Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 13,586 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import model_theory.finitely_generated
import model_theory.direct_limit
import model_theory.bundled
/-!
# Fraïssé Classes and Fraïssé Limits
This file pertains to the ages of countable first-order structures. The age of a structure is the
class of all finitely-generated structures that embed into it.
Of particular interest are Fraïssé classes, which are exactly the ages of countable
ultrahomogeneous structures. To each is associated a unique (up to nonunique isomorphism)
Fraïssé limit - the countable ultrahomogeneous structure with that age.
## Main Definitions
* `first_order.language.age` is the class of finitely-generated structures that embed into a
particular structure.
* A class `K` has the `first_order.language.hereditary` when all finitely-generated
structures that embed into structures in `K` are also in `K`.
* A class `K` has the `first_order.language.joint_embedding` when for every `M`, `N` in
`K`, there is another structure in `K` into which both `M` and `N` embed.
* A class `K` has the `first_order.language.amalgamation` when for any pair of embeddings
of a structure `M` in `K` into other structures in `K`, those two structures can be embedded into a
fourth structure in `K` such that the resulting square of embeddings commutes.
* `first_order.language.is_fraisse` indicates that a class is nonempty, isomorphism-invariant,
essentially countable, and satisfies the hereditary, joint embedding, and amalgamation properties.
* `first_order.language.is_fraisse_limit` indicates that a structure is a Fraïssé limit for a given
class.
## Main Results
* We show that the age of any structure is isomorphism-invariant and satisfies the hereditary and
joint-embedding properties.
* `first_order.language.age.countable_quotient` shows that the age of any countable structure is
essentially countable.
* `first_order.language.exists_countable_is_age_of_iff` gives necessary and sufficient conditions
for a class to be the age of a countable structure in a language with countably many functions.
## Implementation Notes
* Classes of structures are formalized with `set (bundled L.Structure)`.
* Some results pertain to countable limit structures, others to countably-generated limit
structures. In the case of a language with countably many function symbols, these are equivalent.
## References
- [W. Hodges, *A Shorter Model Theory*][Hodges97]
- [K. Tent, M. Ziegler, *A Course in Model Theory*][Tent_Ziegler]
## TODO
* Show existence and uniqueness of Fraïssé limits
-/
universes u v w w'
open_locale first_order
open set category_theory
namespace first_order
namespace language
open Structure substructure
variables (L : language.{u v})
/-! ### The Age of a Structure and Fraïssé Classes-/
/-- The age of a structure `M` is the class of finitely-generated structures that embed into it. -/
def age (M : Type w) [L.Structure M] : set (bundled.{w} L.Structure) :=
{ N | Structure.fg L N ∧ nonempty (N ↪[L] M) }
variables {L} (K : set (bundled.{w} L.Structure))
/-- A class `K` has the hereditary property when all finitely-generated structures that embed into
structures in `K` are also in `K`. -/
def hereditary : Prop :=
∀ (M : bundled.{w} L.Structure), M ∈ K → L.age M ⊆ K
/-- A class `K` has the joint embedding property when for every `M`, `N` in `K`, there is another
structure in `K` into which both `M` and `N` embed. -/
def joint_embedding : Prop :=
directed_on (λ M N : bundled.{w} L.Structure, nonempty (M ↪[L] N)) K
/-- A class `K` has the amalgamation property when for any pair of embeddings of a structure `M` in
`K` into other structures in `K`, those two structures can be embedded into a fourth structure in
`K` such that the resulting square of embeddings commutes. -/
def amalgamation : Prop :=
∀ (M N P : bundled.{w} L.Structure) (MN : M ↪[L] N) (MP : M ↪[L] P), M ∈ K → N ∈ K → P ∈ K →
∃ (Q : bundled.{w} L.Structure) (NQ : N ↪[L] Q) (PQ : P ↪[L] Q), Q ∈ K ∧ NQ.comp MN = PQ.comp MP
/-- A Fraïssé class is a nonempty, isomorphism-invariant, essentially countable class of structures
satisfying the hereditary, joint embedding, and amalgamation properties. -/
class is_fraisse : Prop :=
(is_nonempty : K.nonempty)
(fg : ∀ M : bundled.{w} L.Structure, M ∈ K → Structure.fg L M)
(is_equiv_invariant : ∀ (M N : bundled.{w} L.Structure), nonempty (M ≃[L] N) → (M ∈ K ↔ N ∈ K))
(is_essentially_countable : (quotient.mk '' K).countable)
(hereditary : hereditary K)
(joint_embedding : joint_embedding K)
(amalgamation : amalgamation K)
variables {K} (L) (M : Type w) [L.Structure M]
lemma age.is_equiv_invariant (N P : bundled.{w} L.Structure) (h : nonempty (N ≃[L] P)) :
N ∈ L.age M ↔ P ∈ L.age M :=
and_congr h.some.fg_iff
⟨nonempty.map (λ x, embedding.comp x h.some.symm.to_embedding),
nonempty.map (λ x, embedding.comp x h.some.to_embedding)⟩
variables {L} {M} {N : Type w} [L.Structure N]
lemma embedding.age_subset_age (MN : M ↪[L] N) : L.age M ⊆ L.age N :=
λ _, and.imp_right (nonempty.map MN.comp)
lemma equiv.age_eq_age (MN : M ≃[L] N) : L.age M = L.age N :=
le_antisymm MN.to_embedding.age_subset_age MN.symm.to_embedding.age_subset_age
lemma Structure.fg.mem_age_of_equiv {M N : bundled L.Structure} (h : Structure.fg L M)
(MN : nonempty (M ≃[L] N)) : N ∈ L.age M :=
⟨MN.some.fg_iff.1 h, ⟨MN.some.symm.to_embedding⟩⟩
lemma hereditary.is_equiv_invariant_of_fg (h : hereditary K)
(fg : ∀ (M : bundled.{w} L.Structure), M ∈ K → Structure.fg L M)
(M N : bundled.{w} L.Structure) (hn : nonempty (M ≃[L] N)) : M ∈ K ↔ N ∈ K :=
⟨λ MK, h M MK ((fg M MK).mem_age_of_equiv hn),
λ NK, h N NK ((fg N NK).mem_age_of_equiv ⟨hn.some.symm⟩)⟩
variable (M)
lemma age.nonempty : (L.age M).nonempty :=
⟨bundled.of (substructure.closure L (∅ : set M)),
(fg_iff_Structure_fg _).1 (fg_closure set.finite_empty), ⟨substructure.subtype _⟩⟩
lemma age.hereditary : hereditary (L.age M) :=
λ N hN P hP, hN.2.some.age_subset_age hP
lemma age.joint_embedding : joint_embedding (L.age M) :=
λ N hN P hP, ⟨bundled.of ↥(hN.2.some.to_hom.range ⊔ hP.2.some.to_hom.range),
⟨(fg_iff_Structure_fg _).1 ((hN.1.range hN.2.some.to_hom).sup (hP.1.range hP.2.some.to_hom)),
⟨subtype _⟩⟩,
⟨embedding.comp (inclusion le_sup_left) hN.2.some.equiv_range.to_embedding⟩,
⟨embedding.comp (inclusion le_sup_right) hP.2.some.equiv_range.to_embedding⟩⟩
/-- The age of a countable structure is essentially countable (has countably many isomorphism
classes). -/
lemma age.countable_quotient (h : (univ : set M).countable) :
(quotient.mk '' (L.age M)).countable :=
begin
refine eq.mp (congr rfl (set.ext _)) ((countable_set_of_finite_subset h).image
(λ s, ⟦⟨closure L s, infer_instance⟩⟧)),
rw forall_quotient_iff,
intro N,
simp only [subset_univ, and_true, mem_image, mem_set_of_eq, quotient.eq],
split,
{ rintro ⟨s, hs1, hs2⟩,
use bundled.of ↥(closure L s),
exact ⟨⟨(fg_iff_Structure_fg _).1 (fg_closure hs1), ⟨subtype _⟩⟩, hs2⟩ },
{ rintro ⟨P, ⟨⟨s, hs⟩, ⟨PM⟩⟩, hP2⟩,
refine ⟨PM '' s, set.finite.image PM s.finite_to_set, setoid.trans _ hP2⟩,
rw [← embedding.coe_to_hom, closure_image PM.to_hom, hs, ← hom.range_eq_map],
exact ⟨PM.equiv_range.symm⟩ }
end
/-- The age of a direct limit of structures is the union of the ages of the structures. -/
@[simp] theorem age_direct_limit {ι : Type w} [preorder ι] [is_directed ι (≤)] [nonempty ι]
(G : ι → Type (max w w')) [Π i, L.Structure (G i)]
(f : Π i j, i ≤ j → G i ↪[L] G j) [directed_system G (λ i j h, f i j h)] :
L.age (direct_limit G f) = ⋃ (i : ι), L.age (G i) :=
begin
classical,
ext M,
simp only [mem_Union],
split,
{ rintro ⟨Mfg, ⟨e⟩⟩,
obtain ⟨s, hs⟩ := Mfg.range e.to_hom,
let out := @quotient.out _ (direct_limit.setoid G f),
obtain ⟨i, hi⟩ := finset.exists_le (s.image (sigma.fst ∘ out)),
have e' := ((direct_limit.of L ι G f i).equiv_range.symm.to_embedding),
refine ⟨i, Mfg, ⟨e'.comp ((substructure.inclusion _).comp e.equiv_range.to_embedding)⟩⟩,
rw [← hs, closure_le],
intros x hx,
refine ⟨f (out x).1 i (hi (out x).1 (finset.mem_image_of_mem _ hx)) (out x).2, _⟩,
rw [embedding.coe_to_hom, direct_limit.of_apply, quotient.mk_eq_iff_out,
direct_limit.equiv_iff G f _
(hi (out x).1 (finset.mem_image_of_mem _ hx)), directed_system.map_self],
refl },
{ rintro ⟨i, Mfg, ⟨e⟩⟩,
exact ⟨Mfg, ⟨embedding.comp (direct_limit.of L ι G f i) e⟩⟩ }
end
/-- Sufficient conditions for a class to be the age of a countably-generated structure. -/
theorem exists_cg_is_age_of (hn : K.nonempty)
(h : ∀ (M N : bundled.{w} L.Structure), nonempty (M ≃[L] N) → (M ∈ K ↔ N ∈ K))
(hc : (quotient.mk '' K).countable)
(fg : ∀ (M : bundled.{w} L.Structure), M ∈ K → Structure.fg L M)
(hp : hereditary K)
(jep : joint_embedding K) :
∃ (M : bundled.{w} L.Structure), Structure.cg L M ∧ L.age M = K :=
begin
obtain ⟨F, hF⟩ := hc.exists_eq_range (hn.image _),
simp only [set.ext_iff, forall_quotient_iff, mem_image, mem_range, quotient.eq] at hF,
simp_rw [quotient.eq_mk_iff_out] at hF,
have hF' : ∀ n : ℕ, (F n).out ∈ K,
{ intro n,
obtain ⟨P, hP1, hP2⟩ := (hF (F n).out).2 ⟨n, setoid.refl _⟩,
exact (h _ _ hP2).1 hP1 },
choose P hPK hP hFP using (λ (N : K) (n : ℕ), jep N N.2 (F (n + 1)).out (hF' _)),
let G : ℕ → K := @nat.rec (λ _, K) (⟨(F 0).out, hF' 0⟩) (λ n N, ⟨P N n, hPK N n⟩),
let f : Π (i j), i ≤ j → G i ↪[L] G j :=
directed_system.nat_le_rec (λ n, (hP _ n).some),
refine ⟨bundled.of (direct_limit (λ n, G n) f), direct_limit.cg _ (λ n, (fg _ (G n).2).cg),
(age_direct_limit _ _).trans (subset_antisymm
(Union_subset (λ n N hN, hp (G n) (G n).2 hN)) (λ N KN, _))⟩,
obtain ⟨n, ⟨e⟩⟩ := (hF N).1 ⟨N, KN, setoid.refl _⟩,
refine mem_Union_of_mem n ⟨fg _ KN, ⟨embedding.comp _ e.symm.to_embedding⟩⟩,
cases n,
{ exact embedding.refl _ _ },
{ exact (hFP _ n).some }
end
theorem exists_countable_is_age_of_iff [L.countable_functions] :
(∃ (M : bundled.{w} L.Structure), (univ : set M).countable ∧ L.age M = K) ↔
K.nonempty ∧
(∀ (M N : bundled.{w} L.Structure), nonempty (M ≃[L] N) → (M ∈ K ↔ N ∈ K)) ∧
(quotient.mk '' K).countable ∧
(∀ (M : bundled.{w} L.Structure), M ∈ K → Structure.fg L M) ∧
hereditary K ∧
joint_embedding K :=
begin
split,
{ rintros ⟨M, h1, h2, rfl⟩,
resetI,
refine ⟨age.nonempty M, age.is_equiv_invariant L M, age.countable_quotient M h1, λ N hN, hN.1,
age.hereditary M, age.joint_embedding M⟩, },
{ rintros ⟨Kn, eqinv, cq, hfg, hp, jep⟩,
obtain ⟨M, hM, rfl⟩ := exists_cg_is_age_of Kn eqinv cq hfg hp jep,
haveI := ((Structure.cg_iff_countable).1 hM).some,
refine ⟨M, to_countable _, rfl⟩, }
end
variables {K} (L) (M)
/-- A structure `M` is ultrahomogeneous if every embedding of a finitely generated substructure
into `M` extends to an automorphism of `M`. -/
def is_ultrahomogeneous : Prop :=
∀ (S : L.substructure M) (hs : S.fg) (f : S ↪[L] M),
∃ (g : M ≃[L] M), f = g.to_embedding.comp S.subtype
variables {L} (K)
/-- A structure `M` is a Fraïssé limit for a class `K` if it is countably generated,
ultrahomogeneous, and has age `K`. -/
structure is_fraisse_limit [countable_functions L] : Prop :=
(ultrahomogeneous : is_ultrahomogeneous L M)
(countable : (univ : set M).countable)
(age : L.age M = K)
variables {L} {M}
lemma is_ultrahomogeneous.amalgamation_age (h : L.is_ultrahomogeneous M) :
amalgamation (L.age M) :=
begin
rintros N P Q NP NQ ⟨Nfg, ⟨NM⟩⟩ ⟨Pfg, ⟨PM⟩⟩ ⟨Qfg, ⟨QM⟩⟩,
obtain ⟨g, hg⟩ := h ((PM.comp NP).to_hom.range) (Nfg.range _)
((QM.comp NQ).comp (PM.comp NP).equiv_range.symm.to_embedding),
let s := (g.to_hom.comp PM.to_hom).range ⊔ QM.to_hom.range,
refine ⟨bundled.of s, embedding.comp (substructure.inclusion le_sup_left)
((g.to_embedding.comp PM).equiv_range).to_embedding,
embedding.comp (substructure.inclusion le_sup_right) QM.equiv_range.to_embedding,
⟨(fg_iff_Structure_fg _).1 (fg.sup (Pfg.range _) (Qfg.range _)), ⟨substructure.subtype _⟩⟩, _⟩,
ext n,
have hgn := (embedding.ext_iff.1 hg) ((PM.comp NP).equiv_range n),
simp only [embedding.comp_apply, equiv.coe_to_embedding, equiv.symm_apply_apply,
substructure.coe_subtype, embedding.equiv_range_apply] at hgn,
simp only [embedding.comp_apply, equiv.coe_to_embedding, substructure.coe_inclusion,
set.coe_inclusion, embedding.equiv_range_apply, hgn],
end
lemma is_ultrahomogeneous.age_is_fraisse (hc : (univ : set M).countable)
(h : L.is_ultrahomogeneous M) :
is_fraisse (L.age M) :=
⟨age.nonempty M, λ _ hN, hN.1, age.is_equiv_invariant L M, age.countable_quotient M hc,
age.hereditary M, age.joint_embedding M, h.amalgamation_age⟩
namespace is_fraisse_limit
/-- If a class has a Fraïssé limit, it must be Fraïssé. -/
theorem is_fraisse [countable_functions L] (h : is_fraisse_limit K M) : is_fraisse K :=
(congr rfl h.age).mp (h.ultrahomogeneous.age_is_fraisse h.countable)
end is_fraisse_limit
end language
end first_order
|