Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 10,914 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
/-
Copyright (c) 2020 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import data.prod.basic
import data.subtype
import logic.function.basic
import logic.unique

/-!
# Nontrivial types

A type is *nontrivial* if it contains at least two elements. This is useful in particular for rings
(where it is equivalent to the fact that zero is different from one) and for vector spaces
(where it is equivalent to the fact that the dimension is positive).

We introduce a typeclass `nontrivial` formalizing this property.
-/

variables {α : Type*} {β : Type*}

open_locale classical

/-- Predicate typeclass for expressing that a type is not reduced to a single element. In rings,
this is equivalent to `01`. In vector spaces, this is equivalent to positive dimension. -/
class nontrivial (α : Type*) : Prop :=
(exists_pair_ne : ∃ (x y : α), x ≠ y)

lemma nontrivial_iff : nontrivial α ↔ ∃ (x y : α), x ≠ y :=
⟨λ h, h.exists_pair_ne, λ h, ⟨h⟩⟩

lemma exists_pair_ne (α : Type*) [nontrivial α] : ∃ (x y : α), x ≠ y :=
nontrivial.exists_pair_ne

-- See Note [decidable namespace]
protected lemma decidable.exists_ne [nontrivial α] [decidable_eq α] (x : α) : ∃ y, y ≠ x :=
begin
  rcases exists_pair_ne α with ⟨y, y', h⟩,
  by_cases hx : x = y,
  { rw ← hx at h,
    exact ⟨y', h.symm⟩ },
  { exact ⟨y, ne.symm hx⟩ }
end

lemma exists_ne [nontrivial α] (x : α) : ∃ y, y ≠ x :=
by classical; exact decidable.exists_ne x

-- `x` and `y` are explicit here, as they are often needed to guide typechecking of `h`.
lemma nontrivial_of_ne (x y : α) (h : x ≠ y) : nontrivial α :=
⟨⟨x, y, h⟩⟩

-- `x` and `y` are explicit here, as they are often needed to guide typechecking of `h`.
lemma nontrivial_of_lt [preorder α] (x y : α) (h : x < y) : nontrivial α :=
⟨⟨x, y, ne_of_lt h⟩⟩

lemma exists_pair_lt (α : Type*) [nontrivial α] [linear_order α] : ∃ (x y : α), x < y :=
begin
  rcases exists_pair_ne α with ⟨x, y, hxy⟩,
  cases lt_or_gt_of_ne hxy;
  exact ⟨_, _, h⟩
end

lemma nontrivial_iff_lt [linear_order α] : nontrivial α ↔ ∃ (x y : α), x < y :=
⟨λ h, @exists_pair_lt α h _, λ ⟨x, y, h⟩, nontrivial_of_lt x y h⟩

lemma nontrivial_iff_exists_ne (x : α) : nontrivial α ↔ ∃ y, y ≠ x :=
⟨λ h, @exists_ne α h x, λ ⟨y, hy⟩, nontrivial_of_ne _ _ hy⟩

lemma subtype.nontrivial_iff_exists_ne (p : α → Prop) (x : subtype p) :
  nontrivial (subtype p) ↔ ∃ (y : α) (hy : p y), y ≠ x :=
by simp only [nontrivial_iff_exists_ne x, subtype.exists, ne.def, subtype.ext_iff, subtype.coe_mk]

instance : nontrivial Prop := ⟨⟨true, false, true_ne_false⟩⟩

/--
See Note [lower instance priority]

Note that since this and `nonempty_of_inhabited` are the most "obvious" way to find a nonempty
instance if no direct instance can be found, we give this a higher priority than the usual `100`.
-/
@[priority 500]
instance nontrivial.to_nonempty [nontrivial α] : nonempty α :=
let ⟨x, _⟩ := exists_pair_ne α in ⟨x⟩

attribute [instance, priority 500] nonempty_of_inhabited

/-- An inhabited type is either nontrivial, or has a unique element. -/
noncomputable def nontrivial_psum_unique (α : Type*) [inhabited α] :
  psum (nontrivial α) (unique α) :=
if h : nontrivial α then psum.inl h else psum.inr
{ default := default,
  uniq := λ (x : α),
  begin
    change x = default,
    contrapose! h,
    use [x, default]
  end }

lemma subsingleton_iff : subsingleton α ↔ ∀ (x y : α), x = y :=
⟨by { introsI h, exact subsingleton.elim }, λ h, ⟨h⟩⟩

lemma not_nontrivial_iff_subsingleton : ¬(nontrivial α) ↔ subsingleton α :=
by { rw [nontrivial_iff, subsingleton_iff], push_neg, refl }

lemma not_nontrivial (α) [subsingleton α] : ¬nontrivial α :=
λ ⟨⟨x, y, h⟩⟩, h $ subsingleton.elim x y

lemma not_subsingleton (α) [h : nontrivial α] : ¬subsingleton α :=
let ⟨⟨x, y, hxy⟩⟩ := h in λ ⟨h'⟩, hxy $ h' x y

/-- A type is either a subsingleton or nontrivial. -/
lemma subsingleton_or_nontrivial (α : Type*) : subsingleton α ∨ nontrivial α :=
by { rw [← not_nontrivial_iff_subsingleton, or_comm], exact classical.em _ }

lemma false_of_nontrivial_of_subsingleton (α : Type*) [nontrivial α] [subsingleton α] : false :=
let ⟨x, y, h⟩ := exists_pair_ne α in h $ subsingleton.elim x y

instance option.nontrivial [nonempty α] : nontrivial (option α) :=
by { inhabit α, use [none, some default] }

/-- Pushforward a `nontrivial` instance along an injective function. -/
protected lemma function.injective.nontrivial [nontrivial α]
  {f : α → β} (hf : function.injective f) : nontrivial β :=
let ⟨x, y, h⟩ := exists_pair_ne α in ⟨⟨f x, f y, hf.ne h⟩⟩

/-- Pullback a `nontrivial` instance along a surjective function. -/
protected lemma function.surjective.nontrivial [nontrivial β]
  {f : α → β} (hf : function.surjective f) : nontrivial α :=
begin
  rcases exists_pair_ne β with ⟨x, y, h⟩,
  rcases hf x with ⟨x', hx'⟩,
  rcases hf y with ⟨y', hy'⟩,
  have : x' ≠ y', by { contrapose! h, rw [← hx', ← hy', h] },
  exact ⟨⟨x', y', this⟩⟩
end

/-- An injective function from a nontrivial type has an argument at
which it does not take a given value. -/
protected lemma function.injective.exists_ne [nontrivial α] {f : α → β}
  (hf : function.injective f) (y : β) : ∃ x, f x ≠ y :=
begin
  rcases exists_pair_ne α with ⟨x₁, x₂, hx⟩,
  by_cases h : f x₂ = y,
  { exact ⟨x₁, (hf.ne_iff' h).2 hx⟩ },
  { exact ⟨x₂, h⟩ }
end

instance nontrivial_prod_right [nonempty α] [nontrivial β] : nontrivial (α × β) :=
prod.snd_surjective.nontrivial

instance nontrivial_prod_left [nontrivial α] [nonempty β] : nontrivial (α × β) :=
prod.fst_surjective.nontrivial

namespace pi

variables {I : Type*} {f : IType*}

/-- A pi type is nontrivial if it's nonempty everywhere and nontrivial somewhere. -/
lemma nontrivial_at (i' : I) [inst : Π i, nonempty (f i)] [nontrivial (f i')] :
  nontrivial (Π i : I, f i) :=
by classical; exact
(function.update_injective (λ i, classical.choice (inst i)) i').nontrivial

/--
As a convenience, provide an instance automatically if `(f default)` is nontrivial.

If a different index has the non-trivial type, then use `haveI := nontrivial_at that_index`.
-/
instance nontrivial [inhabited I] [inst : Π i, nonempty (f i)] [nontrivial (f default)] :
  nontrivial (Π i : I, f i) := nontrivial_at default

end pi

instance function.nontrivial [h : nonempty α] [nontrivial β] : nontrivial (α → β) :=
h.elim $ λ a, pi.nontrivial_at a

mk_simp_attribute nontriviality "Simp lemmas for `nontriviality` tactic"

protected lemma subsingleton.le [preorder α] [subsingleton α] (x y : α) : x ≤ y :=
le_of_eq (subsingleton.elim x y)

attribute [nontriviality] eq_iff_true_of_subsingleton subsingleton.le

namespace tactic

/--
Tries to generate a `nontrivial α` instance by performing case analysis on
`subsingleton_or_nontrivial α`,
attempting to discharge the subsingleton branch using lemmas with `@[nontriviality]` attribute,
including `subsingleton.le` and `eq_iff_true_of_subsingleton`.
-/
meta def nontriviality_by_elim (α : expr) (lems : interactive.parse simp_arg_list) : tactic unit :=
do
  alternative ← to_expr ``(subsingleton_or_nontrivial %%α),
  n ← get_unused_name "_inst",
  tactic.cases alternative [n, n],
  (solve1 $ do
    reset_instance_cache,
    apply_instance <|>
      interactive.simp none none ff lems [`nontriviality] (interactive.loc.ns [none])) <|>
      fail format!"Could not prove goal assuming `subsingleton {α}`",
  reset_instance_cache

/--
Tries to generate a `nontrivial α` instance using `nontrivial_of_ne` or `nontrivial_of_lt`
and local hypotheses.
-/
meta def nontriviality_by_assumption (α : expr) : tactic unit :=
do
  n ← get_unused_name "_inst",
  to_expr ``(nontrivial %%α) >>= assert n,
  apply_instance <|> `[solve_by_elim [nontrivial_of_ne, nontrivial_of_lt]],
  reset_instance_cache

end tactic

namespace tactic.interactive

open tactic

setup_tactic_parser

/--
Attempts to generate a `nontrivial α` hypothesis.

The tactic first looks for an instance using `apply_instance`.

If the goal is an (in)equality, the type `α` is inferred from the goal.
Otherwise, the type needs to be specified in the tactic invocation, as `nontriviality α`.

The `nontriviality` tactic will first look for strict inequalities amongst the hypotheses,
and use these to derive the `nontrivial` instance directly.

Otherwise, it will perform a case split on `subsingleton α ∨ nontrivial α`, and attempt to discharge
the `subsingleton` goal using `simp [lemmas] with nontriviality`, where `[lemmas]` is a list of
additional `simp` lemmas that can be passed to `nontriviality` using the syntax
`nontriviality α using [lemmas]`.

```
example {R : Type} [ordered_ring R] {a : R} (h : 0 < a) : 0 < a :=
begin
  nontriviality, -- There is now a `nontrivial R` hypothesis available.
  assumption,
end
```

```
example {R : Type} [comm_ring R] {r s : R} : r * s = s * r :=
begin
  nontriviality, -- There is now a `nontrivial R` hypothesis available.
  apply mul_comm,
end
```

```
example {R : Type} [ordered_ring R] {a : R} (h : 0 < a) : (2 : ℕ) ∣ 4 :=
begin
  nontriviality R, -- there is now a `nontrivial R` hypothesis available.
  dec_trivial
end
```

```
def myeq {α : Type} (a b : α) : Prop := a = b

example {α : Type} (a b : α) (h : a = b) : myeq a b :=
begin
  success_if_fail { nontriviality α }, -- Fails
  nontriviality α using [myeq], -- There is now a `nontrivial α` hypothesis available
  assumption
end
```
-/
meta def nontriviality (t : parse texpr?)
  (lems : parse (tk "using" *> simp_arg_list <|> pure [])) :
  tactic unit :=
do
  α ← match t with
  | some α := to_expr α
  | none :=
    (do t ← mk_mvar, e ← to_expr ``(@eq %%t _ _), target >>= unify e, return t) <|>
    (do t ← mk_mvar, e ← to_expr ``(@has_le.le %%t _ _ _), target >>= unify e, return t) <|>
    (do t ← mk_mvar, e ← to_expr ``(@ne %%t _ _), target >>= unify e, return t) <|>
    (do t ← mk_mvar, e ← to_expr ``(@has_lt.lt %%t _ _ _), target >>= unify e, return t) <|>
    fail "The goal is not an (in)equality, so you'll need to specify the desired `nontrivial α`
      instance by invoking `nontriviality α`."
  end,
  nontriviality_by_assumption α <|> nontriviality_by_elim α lems

add_tactic_doc
{ name                     := "nontriviality",
  category                 := doc_category.tactic,
  decl_names               := [`tactic.interactive.nontriviality],
  tags                     := ["logic", "type class"] }

end tactic.interactive

namespace bool

instance : nontrivial bool := ⟨⟨tt,ff, tt_eq_ff_eq_false⟩⟩

end bool