Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 4,959 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
/-
Copyright (c) 2021 Riccardo Brasca. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Riccardo Brasca
-/
import linear_algebra.free_module.basic
import linear_algebra.finsupp_vector_space
/-!
# Rank of free modules
This is a basic API for the rank of free modules.
-/
universes u v w
variables (R : Type u) (M : Type v) (N : Type w)
open_locale tensor_product direct_sum big_operators cardinal
open cardinal
namespace module.free
section ring
variables [ring R] [strong_rank_condition R]
variables [add_comm_group M] [module R M] [module.free R M]
variables [add_comm_group N] [module R N] [module.free R N]
/-- The rank of a free module `M` over `R` is the cardinality of `choose_basis_index R M`. -/
lemma rank_eq_card_choose_basis_index : module.rank R M = #(choose_basis_index R M) :=
(choose_basis R M).mk_eq_dim''.symm
/-- The rank of `(ι →₀ R)` is `(# ι).lift`. -/
@[simp] lemma rank_finsupp {ι : Type v} : module.rank R (ι →₀ R) = (# ι).lift :=
by simpa [lift_id', lift_umax] using
(basis.of_repr (linear_equiv.refl _ (ι →₀ R))).mk_eq_dim.symm
/-- If `R` and `ι` lie in the same universe, the rank of `(ι →₀ R)` is `# ι`. -/
lemma rank_finsupp' {ι : Type u} : module.rank R (ι →₀ R) = # ι := by simp
/-- The rank of `M × N` is `(module.rank R M).lift + (module.rank R N).lift`. -/
@[simp] lemma rank_prod :
module.rank R (M × N) = lift.{w v} (module.rank R M) + lift.{v w} (module.rank R N) :=
by simpa [rank_eq_card_choose_basis_index R M, rank_eq_card_choose_basis_index R N,
lift_umax, lift_umax'] using ((choose_basis R M).prod (choose_basis R N)).mk_eq_dim.symm
/-- If `M` and `N` lie in the same universe, the rank of `M × N` is
`(module.rank R M) + (module.rank R N)`. -/
lemma rank_prod' (N : Type v) [add_comm_group N] [module R N] [module.free R N] :
module.rank R (M × N) = (module.rank R M) + (module.rank R N) := by simp
/-- The rank of the direct sum is the sum of the ranks. -/
@[simp] lemma rank_direct_sum {ι : Type v} (M : ι → Type w) [Π (i : ι), add_comm_group (M i)]
[Π (i : ι), module R (M i)] [Π (i : ι), module.free R (M i)] :
module.rank R (⨁ i, M i) = cardinal.sum (λ i, module.rank R (M i)) :=
begin
let B := λ i, choose_basis R (M i),
let b : basis _ R (⨁ i, M i) := dfinsupp.basis (λ i, B i),
simp [← b.mk_eq_dim'', λ i, (B i).mk_eq_dim''],
end
/-- The rank of a finite product is the sum of the ranks. -/
@[simp] lemma rank_pi_fintype {ι : Type v} [fintype ι] {M : ι → Type w}
[Π (i : ι), add_comm_group (M i)] [Π (i : ι), module R (M i)] [Π (i : ι), module.free R (M i)] :
module.rank R (Π i, M i) = cardinal.sum (λ i, module.rank R (M i)) :=
by { rw [← (direct_sum.linear_equiv_fun_on_fintype _ _ M).dim_eq, rank_direct_sum] }
/-- If `m` and `n` are `fintype`, the rank of `m × n` matrices is `(# m).lift * (# n).lift`. -/
@[simp] lemma rank_matrix (m : Type v) (n : Type w) [fintype m] [fintype n] :
module.rank R (matrix m n R) = (lift.{(max v w u) v} (# m)) * (lift.{(max v w u) w} (# n)) :=
begin
have h := (matrix.std_basis R m n).mk_eq_dim,
rw [← lift_lift.{(max v w u) (max v w)}, lift_inj] at h,
simpa using h.symm,
end
/-- If `m` and `n` are `fintype` that lie in the same universe, the rank of `m × n` matrices is
`(# n * # m).lift`. -/
@[simp] lemma rank_matrix' (m n : Type v) [fintype m] [fintype n] :
module.rank R (matrix m n R) = (# m * # n).lift :=
by rw [rank_matrix, lift_mul, lift_umax]
/-- If `m` and `n` are `fintype` that lie in the same universe as `R`, the rank of `m × n` matrices
is `# m * # n`. -/
@[simp] lemma rank_matrix'' (m n : Type u) [fintype m] [fintype n] :
module.rank R (matrix m n R) = # m * # n := by simp
end ring
section comm_ring
variables [comm_ring R] [strong_rank_condition R]
variables [add_comm_group M] [module R M] [module.free R M]
variables [add_comm_group N] [module R N] [module.free R N]
/-- The rank of `M ⊗[R] N` is `(module.rank R M).lift * (module.rank R N).lift`. -/
@[simp] lemma rank_tensor_product : module.rank R (M ⊗[R] N) = lift.{w v} (module.rank R M) *
lift.{v w} (module.rank R N) :=
begin
let ιM := choose_basis_index R M,
let ιN := choose_basis_index R N,
have h₁ := linear_equiv.lift_dim_eq (tensor_product.congr (repr R M) (repr R N)),
let b : basis (ιM × ιN) R (_ →₀ R) := finsupp.basis_single_one,
rw [linear_equiv.dim_eq (finsupp_tensor_finsupp' R ιM ιN), ← b.mk_eq_dim, mk_prod] at h₁,
rw [lift_inj.1 h₁, rank_eq_card_choose_basis_index R M, rank_eq_card_choose_basis_index R N],
end
/-- If `M` and `N` lie in the same universe, the rank of `M ⊗[R] N` is
`(module.rank R M) * (module.rank R N)`. -/
lemma rank_tensor_product' (N : Type v) [add_comm_group N] [module R N] [module.free R N] :
module.rank R (M ⊗[R] N) = (module.rank R M) * (module.rank R N) := by simp
end comm_ring
end module.free
|