(hN.2.some.to_hom.range ⊔ hP.2.some.to_hom.range),
  ⟨(fg_iff_Structure_fg _).1 ((hN.1.range hN.2.some.to_hom).sup (hP.1.range hP.2.some.to_hom)),
  ⟨subtype _⟩⟩,
  ⟨embedding.comp (inclusion le_sup_left) hN.2.some.equiv_range.to_embedding⟩,
  ⟨embedding.comp (inclusion le_sup_right) hP.2.some.equiv_range.to_embedding⟩⟩

/-- The age of a countable structure is essentially countable (has countably many isomorphism
classes). -/
lemma age.countable_quotient (h : (univ : set M).countable) :
  (quotient.mk '' (L.age M)).countable :=
begin
  refine eq.mp (congr rfl (set.ext _)) ((countable_set_of_finite_subset h).image
    (λ s, ⟦⟨closure L s, infer_instance⟩⟧)),
  rw forall_quotient_iff,
  intro N,
  simp only [subset_univ, and_true, mem_image, mem_set_of_eq, quotient.eq],
  split,
  { rintro ⟨s, hs1, hs2⟩,
    use bundled.of ↥(closure L s),
    exact ⟨⟨(fg_iff_Structure_fg _).1 (fg_closure hs1), ⟨subtype _⟩⟩, hs2⟩ },
  { rintro ⟨P, ⟨⟨s, hs⟩, ⟨PM⟩⟩, hP2⟩,
    refine ⟨PM '' s, set.finite.image PM s.finite_to_set, setoid.trans _ hP2⟩,
    rw [← embedding.coe_to_hom, closure_image PM.to_hom, hs, ← hom.range_eq_map],
    exact ⟨PM.equiv_range.symm⟩ }
end

/-- The age of a direct limit of structures is the union of the ages of the structures. -/
@[simp] theorem age_direct_limit {ι : Type w} [preorder ι] [is_directed ι (≤)] [nonempty ι]
  (G : ι → Type (max w w')) [Π i, L.Structure (G i)]
  (f : Π i j, i ≤ j → G i ↪[L] G j) [directed_system G (λ i j h, f i j h)] :
  L.age (direct_limit G f) = ⋃ (i : ι), L.age (G i) :=
begin
  classical,
  ext M,
  simp only [mem_Union],
  split,
  { rintro ⟨Mfg, ⟨e⟩⟩,
    obtain ⟨s, hs⟩ := Mfg.range e.to_hom,
    let out := @quotient.out _ (direct_limit.setoid G f),
    obtain ⟨i, hi⟩ := finset.exists_le (s.image (sigma.fst ∘ out)),
    have e' := ((direct_limit.of L ι G f i).equiv_range.symm.to_embedding),
    refine ⟨i, Mfg, ⟨e'.comp ((substructure.inclusion _).comp e.equiv_range.to_embedding)⟩⟩,
    rw [← hs, closure_le],
    intros x hx,
    refine ⟨f (out x).1 i (hi (out x).1 (finset.mem_image_of_mem _ hx)) (out x).2, _⟩,
    rw [embedding.coe_to_hom, direct_limit.of_apply, quotient.mk_eq_iff_out,
      direct_limit.equiv_iff G f _
      (hi (out x).1 (finset.mem_image_of_mem _ hx)), directed_system.map_self],
    refl },
  { rintro ⟨i, Mfg, ⟨e⟩⟩,
    exact ⟨Mfg, ⟨embedding.comp (direct_limit.of L ι G f i) e⟩⟩ }
end

/-- Sufficient conditions for a class to be the age of a countably-generated structure. -/
theorem exists_cg_is_age_of (hn : K.nonempty)
  (h : ∀ (M N : bundled.{w} L.Structure), nonempty (M ≃[L] N) → (M ∈ K ↔ N ∈ K))
  (hc : (quotient.mk '' K).countable)
  (fg : ∀ (M : bundled.{w} L.Structure), M ∈ K → Structure.fg L M)
  (hp : hereditary K)
  (jep : joint_embedding K) :
  ∃ (M : bundled.{w} L.Structure), Structure.cg L M ∧ L.age M = K :=
begin
  obtain ⟨F, hF⟩ := hc.exists_eq_range (hn.image _),
  simp only [set.ext_iff, forall_quotient_iff, mem_image, mem_range, quotient.eq] at hF,
  simp_rw [quotient.eq_mk_iff_out] at hF,
  have hF' : ∀ n : ℕ, (F n).out ∈ K,
  { intro n,
    obtain ⟨P, hP1, hP2⟩ := (hF (F n).out).2 ⟨n, setoid.refl _⟩,
    exact (h _ _ hP2).1 hP1 },
  choose P hPK hP hFP using (λ (N : K) (n : ℕ), jep N N.2 (F (n + 1)).out (hF' _)),
  let G : ℕ → K := @nat.rec (λ _, K) (⟨(F 0).out, hF' 0⟩) (λ n N, ⟨P N n, hPK N n⟩),
  let f : Π (i j), i ≤ j → G i ↪[L] G j :=
    directed_system.nat_le_rec (λ n, (hP _ n).some),
  refine ⟨bundled.of (direct_limit (λ n, G n) f), direct_limit.cg _ (λ n, (fg _ (G n).2).cg),
    (age_direct_limit _ _).trans (subset_antisymm
      (Union_subset (λ n N hN, hp (G n) (G n).2 hN)) (λ N KN, _))⟩,
  obtain ⟨n, ⟨e⟩⟩ := (hF N).1 ⟨N, KN, setoid.refl _⟩,
  refine mem_Union_of_mem n ⟨fg _ KN, ⟨embedding.comp _ e.symm.to_embedding⟩⟩,
  cases n,
  { exact embedding.refl _ _ },
  { exact (hFP _ n).some }
end

theorem exists_countable_is_age_of_iff [L.countable_functions] :
  (∃ (M : bundled.{w} L.Structure), (univ : set M).countable ∧ L.age M = K) ↔
    K.nonempty ∧
    (∀ (M N : bundled.{w} L.Structure), nonempty (M ≃[L] N) → (M ∈ K ↔ N ∈ K)) ∧
    (quotient.mk '' K).countable ∧
    (∀ (M : bundled.{w} L.Structure), M ∈ K → Structure.fg L M) ∧
    hereditary K ∧
    joint_embedding K :=
begin
  split,
  { rintros ⟨M, h1, h2, rfl⟩,
    resetI,
    refine ⟨age.nonempty M, age.is_equiv_invariant L M, age.countable_quotient M h1, λ N hN, hN.1,
      age.hereditary M, age.joint_embedding M⟩, },
  { rintros ⟨Kn, eqinv, cq, hfg, hp, jep⟩,
    obtain ⟨M, hM, rfl⟩ := exists_cg_is_age_of Kn eqinv cq hfg hp jep,
    haveI := ((Structure.cg_iff_countable).1 hM).some,
    refine ⟨M, to_countable _, rfl⟩, }
end

variables {K} (L) (M)

/-- A structure `M` is ultrahomogeneous if every embedding of a finitely generated substructure
into `M` extends to an automorphism of `M`. -/
def is_ultrahomogeneous : Prop :=
∀ (S : L.substructure M) (hs : S.fg) (f : S ↪[L] M),
  ∃ (g : M ≃[L] M), f = g.to_embedding.comp S.subtype

variables {L} (K)

/-- A structure `M` is a Fraïssé limit for a class `K` if it is countably generated,
ultrahomogeneous, and has age `K`. -/
structure is_fraisse_limit [countable_functions L] : Prop :=
(ultrahomogeneous : is_ultrahomogeneous L M)
(countable : (univ : set M).countable)
(age : L.age M = K)

variables {L} {M}

lemma is_ultrahomogeneous.amalgamation_age (h : L.is_ultrahomogeneous M) :
  amalgamation (L.age M) :=
begin
  rintros N P Q NP NQ ⟨Nfg, ⟨NM⟩⟩ ⟨Pfg, ⟨PM⟩⟩ ⟨Qfg, ⟨QM⟩⟩,
  obtain ⟨g, hg⟩ := h ((PM.comp NP).to_hom.range) (Nfg.range _)
    ((QM.comp NQ).comp (PM.comp NP).equiv_range.symm.to_embedding),
  let s := (g.to_hom.comp PM.to_hom).range ⊔ QM.to_hom.range,
  refine ⟨bundled.of s, embedding.comp (substructure.inclusion le_sup_left)
      ((g.to_embedding.comp PM).equiv_range).to_embedding,
    embedding.comp (substructure.inclusion le_sup_right) QM.equiv_range.to_embedding,
    ⟨(fg_iff_Structure_fg _).1 (fg.sup (Pfg.range _) (Qfg.range _)), ⟨substructure.subtype _⟩⟩, _⟩,
  ext n,
  have hgn := (embedding.ext_iff.1 hg) ((PM.comp NP).equiv_range n),
  simp only [embedding.comp_apply, equiv.coe_to_embedding, equiv.symm_apply_apply,
    substructure.coe_subtype, embedding.equiv_range_apply] at hgn,
  simp only [embedding.comp_apply, equiv.coe_to_embedding, substructure.coe_inclusion,
    set.coe_inclusion, embedding.equiv_range_apply, hgn],
end

lemma is_ultrahomogeneous.age_is_fraisse (hc : (univ : set M).countable)
  (h : L.is_ultrahomogeneous M) :
  is_fraisse (L.age M) :=
⟨age.nonempty M, λ _ hN, hN.1, age.is_equiv_invariant L M, age.countable_quotient M hc,
  age.hereditary M, age.joint_embedding M, h.amalgamation_age⟩

namespace is_fraisse_limit

/-- If a class has a Fraïssé limit, it must be Fraïssé. -/
theorem is_fraisse [countable_functions L] (h : is_fraisse_limit K M) : is_fraisse K :=
(congr rfl h.age).mp (h.ultrahomogeneous.age_is_fraisse h.countable)

end is_fraisse_limit

end language
end first_order