Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 14,813 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import data.fintype.basic
import model_theory.substructures

/-!
# Elementary Maps Between First-Order Structures

## Main Definitions
* A `first_order.language.elementary_embedding` is an embedding that commutes with the
  realizations of formulas.
* A `first_order.language.elementary_substructure` is a substructure where the realization of each
  formula agrees with the realization in the larger model.
* The `first_order.language.elementary_diagram` of a structure is the set of all sentences with
  parameters that the structure satisfies.
* `first_order.language.elementary_embedding.of_models_elementary_diagram` is the canonical
elementary embedding of any structure into a model of its elementary diagram.

## Main Results
* The Tarski-Vaught Test for embeddings: `first_order.language.embedding.is_elementary_of_exists`
gives a simple criterion for an embedding to be elementary.
* The Tarski-Vaught Test for substructures: `first_order.language.embedding.is_elementary_of_exists`
gives a simple criterion for a substructure to be elementary.
 -/

open_locale first_order
namespace first_order
namespace language
open Structure

variables (L : language) (M : Type*) (N : Type*) {P : Type*} {Q : Type*}
variables [L.Structure M] [L.Structure N] [L.Structure P] [L.Structure Q]

/-- An elementary embedding of first-order structures is an embedding that commutes with the
  realizations of formulas. -/
structure elementary_embedding :=
(to_fun : M β†’ N)
(map_formula' : βˆ€{n} (Ο† : L.formula (fin n)) (x : fin n β†’ M),
  Ο†.realize (to_fun ∘ x) ↔ Ο†.realize x . obviously)

localized "notation A ` β†ͺβ‚‘[`:25 L `] ` B := first_order.language.elementary_embedding L A B"
  in first_order

variables {L} {M} {N}

namespace elementary_embedding

instance fun_like : fun_like (M β†ͺβ‚‘[L] N) M (Ξ» _, N) :=
{ coe := Ξ» f, f.to_fun,
  coe_injective' := Ξ» f g h, begin
    cases f,
    cases g,
    simp only,
    ext x,
    exact function.funext_iff.1 h x end }

instance : has_coe_to_fun (M β†ͺβ‚‘[L] N) (Ξ» _, M β†’ N) := fun_like.has_coe_to_fun

@[simp] lemma map_bounded_formula (f : M β†ͺβ‚‘[L] N) {Ξ± : Type} {n : β„•}
  (Ο† : L.bounded_formula Ξ± n) (v : Ξ± β†’ M) (xs : fin n β†’ M) :
  Ο†.realize (f ∘ v) (f ∘ xs) ↔ Ο†.realize v xs :=
begin
  classical,
  rw [← bounded_formula.realize_restrict_free_var set.subset.rfl, set.inclusion_eq_id, iff_eq_eq],
  swap, { apply_instance },
  have h := f.map_formula' ((Ο†.restrict_free_var id).to_formula.relabel (fintype.equiv_fin _))
    ((sum.elim (v ∘ coe) xs) ∘ (fintype.equiv_fin _).symm),
  simp only [formula.realize_relabel, bounded_formula.realize_to_formula, iff_eq_eq] at h,
  rw [← function.comp.assoc _ _ ((fintype.equiv_fin _).symm),
    function.comp.assoc _ ((fintype.equiv_fin _).symm) (fintype.equiv_fin _),
    equiv.symm_comp_self, function.comp.right_id, function.comp.assoc, sum.elim_comp_inl,
    function.comp.assoc _ _ sum.inr, sum.elim_comp_inr,
    ← function.comp.assoc] at h,
  refine h.trans _,
  rw [function.comp.assoc _ _ (fintype.equiv_fin _), equiv.symm_comp_self,
    function.comp.right_id, sum.elim_comp_inl, sum.elim_comp_inr, ← set.inclusion_eq_id,
    bounded_formula.realize_restrict_free_var set.subset.rfl],
end

@[simp] lemma map_formula (f : M β†ͺβ‚‘[L] N) {Ξ± : Type} (Ο† : L.formula Ξ±) (x : Ξ± β†’ M) :
  Ο†.realize (f ∘ x) ↔ Ο†.realize x :=
by rw [formula.realize, formula.realize, ← f.map_bounded_formula, unique.eq_default (f ∘ default)]

lemma map_sentence (f : M β†ͺβ‚‘[L] N) (Ο† : L.sentence) :
  M ⊨ Ο† ↔ N ⊨ Ο† :=
by rw [sentence.realize, sentence.realize, ← f.map_formula, unique.eq_default (f ∘ default)]

lemma Theory_model_iff (f : M β†ͺβ‚‘[L] N) (T : L.Theory) :
  M ⊨ T ↔ N ⊨ T :=
by simp only [Theory.model_iff, f.map_sentence]

lemma elementarily_equivalent (f : M β†ͺβ‚‘[L] N) : M β‰…[L] N :=
elementarily_equivalent_iff.2 f.map_sentence

@[simp] lemma injective (Ο† : M β†ͺβ‚‘[L] N) :
  function.injective Ο† :=
begin
  intros x y,
  have h := Ο†.map_formula ((var 0).equal (var 1) : L.formula (fin 2)) (Ξ» i, if i = 0 then x else y),
  rw [formula.realize_equal, formula.realize_equal] at h,
  simp only [nat.one_ne_zero, term.realize, fin.one_eq_zero_iff, if_true, eq_self_iff_true,
    function.comp_app, if_false] at h,
  exact h.1,
end

instance embedding_like : embedding_like (M β†ͺβ‚‘[L] N) M N :=
{ injective' := injective }

@[simp] lemma map_fun (Ο† : M β†ͺβ‚‘[L] N) {n : β„•} (f : L.functions n) (x : fin n β†’ M) :
  Ο† (fun_map f x) = fun_map f (Ο† ∘ x) :=
begin
  have h := Ο†.map_formula (formula.graph f) (fin.cons (fun_map f x) x),
  rw [formula.realize_graph, fin.comp_cons, formula.realize_graph] at h,
  rw [eq_comm, h]
end

@[simp] lemma map_rel (Ο† : M β†ͺβ‚‘[L] N) {n : β„•} (r : L.relations n) (x : fin n β†’ M) :
  rel_map r (Ο† ∘ x) ↔ rel_map r x :=
begin
  have h := Ο†.map_formula (r.formula var) x,
  exact h
end

instance strong_hom_class : strong_hom_class L (M β†ͺβ‚‘[L] N) M N :=
{ map_fun := map_fun,
  map_rel := map_rel }

@[simp] lemma map_constants (Ο† : M β†ͺβ‚‘[L] N) (c : L.constants) : Ο† c = c :=
hom_class.map_constants Ο† c

/-- An elementary embedding is also a first-order embedding. -/
def to_embedding (f : M β†ͺβ‚‘[L] N) : M β†ͺ[L] N :=
{ to_fun := f,
  inj' := f.injective, }

/-- An elementary embedding is also a first-order homomorphism. -/
def to_hom (f : M β†ͺβ‚‘[L] N) : M β†’[L] N :=
{ to_fun := f }

@[simp] lemma to_embedding_to_hom (f : M β†ͺβ‚‘[L] N) : f.to_embedding.to_hom = f.to_hom := rfl

@[simp]
lemma coe_to_hom {f : M β†ͺβ‚‘[L] N} : (f.to_hom : M β†’ N) = (f : M β†’ N) := rfl

@[simp] lemma coe_to_embedding (f : M β†ͺβ‚‘[L] N) : (f.to_embedding : M β†’ N) = (f : M β†’ N) := rfl

lemma coe_injective : @function.injective (M β†ͺβ‚‘[L] N) (M β†’ N) coe_fn :=
fun_like.coe_injective

@[ext]
lemma ext ⦃f g : M β†ͺβ‚‘[L] N⦄ (h : βˆ€ x, f x = g x) : f = g :=
fun_like.ext f g h

lemma ext_iff {f g : M β†ͺβ‚‘[L] N} : f = g ↔ βˆ€ x, f x = g x :=
fun_like.ext_iff

variables (L) (M)
/-- The identity elementary embedding from a structure to itself -/
@[refl] def refl : M β†ͺβ‚‘[L] M :=
{ to_fun := id }

variables {L} {M}

instance : inhabited (M β†ͺβ‚‘[L] M) := ⟨refl L M⟩

@[simp] lemma refl_apply (x : M) :
  refl L M x = x := rfl

/-- Composition of elementary embeddings -/
@[trans] def comp (hnp : N β†ͺβ‚‘[L] P) (hmn : M β†ͺβ‚‘[L] N) : M β†ͺβ‚‘[L] P :=
{ to_fun := hnp ∘ hmn }

@[simp] lemma comp_apply (g : N β†ͺβ‚‘[L] P) (f : M β†ͺβ‚‘[L] N) (x : M) :
  g.comp f x = g (f x) := rfl

/-- Composition of elementary embeddings is associative. -/
lemma comp_assoc (f : M β†ͺβ‚‘[L] N) (g : N β†ͺβ‚‘[L] P) (h : P β†ͺβ‚‘[L] Q) :
  (h.comp g).comp f = h.comp (g.comp f) := rfl

end elementary_embedding

variables (L) (M)

/-- The elementary diagram of an `L`-structure is the set of all sentences with parameters it
  satisfies. -/
abbreviation elementary_diagram : L[[M]].Theory := L[[M]].complete_theory M

/-- The canonical elementary embedding of an `L`-structure into any model of its elementary diagram
-/
@[simps] def elementary_embedding.of_models_elementary_diagram
  (N : Type*) [L.Structure N] [L[[M]].Structure N]
  [(Lhom_with_constants L M).is_expansion_on N] [N ⊨ L.elementary_diagram M] :
  M β†ͺβ‚‘[L] N :=
⟨(coe : L[[M]].constants β†’ N) ∘ sum.inr, Ξ» n Ο† x, begin
  refine trans _ ((realize_iff_of_model_complete_theory M N (((L.Lhom_with_constants
    M).on_bounded_formula Ο†).subst (constants.term ∘ sum.inr ∘ x)).alls).trans _),
  { simp_rw [sentence.realize, bounded_formula.realize_alls, bounded_formula.realize_subst,
      Lhom.realize_on_bounded_formula, formula.realize, unique.forall_iff, realize_constants] },
  { simp_rw [sentence.realize, bounded_formula.realize_alls, bounded_formula.realize_subst,
    Lhom.realize_on_bounded_formula, formula.realize, unique.forall_iff],
    refl }
end⟩

variables {L M}

namespace embedding

/-- The Tarski-Vaught test for elementarity of an embedding. -/
theorem is_elementary_of_exists (f : M β†ͺ[L] N)
  (htv : βˆ€ (n : β„•) (Ο† : L.bounded_formula empty (n + 1)) (x : fin n β†’ M) (a : N),
    Ο†.realize default (fin.snoc (f ∘ x) a : _ β†’ N) β†’
    βˆƒ b : M, Ο†.realize default (fin.snoc (f ∘ x) (f b) : _ β†’ N)) :
  βˆ€{n} (Ο† : L.formula (fin n)) (x : fin n β†’ M), Ο†.realize (f ∘ x) ↔ Ο†.realize x :=
begin
  suffices h : βˆ€ (n : β„•) (Ο† : L.bounded_formula empty n) (xs : fin n β†’ M),
    Ο†.realize (f ∘ default) (f ∘ xs) ↔ Ο†.realize default xs,
  { intros n Ο† x,
    refine Ο†.realize_relabel_sum_inr.symm.trans (trans (h n _ _) Ο†.realize_relabel_sum_inr), },
  refine Ξ» n Ο†, Ο†.rec_on _ _ _ _ _,
  { exact Ξ» _ _, iff.rfl },
  { intros,
    simp [bounded_formula.realize, ← sum.comp_elim, embedding.realize_term] },
  { intros,
    simp [bounded_formula.realize, ← sum.comp_elim, embedding.realize_term] },
  { intros _ _ _ ih1 ih2 _,
    simp [ih1, ih2] },
  { intros n Ο† ih xs,
    simp only [bounded_formula.realize_all],
    refine ⟨λ h a, _, _⟩,
    { rw [← ih, fin.comp_snoc],
      exact h (f a) },
    { contrapose!,
      rintro ⟨a, ha⟩,
      obtain ⟨b, hb⟩ := htv n Ο†.not xs a _,
      { refine ⟨b, λ h, hb (eq.mp _ ((ih _).2 h))⟩,
        rw [unique.eq_default (f ∘ default), fin.comp_snoc], },
      { rw [bounded_formula.realize_not, ← unique.eq_default (f ∘ default)],
        exact ha } } },
end

/-- Bundles an embedding satisfying the Tarski-Vaught test as an elementary embedding. -/
@[simps] def to_elementary_embedding (f : M β†ͺ[L] N)
  (htv : βˆ€ (n : β„•) (Ο† : L.bounded_formula empty (n + 1)) (x : fin n β†’ M) (a : N),
    Ο†.realize default (fin.snoc (f ∘ x) a : _ β†’ N) β†’
    βˆƒ b : M, Ο†.realize default (fin.snoc (f ∘ x) (f b) : _ β†’ N)) :
  M β†ͺβ‚‘[L] N :=
⟨f, λ _, f.is_elementary_of_exists htv⟩

end embedding

namespace equiv

/-- A first-order equivalence is also an elementary embedding. -/
def to_elementary_embedding (f : M ≃[L] N) : M β†ͺβ‚‘[L] N :=
{ to_fun := f }

@[simp] lemma to_elementary_embedding_to_embedding (f : M ≃[L] N) :
  f.to_elementary_embedding.to_embedding = f.to_embedding := rfl

@[simp] lemma coe_to_elementary_embedding (f : M ≃[L] N) :
  (f.to_elementary_embedding : M β†’ N) = (f : M β†’ N) := rfl

end equiv

@[simp] lemma realize_term_substructure {Ξ± : Type*} {S : L.substructure M} (v : Ξ± β†’ S)
  (t : L.term Ξ±) :
  t.realize (coe ∘ v) = (↑(t.realize v) : M) :=
S.subtype.realize_term t

namespace substructure

@[simp] lemma realize_bounded_formula_top {Ξ± : Type*} {n : β„•} {Ο† : L.bounded_formula Ξ± n}
  {v : Ξ± β†’ (⊀ : L.substructure M)} {xs : fin n β†’ (⊀ : L.substructure M)} :
  Ο†.realize v xs ↔ Ο†.realize ((coe : _ β†’ M) ∘ v) (coe ∘ xs) :=
begin
  rw ← substructure.top_equiv.realize_bounded_formula Ο†,
  simp,
end

@[simp] lemma realize_formula_top {Ξ± : Type*} {Ο† : L.formula Ξ±} {v : Ξ± β†’ (⊀ : L.substructure M)} :
  Ο†.realize v ↔ Ο†.realize ((coe : (⊀ : L.substructure M) β†’ M) ∘ v) :=
begin
  rw ← substructure.top_equiv.realize_formula Ο†,
  simp,
end

/-- A substructure is elementary when every formula applied to a tuple in the subtructure
  agrees with its value in the overall structure. -/
def is_elementary (S : L.substructure M) : Prop :=
βˆ€{n} (Ο† : L.formula (fin n)) (x : fin n β†’ S), Ο†.realize ((coe : _ β†’ M) ∘ x) ↔ Ο†.realize x

end substructure

variables (L) (M)
/-- An elementary substructure is one in which every formula applied to a tuple in the subtructure
  agrees with its value in the overall structure. -/
structure elementary_substructure :=
(to_substructure : L.substructure M)
(is_elementary' : to_substructure.is_elementary)

variables {L} {M}

namespace elementary_substructure

instance : has_coe (L.elementary_substructure M) (L.substructure M) :=
⟨elementary_substructure.to_substructure⟩

instance : set_like (L.elementary_substructure M) M :=
⟨λ x, x.to_substructure.carrier, λ ⟨⟨s, hs1⟩, hs2⟩ ⟨⟨t, ht1⟩, ht2⟩ h, begin
  congr,
  exact h,
end⟩

instance induced_Structure (S : L.elementary_substructure M) : L.Structure S :=
substructure.induced_Structure

@[simp] lemma is_elementary (S : L.elementary_substructure M) :
  (S : L.substructure M).is_elementary := S.is_elementary'

/-- The natural embedding of an `L.substructure` of `M` into `M`. -/
def subtype (S : L.elementary_substructure M) : S β†ͺβ‚‘[L] M :=
{ to_fun := coe,
  map_formula' := Ξ» n, S.is_elementary }

@[simp] theorem coe_subtype {S : L.elementary_substructure M} : ⇑S.subtype = coe := rfl

/-- The substructure `M` of the structure `M` is elementary. -/
instance : has_top (L.elementary_substructure M) :=
⟨⟨⊀, Ξ» n Ο† x, substructure.realize_formula_top.symm⟩⟩

instance : inhabited (L.elementary_substructure M) := ⟨⊀⟩

@[simp] lemma mem_top (x : M) : x ∈ (⊀ : L.elementary_substructure M) := set.mem_univ x

@[simp] lemma coe_top : ((⊀ : L.elementary_substructure M) : set M) = set.univ := rfl

@[simp] lemma realize_sentence (S : L.elementary_substructure M) (Ο† : L.sentence)  :
  S ⊨ Ο† ↔ M ⊨ Ο† :=
S.subtype.map_sentence Ο†

@[simp] lemma Theory_model_iff (S : L.elementary_substructure M) (T : L.Theory) :
  S ⊨ T ↔ M ⊨ T :=
by simp only [Theory.model_iff, realize_sentence]

instance Theory_model {T : L.Theory} [h : M ⊨ T] {S : L.elementary_substructure M} : S ⊨ T :=
(Theory_model_iff S T).2 h

instance [h : nonempty M] {S : L.elementary_substructure M} : nonempty S :=
(model_nonempty_theory_iff L).1 infer_instance

lemma elementarily_equivalent (S : L.elementary_substructure M) : S β‰…[L] M :=
S.subtype.elementarily_equivalent

end elementary_substructure

namespace substructure

/-- The Tarski-Vaught test for elementarity of a substructure. -/
theorem is_elementary_of_exists (S : L.substructure M)
  (htv : βˆ€ (n : β„•) (Ο† : L.bounded_formula empty (n + 1)) (x : fin n β†’ S) (a : M),
    Ο†.realize default (fin.snoc (coe ∘ x) a : _ β†’ M) β†’
    βˆƒ b : S, Ο†.realize default (fin.snoc (coe ∘ x) b : _ β†’ M)) :
  S.is_elementary :=
Ξ» n, S.subtype.is_elementary_of_exists htv

/-- Bundles a substructure satisfying the Tarski-Vaught test as an elementary substructure. -/
@[simps] def to_elementary_substructure (S : L.substructure M)
  (htv : βˆ€ (n : β„•) (Ο† : L.bounded_formula empty (n + 1)) (x : fin n β†’ S) (a : M),
    Ο†.realize default (fin.snoc (coe ∘ x) a : _ β†’ M) β†’
    βˆƒ b : S, Ο†.realize default (fin.snoc (coe ∘ x) b : _ β†’ M)) :
  L.elementary_substructure M :=
⟨S, λ _, S.is_elementary_of_exists htv⟩

end substructure

end language
end first_order