Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 9,523 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
/-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Patrick Massot, Casper Putz, Anne Baanen
-/
import linear_algebra.matrix.reindex
import linear_algebra.matrix.to_lin

/-!
# Bases and matrices

This file defines the map `basis.to_matrix` that sends a family of vectors to
the matrix of their coordinates with respect to some basis.

## Main definitions

 * `basis.to_matrix e v` is the matrix whose `i, j`th entry is `e.repr (v j) i`
 * `basis.to_matrix_equiv` is `basis.to_matrix` bundled as a linear equiv

## Main results

 * `linear_map.to_matrix_id_eq_basis_to_matrix`: `linear_map.to_matrix b c id`
   is equal to `basis.to_matrix b c`
 * `basis.to_matrix_mul_to_matrix`: multiplying `basis.to_matrix` with another
   `basis.to_matrix` gives a `basis.to_matrix`

## Tags

matrix, basis
-/

noncomputable theory

open linear_map matrix set submodule
open_locale big_operators
open_locale matrix

section basis_to_matrix

variables {ι ι' κ κ' : Type*}
variables {R M : Type*} [comm_semiring R] [add_comm_monoid M] [module R M]
variables {R₂ M₂ : Type*} [comm_ring R₂] [add_comm_group M₂] [module R₂ M₂]

open function matrix

/-- From a basis `e : ι → M` and a family of vectors `v : ι' → M`, make the matrix whose columns
are the vectors `v i` written in the basis `e`. -/
def basis.to_matrix (e : basis ι R M) (v : ι' → M) : matrix ι ι' R :=
λ i j, e.repr (v j) i

variables (e : basis ι R M) (v : ι' → M) (i : ι) (j : ι')

namespace basis

lemma to_matrix_apply : e.to_matrix v i j = e.repr (v j) i :=
rfl

lemma to_matrix_transpose_apply : (e.to_matrix v)ᵀ j = e.repr (v j) :=
funext $ (λ _, rfl)

lemma to_matrix_eq_to_matrix_constr [fintype ι] [decidable_eq ι] (v : ι → M) :
  e.to_matrix v = linear_map.to_matrix e e (e.constr ℕ v) :=
by { ext, rw [basis.to_matrix_apply, linear_map.to_matrix_apply, basis.constr_basis] }

-- TODO (maybe) Adjust the definition of `basis.to_matrix` to eliminate the transpose.
lemma coe_pi_basis_fun.to_matrix_eq_transpose [fintype ι] :
  ((pi.basis_fun R ι).to_matrix : matrix ι ι R → matrix ι ι R) = matrix.transpose :=
by { ext M i j, refl, }

@[simp] lemma to_matrix_self [decidable_eq ι] : e.to_matrix e = 1 :=
begin
  rw basis.to_matrix,
  ext i j,
  simp [basis.equiv_fun, matrix.one_apply, finsupp.single, eq_comm]
end

lemma to_matrix_update [decidable_eq ι'] (x : M) :
  e.to_matrix (function.update v j x) = matrix.update_column (e.to_matrix v) j (e.repr x) :=
begin
  ext i' k,
  rw [basis.to_matrix, matrix.update_column_apply, e.to_matrix_apply],
  split_ifs,
  { rw [h, update_same j x v] },
  { rw update_noteq h },
end

/-- The basis constructed by `units_smul` has vectors given by a diagonal matrix. -/
@[simp] lemma to_matrix_units_smul [decidable_eq ι] (e : basis ι R₂ M₂) (w : ι → R₂ˣ) :
  e.to_matrix (e.units_smul w) = diagonal (coe ∘ w) :=
begin
  ext i j,
  by_cases h : i = j,
  { simp [h, to_matrix_apply, units_smul_apply, units.smul_def] },
  { simp [h, to_matrix_apply, units_smul_apply, units.smul_def, ne.symm h] }
end

/-- The basis constructed by `is_unit_smul` has vectors given by a diagonal matrix. -/
@[simp] lemma to_matrix_is_unit_smul [decidable_eq ι] (e : basis ι R₂ M₂) {w : ι → R₂}
  (hw : ∀ i, is_unit (w i)) :
  e.to_matrix (e.is_unit_smul hw) = diagonal w :=
e.to_matrix_units_smul _

@[simp] lemma sum_to_matrix_smul_self [fintype ι] : ∑ (i : ι), e.to_matrix v i j • e i = v j :=
by simp_rw [e.to_matrix_apply, e.sum_repr]

lemma to_matrix_map_vec_mul {S : Type*} [ring S] [algebra R S] [fintype ι]
  (b : basis ι R S) (v : ι' → S) :
  ((b.to_matrix v).map $ algebra_map R S).vec_mul b = v :=
begin
  ext i,
  simp_rw [vec_mul, dot_product, matrix.map_apply, ← algebra.commutes, ← algebra.smul_def,
    sum_to_matrix_smul_self],
end

@[simp] lemma to_lin_to_matrix [fintype ι] [fintype ι'] [decidable_eq ι'] (v : basis ι' R M) :
  matrix.to_lin v e (e.to_matrix v) = id :=
v.ext (λ i, by rw [to_lin_self, id_apply, e.sum_to_matrix_smul_self])

/-- From a basis `e : ι → M`, build a linear equivalence between families of vectors `v : ι → M`,
and matrices, making the matrix whose columns are the vectors `v i` written in the basis `e`. -/
def to_matrix_equiv [fintype ι] (e : basis ι R M) : (ι → M) ≃ₗ[R] matrix ι ι R :=
{ to_fun := e.to_matrix,
  map_add' := λ v w, begin
    ext i j,
    change _ = _ + _,
    rw [e.to_matrix_apply, pi.add_apply, linear_equiv.map_add],
    refl
  end,
  map_smul' := begin
    intros c v,
    ext i j,
    rw [e.to_matrix_apply, pi.smul_apply, linear_equiv.map_smul],
    refl
  end,
  inv_fun := λ m j, ∑ i, (m i j) • e i,
  left_inv := begin
    intro v,
    ext j,
    exact e.sum_to_matrix_smul_self v j
  end,
  right_inv := begin
    intros m,
    ext k l,
    simp only [e.to_matrix_apply, ← e.equiv_fun_apply, ← e.equiv_fun_symm_apply,
               linear_equiv.apply_symm_apply],
  end }

end basis

section mul_linear_map_to_matrix

variables {N : Type*} [add_comm_monoid N] [module R N]
variables (b : basis ι R M) (b' : basis ι' R M) (c : basis κ R N) (c' : basis κ' R N)
variables (f : M →ₗ[R] N)

open linear_map

section fintype

variables [fintype ι'] [fintype κ] [fintype κ']

@[simp] lemma basis_to_matrix_mul_linear_map_to_matrix [decidable_eq ι'] :
  c.to_matrix c' ⬝ linear_map.to_matrix b' c' f = linear_map.to_matrix b' c f :=
(matrix.to_lin b' c).injective
  (by haveI := classical.dec_eq κ';
      rw [to_lin_to_matrix, to_lin_mul b' c' c, to_lin_to_matrix, c.to_lin_to_matrix, id_comp])

variable [fintype ι]

@[simp] lemma linear_map_to_matrix_mul_basis_to_matrix [decidable_eq ι] [decidable_eq ι'] :
  linear_map.to_matrix b' c' f ⬝ b'.to_matrix b = linear_map.to_matrix b c' f :=
(matrix.to_lin b c').injective
  (by rw [to_lin_to_matrix, to_lin_mul b b' c', to_lin_to_matrix, b'.to_lin_to_matrix, comp_id])

lemma basis_to_matrix_mul_linear_map_to_matrix_mul_basis_to_matrix
  [decidable_eq ι] [decidable_eq ι'] :
  c.to_matrix c' ⬝ linear_map.to_matrix b' c' f ⬝ b'.to_matrix b = linear_map.to_matrix b c f :=
by rw [basis_to_matrix_mul_linear_map_to_matrix, linear_map_to_matrix_mul_basis_to_matrix]

lemma basis_to_matrix_mul [decidable_eq κ]
    (b₁ : basis ι R M) (b₂ : basis ι' R M) (b₃ : basis κ R N) (A : matrix ι' κ R) :
  b₁.to_matrix b₂ ⬝ A = linear_map.to_matrix b₃ b₁ (to_lin b₃ b₂ A) :=
begin
  have := basis_to_matrix_mul_linear_map_to_matrix b₃ b₁ b₂ (matrix.to_lin b₃ b₂ A),
  rwa [linear_map.to_matrix_to_lin] at this
end

lemma mul_basis_to_matrix [decidable_eq ι] [decidable_eq ι']
    (b₁ : basis ι R M) (b₂ : basis ι' R M) (b₃ : basis κ R N) (A : matrix κ ι R) :
  A ⬝ b₁.to_matrix b₂ = linear_map.to_matrix b₂ b₃ (to_lin b₁ b₃ A) :=
begin
  have := linear_map_to_matrix_mul_basis_to_matrix b₂ b₁ b₃ (matrix.to_lin b₁ b₃ A),
  rwa [linear_map.to_matrix_to_lin] at this
end

lemma basis_to_matrix_basis_fun_mul (b : basis ι R (ι → R)) (A : matrix ι ι R) :
  b.to_matrix (pi.basis_fun R ι) ⬝ A = of (λ i j, b.repr (Aᵀ j) i) :=
begin
  classical,
  simp only [basis_to_matrix_mul _ _ (pi.basis_fun R ι), matrix.to_lin_eq_to_lin'],
  ext i j,
  rw [linear_map.to_matrix_apply, matrix.to_lin'_apply, pi.basis_fun_apply,
    matrix.mul_vec_std_basis_apply, matrix.of_apply]
end

/-- A generalization of `linear_map.to_matrix_id`. -/
@[simp] lemma linear_map.to_matrix_id_eq_basis_to_matrix [decidable_eq ι] :
  linear_map.to_matrix b b' id = b'.to_matrix b :=
by { haveI := classical.dec_eq ι',
      rw [←@basis_to_matrix_mul_linear_map_to_matrix _ _ ι, to_matrix_id, matrix.mul_one] }

/-- See also `basis.to_matrix_reindex` which gives the `simp` normal form of this result. -/
lemma basis.to_matrix_reindex' [decidable_eq ι] [decidable_eq ι']
  (b : basis ι R M) (v : ι' → M) (e : ι ≃ ι') :
  (b.reindex e).to_matrix v = matrix.reindex_alg_equiv _ e (b.to_matrix (v ∘ e)) :=
by { ext, simp only [basis.to_matrix_apply, basis.reindex_repr, matrix.reindex_alg_equiv_apply,
        matrix.reindex_apply, matrix.minor_apply, function.comp_app, e.apply_symm_apply] }

end fintype

/-- A generalization of `basis.to_matrix_self`, in the opposite direction. -/
@[simp] lemma basis.to_matrix_mul_to_matrix {ι'' : Type*} [fintype ι'] (b'' : ι'' → M) :
  b.to_matrix b' ⬝ b'.to_matrix b'' = b.to_matrix b'' :=
begin
  have  := classical.dec_eq ι,
  have  := classical.dec_eq ι',
  haveI := classical.dec_eq ι'',
  ext i j,
  simp only [matrix.mul_apply, basis.to_matrix_apply, basis.sum_repr_mul_repr],
end

/-- `b.to_matrix b'` and `b'.to_matrix b` are inverses. -/
lemma basis.to_matrix_mul_to_matrix_flip [decidable_eq ι] [fintype ι'] :
  b.to_matrix b' ⬝ b'.to_matrix b = 1 :=
by rw [basis.to_matrix_mul_to_matrix, basis.to_matrix_self]

@[simp]
lemma basis.to_matrix_reindex
  (b : basis ι R M) (v : ι' → M) (e : ι ≃ ι') :
  (b.reindex e).to_matrix v = (b.to_matrix v).minor e.symm id :=
by { ext, simp only [basis.to_matrix_apply, basis.reindex_repr, matrix.minor_apply, id.def] }

@[simp]
lemma basis.to_matrix_map (b : basis ι R M) (f : M ≃ₗ[R] N) (v : ι → N) :
  (b.map f).to_matrix v = b.to_matrix (f.symm ∘ v) :=
by { ext, simp only [basis.to_matrix_apply, basis.map, linear_equiv.trans_apply] }

end mul_linear_map_to_matrix

end basis_to_matrix