Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 6,075 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
/-
Copyright (c) 2022 Alexander Bentkamp. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Alexander Bentkamp
-/
import analysis.inner_product_space.spectrum

/-! # Hermitian matrices

This file defines hermitian matrices and some basic results about them.

## Main definition

 * `matrix.is_hermitian` : a matrix `A : matrix n n α` is hermitian if `Aᴴ = A`.

## Tags

self-adjoint matrix, hermitian matrix

-/

namespace matrix

variables {α β : Type*} {m n : Type*} {A : matrix n n α}

open_locale matrix

local notation `⟪`x`, `y`⟫` := @inner α (pi_Lp 2 (λ (_ : n), α)) _ x y

section non_unital_semiring

variables [non_unital_semiring α] [star_ring α] [non_unital_semiring β] [star_ring β]

/-- A matrix is hermitian if it is equal to its conjugate transpose. On the reals, this definition
captures symmetric matrices. -/
def is_hermitian (A : matrix n n α) : Prop := Aᴴ = A

lemma is_hermitian.eq {A : matrix n n α} (h : A.is_hermitian) : Aᴴ = A := h

@[ext]
lemma is_hermitian.ext {A : matrix n n α} : (∀ i j, star (A j i) = A i j) → A.is_hermitian :=
by { intros h, ext i j, exact h i j }

lemma is_hermitian.apply {A : matrix n n α} (h : A.is_hermitian) (i j : n) : star (A j i) = A i j :=
by { unfold is_hermitian at h, rw [← h, conj_transpose_apply, star_star, h] }

lemma is_hermitian.ext_iff {A : matrix n n α} : A.is_hermitian ↔ ∀ i j, star (A j i) = A i j :=
⟨is_hermitian.apply, is_hermitian.ext⟩

lemma is_hermitian_mul_conj_transpose_self [fintype n] (A : matrix n n α) :
  (A ⬝ Aᴴ).is_hermitian :=
by rw [is_hermitian, conj_transpose_mul, conj_transpose_conj_transpose]

lemma is_hermitian_transpose_mul_self [fintype n] (A : matrix n n α) :
  (Aᴴ ⬝ A).is_hermitian :=
by rw [is_hermitian, conj_transpose_mul, conj_transpose_conj_transpose]

lemma is_hermitian_add_transpose_self (A : matrix n n α) :
  (A + Aᴴ).is_hermitian :=
by simp [is_hermitian, add_comm]

lemma is_hermitian_transpose_add_self (A : matrix n n α) :
  (Aᴴ + A).is_hermitian :=
by simp [is_hermitian, add_comm]

@[simp] lemma is_hermitian_zero :
  (0 : matrix n n α).is_hermitian :=
conj_transpose_zero

@[simp] lemma is_hermitian.map {A : matrix n n α} (h : A.is_hermitian) (f : α → β)
  (hf : function.semiconj f star star) :
  (A.map f).is_hermitian :=
(conj_transpose_map f hf).symm.trans $ h.eq.symm ▸ rfl

@[simp] lemma is_hermitian.transpose {A : matrix n n α} (h : A.is_hermitian) :
  Aᵀ.is_hermitian :=
by { rw [is_hermitian, conj_transpose, transpose_map], congr, exact h }

@[simp] lemma is_hermitian.conj_transpose {A : matrix n n α} (h : A.is_hermitian) :
  Aᴴ.is_hermitian :=
h.transpose.map _ $ λ _, rfl

@[simp] lemma is_hermitian.add {A B : matrix n n α} (hA : A.is_hermitian) (hB : B.is_hermitian) :
  (A + B).is_hermitian :=
(conj_transpose_add _ _).trans (hA.symm ▸ hB.symm ▸ rfl)

@[simp] lemma is_hermitian.minor {A : matrix n n α} (h : A.is_hermitian) (f : m → n) :
  (A.minor f f).is_hermitian :=
(conj_transpose_minor _ _ _).trans (h.symm ▸ rfl)

/-- The real diagonal matrix `diagonal v` is hermitian. -/
@[simp] lemma is_hermitian_diagonal [decidable_eq n] (v : n → ℝ) :
  (diagonal v).is_hermitian :=
diagonal_conj_transpose _

/-- A block matrix `A.from_blocks B C D` is hermitian,
    if `A` and `D` are hermitian and `Bᴴ = C`. -/
lemma is_hermitian.from_blocks
  {A : matrix m m α} {B : matrix m n α} {C : matrix n m α} {D : matrix n n α}
  (hA : A.is_hermitian) (hBC : Bᴴ = C) (hD : D.is_hermitian) :
  (A.from_blocks B C D).is_hermitian :=
begin
  have hCB : Cᴴ = B, {rw ← hBC, simp},
  unfold matrix.is_hermitian,
  rw from_blocks_conj_transpose,
  congr;
  assumption
end

/-- This is the `iff` version of `matrix.is_hermitian.from_blocks`. -/
lemma is_hermitian_from_blocks_iff
  {A : matrix m m α} {B : matrix m n α} {C : matrix n m α} {D : matrix n n α} :
  (A.from_blocks B C D).is_hermitian ↔ A.is_hermitian ∧ Bᴴ = C ∧ Cᴴ = B ∧ D.is_hermitian :=
⟨λ h, ⟨congr_arg to_blocks₁₁ h, congr_arg to_blocks₂₁ h,
       congr_arg to_blocks₁₂ h, congr_arg to_blocks₂₂ h⟩,
 λ ⟨hA, hBC, hCB, hD⟩, is_hermitian.from_blocks hA hBC hD⟩

end non_unital_semiring

section semiring

variables [semiring α] [star_ring α] [semiring β] [star_ring β]

@[simp] lemma is_hermitian_one [decidable_eq n] :
  (1 : matrix n n α).is_hermitian :=
conj_transpose_one

end semiring

section ring

variables [ring α] [star_ring α] [ring β] [star_ring β]

@[simp] lemma is_hermitian.neg {A : matrix n n α} (h : A.is_hermitian) :
  (-A).is_hermitian :=
(conj_transpose_neg _).trans (congr_arg _ h)

@[simp] lemma is_hermitian.sub {A B : matrix n n α} (hA : A.is_hermitian) (hB : B.is_hermitian) :
  (A - B).is_hermitian :=
(conj_transpose_sub _ _).trans (hA.symm ▸ hB.symm ▸ rfl)

end ring

section is_R_or_C

variables [is_R_or_C α] [is_R_or_C β]

/-- A matrix is hermitian iff the corresponding linear map is self adjoint. -/
lemma is_hermitian_iff_is_self_adjoint [fintype n] [decidable_eq n] {A : matrix n n α} :
  is_hermitian A ↔ inner_product_space.is_self_adjoint
    ((pi_Lp.linear_equiv 2 α (λ _ : n, α)).symm.conj A.to_lin' : module.End α (pi_Lp 2 _)) :=
begin
  rw [inner_product_space.is_self_adjoint, (pi_Lp.equiv 2 (λ _ : n, α)).symm.surjective.forall₂],
  simp only [linear_equiv.conj_apply, linear_map.comp_apply, linear_equiv.coe_coe,
    pi_Lp.linear_equiv_apply, pi_Lp.linear_equiv_symm_apply, linear_equiv.symm_symm],
  simp_rw [euclidean_space.inner_eq_star_dot_product, equiv.apply_symm_apply, to_lin'_apply,
    star_mul_vec, dot_product_mul_vec],
  split,
  { rintro (h : Aᴴ = A) x y,
    rw h },
  { intro h,
    ext i j,
    simpa only [(pi.single_star i 1).symm, ← star_mul_vec, mul_one, dot_product_single,
      single_vec_mul, star_one, one_mul] using
        h (@pi.single _ _ _ (λ i, add_zero_class.to_has_zero α) i 1)
          (@pi.single _ _ _ (λ i, add_zero_class.to_has_zero α) j 1) }
end

end is_R_or_C

end matrix