Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 6,075 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
/-
Copyright (c) 2022 Alexander Bentkamp. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Alexander Bentkamp
-/
import analysis.inner_product_space.spectrum
/-! # Hermitian matrices
This file defines hermitian matrices and some basic results about them.
## Main definition
* `matrix.is_hermitian` : a matrix `A : matrix n n α` is hermitian if `Aᴴ = A`.
## Tags
self-adjoint matrix, hermitian matrix
-/
namespace matrix
variables {α β : Type*} {m n : Type*} {A : matrix n n α}
open_locale matrix
local notation `⟪`x`, `y`⟫` := @inner α (pi_Lp 2 (λ (_ : n), α)) _ x y
section non_unital_semiring
variables [non_unital_semiring α] [star_ring α] [non_unital_semiring β] [star_ring β]
/-- A matrix is hermitian if it is equal to its conjugate transpose. On the reals, this definition
captures symmetric matrices. -/
def is_hermitian (A : matrix n n α) : Prop := Aᴴ = A
lemma is_hermitian.eq {A : matrix n n α} (h : A.is_hermitian) : Aᴴ = A := h
@[ext]
lemma is_hermitian.ext {A : matrix n n α} : (∀ i j, star (A j i) = A i j) → A.is_hermitian :=
by { intros h, ext i j, exact h i j }
lemma is_hermitian.apply {A : matrix n n α} (h : A.is_hermitian) (i j : n) : star (A j i) = A i j :=
by { unfold is_hermitian at h, rw [← h, conj_transpose_apply, star_star, h] }
lemma is_hermitian.ext_iff {A : matrix n n α} : A.is_hermitian ↔ ∀ i j, star (A j i) = A i j :=
⟨is_hermitian.apply, is_hermitian.ext⟩
lemma is_hermitian_mul_conj_transpose_self [fintype n] (A : matrix n n α) :
(A ⬝ Aᴴ).is_hermitian :=
by rw [is_hermitian, conj_transpose_mul, conj_transpose_conj_transpose]
lemma is_hermitian_transpose_mul_self [fintype n] (A : matrix n n α) :
(Aᴴ ⬝ A).is_hermitian :=
by rw [is_hermitian, conj_transpose_mul, conj_transpose_conj_transpose]
lemma is_hermitian_add_transpose_self (A : matrix n n α) :
(A + Aᴴ).is_hermitian :=
by simp [is_hermitian, add_comm]
lemma is_hermitian_transpose_add_self (A : matrix n n α) :
(Aᴴ + A).is_hermitian :=
by simp [is_hermitian, add_comm]
@[simp] lemma is_hermitian_zero :
(0 : matrix n n α).is_hermitian :=
conj_transpose_zero
@[simp] lemma is_hermitian.map {A : matrix n n α} (h : A.is_hermitian) (f : α → β)
(hf : function.semiconj f star star) :
(A.map f).is_hermitian :=
(conj_transpose_map f hf).symm.trans $ h.eq.symm ▸ rfl
@[simp] lemma is_hermitian.transpose {A : matrix n n α} (h : A.is_hermitian) :
Aᵀ.is_hermitian :=
by { rw [is_hermitian, conj_transpose, transpose_map], congr, exact h }
@[simp] lemma is_hermitian.conj_transpose {A : matrix n n α} (h : A.is_hermitian) :
Aᴴ.is_hermitian :=
h.transpose.map _ $ λ _, rfl
@[simp] lemma is_hermitian.add {A B : matrix n n α} (hA : A.is_hermitian) (hB : B.is_hermitian) :
(A + B).is_hermitian :=
(conj_transpose_add _ _).trans (hA.symm ▸ hB.symm ▸ rfl)
@[simp] lemma is_hermitian.minor {A : matrix n n α} (h : A.is_hermitian) (f : m → n) :
(A.minor f f).is_hermitian :=
(conj_transpose_minor _ _ _).trans (h.symm ▸ rfl)
/-- The real diagonal matrix `diagonal v` is hermitian. -/
@[simp] lemma is_hermitian_diagonal [decidable_eq n] (v : n → ℝ) :
(diagonal v).is_hermitian :=
diagonal_conj_transpose _
/-- A block matrix `A.from_blocks B C D` is hermitian,
if `A` and `D` are hermitian and `Bᴴ = C`. -/
lemma is_hermitian.from_blocks
{A : matrix m m α} {B : matrix m n α} {C : matrix n m α} {D : matrix n n α}
(hA : A.is_hermitian) (hBC : Bᴴ = C) (hD : D.is_hermitian) :
(A.from_blocks B C D).is_hermitian :=
begin
have hCB : Cᴴ = B, {rw ← hBC, simp},
unfold matrix.is_hermitian,
rw from_blocks_conj_transpose,
congr;
assumption
end
/-- This is the `iff` version of `matrix.is_hermitian.from_blocks`. -/
lemma is_hermitian_from_blocks_iff
{A : matrix m m α} {B : matrix m n α} {C : matrix n m α} {D : matrix n n α} :
(A.from_blocks B C D).is_hermitian ↔ A.is_hermitian ∧ Bᴴ = C ∧ Cᴴ = B ∧ D.is_hermitian :=
⟨λ h, ⟨congr_arg to_blocks₁₁ h, congr_arg to_blocks₂₁ h,
congr_arg to_blocks₁₂ h, congr_arg to_blocks₂₂ h⟩,
λ ⟨hA, hBC, hCB, hD⟩, is_hermitian.from_blocks hA hBC hD⟩
end non_unital_semiring
section semiring
variables [semiring α] [star_ring α] [semiring β] [star_ring β]
@[simp] lemma is_hermitian_one [decidable_eq n] :
(1 : matrix n n α).is_hermitian :=
conj_transpose_one
end semiring
section ring
variables [ring α] [star_ring α] [ring β] [star_ring β]
@[simp] lemma is_hermitian.neg {A : matrix n n α} (h : A.is_hermitian) :
(-A).is_hermitian :=
(conj_transpose_neg _).trans (congr_arg _ h)
@[simp] lemma is_hermitian.sub {A B : matrix n n α} (hA : A.is_hermitian) (hB : B.is_hermitian) :
(A - B).is_hermitian :=
(conj_transpose_sub _ _).trans (hA.symm ▸ hB.symm ▸ rfl)
end ring
section is_R_or_C
variables [is_R_or_C α] [is_R_or_C β]
/-- A matrix is hermitian iff the corresponding linear map is self adjoint. -/
lemma is_hermitian_iff_is_self_adjoint [fintype n] [decidable_eq n] {A : matrix n n α} :
is_hermitian A ↔ inner_product_space.is_self_adjoint
((pi_Lp.linear_equiv 2 α (λ _ : n, α)).symm.conj A.to_lin' : module.End α (pi_Lp 2 _)) :=
begin
rw [inner_product_space.is_self_adjoint, (pi_Lp.equiv 2 (λ _ : n, α)).symm.surjective.forall₂],
simp only [linear_equiv.conj_apply, linear_map.comp_apply, linear_equiv.coe_coe,
pi_Lp.linear_equiv_apply, pi_Lp.linear_equiv_symm_apply, linear_equiv.symm_symm],
simp_rw [euclidean_space.inner_eq_star_dot_product, equiv.apply_symm_apply, to_lin'_apply,
star_mul_vec, dot_product_mul_vec],
split,
{ rintro (h : Aᴴ = A) x y,
rw h },
{ intro h,
ext i j,
simpa only [(pi.single_star i 1).symm, ← star_mul_vec, mul_one, dot_product_single,
single_vec_mul, star_one, one_mul] using
h (@pi.single _ _ _ (λ i, add_zero_class.to_has_zero α) i 1)
(@pi.single _ _ _ (λ i, add_zero_class.to_has_zero α) j 1) }
end
end is_R_or_C
end matrix
|