Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 4,944 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
/-
Copyright (c) 2020 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import logic.function.basic

/-!
# Semiconjugate and commuting maps

We define the following predicates:

* `function.semiconj`: `f : α → β` semiconjugates `ga : α → α` to `gb : β → β` if `f ∘ ga = gb ∘ f`;
* `function.semiconj₂: `f : α → β` semiconjugates a binary operation `ga : α → α → α`
  to `gb : β → β → β` if `f (ga x y) = gb (f x) (f y)`;
* `f : α → α` commutes with `g : α → α` if `f ∘ g = g ∘ f`, or equivalently `semiconj f g g`.

-/

namespace function

variables {α : Type*} {β : Type*} {γ : Type*}

/-- We say that `f : α → β` semiconjugates `ga : α → α` to `gb : β → β` if `f ∘ ga = gb ∘ f`.
We use `∀ x, f (ga x) = gb (f x)` as the definition, so given `h : function.semiconj f ga gb` and
`a : α`, we have `h a : f (ga a) = gb (f a)` and `h.comp_eq : f ∘ ga = gb ∘ f`. -/
def semiconj (f : α → β) (ga : α → α) (gb : β → β) : Prop := ∀ x, f (ga x) = gb (f x)

namespace semiconj

variables {f fab : α → β} {fbc : β → γ} {ga ga' : α → α} {gb gb' : β → β} {gc gc' : γ → γ}

protected lemma comp_eq (h : semiconj f ga gb) : f ∘ ga = gb ∘ f := funext h

protected lemma eq (h : semiconj f ga gb) (x : α) : f (ga x) = gb (f x) := h x

lemma comp_right (h : semiconj f ga gb) (h' : semiconj f ga' gb') :
  semiconj f (ga ∘ ga') (gb ∘ gb') :=
λ x, by rw [comp_app, h.eq, h'.eq]

lemma comp_left (hab : semiconj fab ga gb) (hbc : semiconj fbc gb gc) :
  semiconj (fbc ∘ fab) ga gc :=
λ x, by simp only [comp_app, hab.eq, hbc.eq]

lemma id_right : semiconj f id id := λ _, rfl

lemma id_left : semiconj id ga ga := λ _, rfl

lemma inverses_right (h : semiconj f ga gb) (ha : right_inverse ga' ga)
  (hb : left_inverse gb' gb) :
  semiconj f ga' gb' :=
λ x, by rw [← hb (f (ga' x)), ← h.eq, ha x]

lemma option_map {f : α → β} {ga : α → α} {gb : β → β} (h : semiconj f ga gb) :
  semiconj (option.map f) (option.map ga) (option.map gb)
| none := rfl
| (some a) := congr_arg some $ h _

end semiconj

/-- Two maps `f g : α → α` commute if `f (g x) = g (f x)` for all `x : α`.
Given `h : function.commute f g` and `a : α`, we have `h a : f (g a) = g (f a)` and
`h.comp_eq : f ∘ g = g ∘ f`. -/
def commute (f g : α → α) : Prop := semiconj f g g

lemma semiconj.commute {f g : α → α} (h : semiconj f g g) : commute f g := h

namespace commute

variables {f f' g g' : α → α}

@[refl] lemma refl (f : α → α) : commute f f := λ _, eq.refl _

@[symm] lemma symm (h : commute f g) : commute g f := λ x, (h x).symm

lemma comp_right (h : commute f g) (h' : commute f g') : commute f (g ∘ g') :=
h.comp_right h'

lemma comp_left (h : commute f g) (h' : commute f' g) : commute (f ∘ f') g :=
(h.symm.comp_right h'.symm).symm

lemma id_right : commute f id := semiconj.id_right

lemma id_left : commute id f := semiconj.id_left

lemma option_map {f g : α → α} : commute f g → commute (option.map f) (option.map g) :=
semiconj.option_map

end commute

/-- A map `f` semiconjugates a binary operation `ga` to a binary operation `gb` if
for all `x`, `y` we have `f (ga x y) = gb (f x) (f y)`. E.g., a `monoid_hom`
semiconjugates `(*)` to `(*)`. -/
def semiconj₂ (f : α → β) (ga : α → α → α) (gb : β → β → β) : Prop :=
∀ x y, f (ga x y) = gb (f x) (f y)

namespace semiconj₂

variables {f : α → β} {ga : α → α → α} {gb : β → β → β}

protected lemma eq (h : semiconj₂ f ga gb) (x y : α) : f (ga x y) = gb (f x) (f y) := h x y

protected lemma comp_eq (h : semiconj₂ f ga gb) :
  bicompr f ga = bicompl gb f f :=
funext $ λ x, funext $ h x

lemma id_left (op : α → α → α) : semiconj₂ id op op := λ _ _, rfl

lemma comp {f' : β → γ} {gc : γ → γ → γ} (hf' : semiconj₂ f' gb gc) (hf : semiconj₂ f ga gb) :
  semiconj₂ (f' ∘ f) ga gc :=
λ x y, by simp only [hf'.eq, hf.eq, comp_app]

lemma is_associative_right [is_associative α ga] (h : semiconj₂ f ga gb) (h_surj : surjective f) :
  is_associative β gb :=
⟨h_surj.forall₃.2 $ λ x₁ x₂ x₃, by simp only [← h.eq, @is_associative.assoc _ ga]⟩

lemma is_associative_left [is_associative β gb] (h : semiconj₂ f ga gb) (h_inj : injective f) :
  is_associative α ga :=
⟨λ x₁ x₂ x₃, h_inj $ by simp only [h.eq, @is_associative.assoc _ gb]⟩

lemma is_idempotent_right [is_idempotent α ga] (h : semiconj₂ f ga gb) (h_surj : surjective f) :
  is_idempotent β gb :=
⟨h_surj.forall.2 $ λ x, by simp only [← h.eq, @is_idempotent.idempotent _ ga]⟩

lemma is_idempotent_left [is_idempotent β gb] (h : semiconj₂ f ga gb) (h_inj : injective f) :
  is_idempotent α ga :=
⟨λ x, h_inj $ by rw [h.eq, @is_idempotent.idempotent _ gb]⟩

end semiconj₂

end function