Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 2,981 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
/-
Copyright (c) 2021 Anne Baanen. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Anne Baanen
-/
import data.int.absolute_value
import linear_algebra.matrix.determinant
/-!
# Absolute values and matrices
This file proves some bounds on matrices involving absolute values.
## Main results
* `matrix.det_le`: if the entries of an `n × n` matrix are bounded by `x`,
then the determinant is bounded by `n! x^n`
* `matrix.det_sum_le`: if we have `s` `n × n` matrices and the entries of each
matrix are bounded by `x`, then the determinant of their sum is bounded by `n! (s * x)^n`
* `matrix.det_sum_smul_le`: if we have `s` `n × n` matrices each multiplied by
a constant bounded by `y`, and the entries of each matrix are bounded by `x`,
then the determinant of the linear combination is bounded by `n! (s * y * x)^n`
-/
open_locale big_operators
open_locale matrix
namespace matrix
open equiv finset
variables {R S : Type*} [comm_ring R] [nontrivial R] [linear_ordered_comm_ring S]
variables {n : Type*} [fintype n] [decidable_eq n]
lemma det_le {A : matrix n n R} {abv : absolute_value R S}
{x : S} (hx : ∀ i j, abv (A i j) ≤ x) :
abv A.det ≤ nat.factorial (fintype.card n) • x ^ (fintype.card n) :=
calc abv A.det
= abv (∑ σ : perm n, _) : congr_arg abv (det_apply _)
... ≤ ∑ σ : perm n, abv _ : abv.sum_le _ _
... = ∑ σ : perm n, (∏ i, abv (A (σ i) i)) : sum_congr rfl (λ σ hσ,
by rw [abv.map_units_int_smul, abv.map_prod])
... ≤ ∑ σ : perm n, (∏ (i : n), x) :
sum_le_sum (λ _ _, prod_le_prod (λ _ _, abv.nonneg _) (λ _ _, hx _ _))
... = ∑ σ : perm n, x ^ (fintype.card n) : sum_congr rfl (λ _ _,
by rw [prod_const, finset.card_univ])
... = nat.factorial (fintype.card n) • x ^ (fintype.card n) :
by rw [sum_const, finset.card_univ, fintype.card_perm]
lemma det_sum_le {ι : Type*} (s : finset ι) {A : ι → matrix n n R}
{abv : absolute_value R S} {x : S} (hx : ∀ k i j, abv (A k i j) ≤ x) :
abv (det (∑ k in s, A k)) ≤
nat.factorial (fintype.card n) • (finset.card s • x) ^ (fintype.card n) :=
det_le $ λ i j,
calc abv ((∑ k in s, A k) i j)
= abv (∑ k in s, A k i j) : by simp only [sum_apply]
... ≤ ∑ k in s, abv (A k i j) : abv.sum_le _ _
... ≤ ∑ k in s, x : sum_le_sum (λ k _, hx k i j)
... = s.card • x : sum_const _
lemma det_sum_smul_le {ι : Type*} (s : finset ι) {c : ι → R} {A : ι → matrix n n R}
{abv : absolute_value R S}
{x : S} (hx : ∀ k i j, abv (A k i j) ≤ x) {y : S} (hy : ∀ k, abv (c k) ≤ y) :
abv (det (∑ k in s, c k • A k)) ≤
nat.factorial (fintype.card n) • (finset.card s • y * x) ^ (fintype.card n) :=
by simpa only [smul_mul_assoc] using
det_sum_le s (λ k i j,
calc abv (c k * A k i j)
= abv (c k) * abv (A k i j) : abv.map_mul _ _
... ≤ y * x : mul_le_mul (hy k) (hx k i j) (abv.nonneg _) ((abv.nonneg _).trans (hy k)))
end matrix
|