Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 3,325 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
/-
Copyright (c) 2022 Alexander Bentkamp. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Alexander Bentkamp
-/
import linear_algebra.matrix.spectrum
import linear_algebra.quadratic_form.basic

/-! # Positive Definite Matrices

This file defines positive definite matrices and connects this notion to positive definiteness of
quadratic forms.

## Main definition

 * `matrix.pos_def` : a matrix `M : matrix n n R` is positive definite if it is hermitian
   and `xᴴMx` is greater than zero for all nonzero `x`.

-/

namespace matrix

variables {𝕜 : Type*} [is_R_or_C 𝕜] {n : Type*} [fintype n]

open_locale matrix

/-- A matrix `M : matrix n n R` is positive definite if it is hermitian
   and `xᴴMx` is greater than zero for all nonzero `x`. -/
def pos_def (M : matrix n n 𝕜) :=
M.is_hermitian ∧ ∀ x : n → 𝕜, x ≠ 00 < is_R_or_C.re (dot_product (star x) (M.mul_vec x))

lemma pos_def.is_hermitian {M : matrix n n 𝕜} (hM : M.pos_def) : M.is_hermitian := hM.1

lemma pos_def_of_to_quadratic_form' [decidable_eq n] {M : matrix n n ℝ}
  (hM : M.is_symm) (hMq : M.to_quadratic_form'.pos_def) :
  M.pos_def :=
begin
  refine ⟨hM, λ x hx, _⟩,
  simp only [to_quadratic_form', quadratic_form.pos_def, bilin_form.to_quadratic_form_apply,
    matrix.to_bilin'_apply'] at hMq,
  apply hMq x hx,
end

lemma pos_def_to_quadratic_form' [decidable_eq n] {M : matrix n n ℝ} (hM : M.pos_def) :
  M.to_quadratic_form'.pos_def :=
begin
  intros x hx,
  simp only [to_quadratic_form', bilin_form.to_quadratic_form_apply, matrix.to_bilin'_apply'],
  apply hM.2 x hx,
end

end matrix

namespace quadratic_form

variables {n : Type*} [fintype n]

lemma pos_def_of_to_matrix'
  [decidable_eq n] {Q : quadratic_form ℝ (n → ℝ)} (hQ : Q.to_matrix'.pos_def) :
  Q.pos_def :=
begin
  rw [←to_quadratic_form_associated ℝ Q,
      ←bilin_form.to_matrix'.left_inv ((associated_hom _) Q)],
  apply matrix.pos_def_to_quadratic_form' hQ
end

lemma pos_def_to_matrix' [decidable_eq n] {Q : quadratic_form ℝ (n → ℝ)} (hQ : Q.pos_def) :
  Q.to_matrix'.pos_def :=
begin
  rw [←to_quadratic_form_associated ℝ Q,
    ←bilin_form.to_matrix'.left_inv ((associated_hom _) Q)] at hQ,
  apply matrix.pos_def_of_to_quadratic_form' (is_symm_to_matrix' Q) hQ,
end

end quadratic_form

namespace matrix

variables {𝕜 : Type*} [is_R_or_C 𝕜] {n : Type*} [fintype n]

/-- A positive definite matrix `M` induces an inner product `⟪x, y⟫ = xᴴMy`. -/
noncomputable def inner_product_space.of_matrix
  {M : matrix n n 𝕜} (hM : M.pos_def) : inner_product_space 𝕜 (n → 𝕜) :=
inner_product_space.of_core
{ inner := λ x y, dot_product (star x) (M.mul_vec y),
  conj_sym := λ x y, by
    rw [star_dot_product, star_ring_end_apply, star_star, star_mul_vec,
      dot_product_mul_vec, hM.is_hermitian.eq],
  nonneg_re := λ x,
    begin
      by_cases h : x = 0,
      { simp [h] },
      { exact le_of_lt (hM.2 x h) }
    end,
  definite := λ x hx,
    begin
      by_contra' h,
      simpa [hx, lt_self_iff_false] using hM.2 x h,
    end,
  add_left := by simp only [star_add, add_dot_product, eq_self_iff_true, forall_const],
  smul_left := λ x y r, by rw [← smul_eq_mul, ←smul_dot_product, star_ring_end_apply, ← star_smul] }

end matrix