Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 53,500 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 |
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Johannes Hölzl, Sander Dahmen, Scott Morrison
-/
import linear_algebra.dfinsupp
import linear_algebra.invariant_basis_number
import linear_algebra.isomorphisms
import linear_algebra.std_basis
import set_theory.cardinal.cofinality
/-!
# Dimension of modules and vector spaces
## Main definitions
* The rank of a module is defined as `module.rank : cardinal`.
This is defined as the supremum of the cardinalities of linearly independent subsets.
* The rank of a linear map is defined as the rank of its range.
## Main statements
* `linear_map.dim_le_of_injective`: the source of an injective linear map has dimension
at most that of the target.
* `linear_map.dim_le_of_surjective`: the target of a surjective linear map has dimension
at most that of that source.
* `basis_fintype_of_finite_spans`:
the existence of a finite spanning set implies that any basis is finite.
* `infinite_basis_le_maximal_linear_independent`:
if `b` is an infinite basis for a module `M`,
and `s` is a maximal linearly independent set,
then the cardinality of `b` is bounded by the cardinality of `s`.
For modules over rings satisfying the rank condition
* `basis.le_span`:
the cardinality of a basis is bounded by the cardinality of any spanning set
For modules over rings satisfying the strong rank condition
* `linear_independent_le_span`:
For any linearly independent family `v : ι → M`
and any finite spanning set `w : set M`,
the cardinality of `ι` is bounded by the cardinality of `w`.
* `linear_independent_le_basis`:
If `b` is a basis for a module `M`,
and `s` is a linearly independent set,
then the cardinality of `s` is bounded by the cardinality of `b`.
For modules over rings with invariant basis number
(including all commutative rings and all noetherian rings)
* `mk_eq_mk_of_basis`: the dimension theorem, any two bases of the same vector space have the same
cardinality.
For vector spaces (i.e. modules over a field), we have
* `dim_quotient_add_dim`: if `V₁` is a submodule of `V`, then
`module.rank (V/V₁) + module.rank V₁ = module.rank V`.
* `dim_range_add_dim_ker`: the rank-nullity theorem.
## Implementation notes
There is a naming discrepancy: most of the theorem names refer to `dim`,
even though the definition is of `module.rank`.
This reflects that `module.rank` was originally called `dim`, and only defined for vector spaces.
Many theorems in this file are not universe-generic when they relate dimensions
in different universes. They should be as general as they can be without
inserting `lift`s. The types `V`, `V'`, ... all live in different universes,
and `V₁`, `V₂`, ... all live in the same universe.
-/
noncomputable theory
universes u v v' v'' u₁' w w'
variables {K : Type u} {V V₁ V₂ V₃ : Type v} {V' V'₁ : Type v'} {V'' : Type v''}
variables {ι : Type w} {ι' : Type w'} {η : Type u₁'} {φ : η → Type*}
open_locale classical big_operators cardinal
open basis submodule function set
section module
section
variables [semiring K] [add_comm_monoid V] [module K V]
include K
variables (K V)
/-- The rank of a module, defined as a term of type `cardinal`.
We define this as the supremum of the cardinalities of linearly independent subsets.
For a free module over any ring satisfying the strong rank condition
(e.g. left-noetherian rings, commutative rings, and in particular division rings and fields),
this is the same as the dimension of the space (i.e. the cardinality of any basis).
In particular this agrees with the usual notion of the dimension of a vector space.
The definition is marked as protected to avoid conflicts with `_root_.rank`,
the rank of a linear map.
-/
protected def module.rank : cardinal :=
⨆ ι : {s : set V // linear_independent K (coe : s → V)}, #ι.1
end
section
variables {R : Type u} [ring R]
variables {M : Type v} [add_comm_group M] [module R M]
variables {M' : Type v'} [add_comm_group M'] [module R M']
variables {M₁ : Type v} [add_comm_group M₁] [module R M₁]
theorem linear_map.lift_dim_le_of_injective (f : M →ₗ[R] M') (i : injective f) :
cardinal.lift.{v'} (module.rank R M) ≤ cardinal.lift.{v} (module.rank R M') :=
begin
dsimp [module.rank],
rw [cardinal.lift_supr (cardinal.bdd_above_range.{v' v'} _),
cardinal.lift_supr (cardinal.bdd_above_range.{v v} _)],
apply csupr_mono' (cardinal.bdd_above_range.{v' v} _),
rintro ⟨s, li⟩,
refine ⟨⟨f '' s, _⟩, cardinal.lift_mk_le'.mpr ⟨(equiv.set.image f s i).to_embedding⟩⟩,
exact (li.map' _ $ linear_map.ker_eq_bot.mpr i).image,
end
theorem linear_map.dim_le_of_injective (f : M →ₗ[R] M₁) (i : injective f) :
module.rank R M ≤ module.rank R M₁ :=
cardinal.lift_le.1 (f.lift_dim_le_of_injective i)
theorem dim_le {n : ℕ}
(H : ∀ s : finset M, linear_independent R (λ i : s, (i : M)) → s.card ≤ n) :
module.rank R M ≤ n :=
begin
apply csupr_le',
rintro ⟨s, li⟩,
exact linear_independent_bounded_of_finset_linear_independent_bounded H _ li,
end
lemma lift_dim_range_le (f : M →ₗ[R] M') :
cardinal.lift.{v} (module.rank R f.range) ≤ cardinal.lift.{v'} (module.rank R M) :=
begin
dsimp [module.rank],
rw [cardinal.lift_supr (cardinal.bdd_above_range.{v' v'} _)],
apply csupr_le',
rintro ⟨s, li⟩,
apply le_trans,
swap 2,
apply cardinal.lift_le.mpr,
refine (le_csupr (cardinal.bdd_above_range.{v v} _) ⟨range_splitting f '' s, _⟩),
{ apply linear_independent.of_comp f.range_restrict,
convert li.comp (equiv.set.range_splitting_image_equiv f s) (equiv.injective _) using 1, },
{ exact (cardinal.lift_mk_eq'.mpr ⟨equiv.set.range_splitting_image_equiv f s⟩).ge, },
end
lemma dim_range_le (f : M →ₗ[R] M₁) : module.rank R f.range ≤ module.rank R M :=
by simpa using lift_dim_range_le f
lemma lift_dim_map_le (f : M →ₗ[R] M') (p : submodule R M) :
cardinal.lift.{v} (module.rank R (p.map f)) ≤ cardinal.lift.{v'} (module.rank R p) :=
begin
have h := lift_dim_range_le (f.comp (submodule.subtype p)),
rwa [linear_map.range_comp, range_subtype] at h,
end
lemma dim_map_le (f : M →ₗ[R] M₁) (p : submodule R M) : module.rank R (p.map f) ≤ module.rank R p :=
by simpa using lift_dim_map_le f p
lemma dim_le_of_submodule (s t : submodule R M) (h : s ≤ t) :
module.rank R s ≤ module.rank R t :=
(of_le h).dim_le_of_injective $ assume ⟨x, hx⟩ ⟨y, hy⟩ eq,
subtype.eq $ show x = y, from subtype.ext_iff_val.1 eq
/-- Two linearly equivalent vector spaces have the same dimension, a version with different
universes. -/
theorem linear_equiv.lift_dim_eq (f : M ≃ₗ[R] M') :
cardinal.lift.{v'} (module.rank R M) = cardinal.lift.{v} (module.rank R M') :=
begin
apply le_antisymm,
{ exact f.to_linear_map.lift_dim_le_of_injective f.injective, },
{ exact f.symm.to_linear_map.lift_dim_le_of_injective f.symm.injective, },
end
/-- Two linearly equivalent vector spaces have the same dimension. -/
theorem linear_equiv.dim_eq (f : M ≃ₗ[R] M₁) :
module.rank R M = module.rank R M₁ :=
cardinal.lift_inj.1 f.lift_dim_eq
lemma dim_eq_of_injective (f : M →ₗ[R] M₁) (h : injective f) :
module.rank R M = module.rank R f.range :=
(linear_equiv.of_injective f h).dim_eq
/-- Pushforwards of submodules along a `linear_equiv` have the same dimension. -/
lemma linear_equiv.dim_map_eq (f : M ≃ₗ[R] M₁) (p : submodule R M) :
module.rank R (p.map (f : M →ₗ[R] M₁)) = module.rank R p :=
(f.submodule_map p).dim_eq.symm
variables (R M)
@[simp] lemma dim_top : module.rank R (⊤ : submodule R M) = module.rank R M :=
begin
have : (⊤ : submodule R M) ≃ₗ[R] M := linear_equiv.of_top ⊤ rfl,
rw this.dim_eq,
end
variables {R M}
lemma dim_range_of_surjective (f : M →ₗ[R] M') (h : surjective f) :
module.rank R f.range = module.rank R M' :=
by rw [linear_map.range_eq_top.2 h, dim_top]
lemma dim_submodule_le (s : submodule R M) : module.rank R s ≤ module.rank R M :=
begin
rw ←dim_top R M,
exact dim_le_of_submodule _ _ le_top,
end
lemma linear_map.dim_le_of_surjective (f : M →ₗ[R] M₁) (h : surjective f) :
module.rank R M₁ ≤ module.rank R M :=
begin
rw ←dim_range_of_surjective f h,
apply dim_range_le,
end
theorem dim_quotient_le (p : submodule R M) :
module.rank R (M ⧸ p) ≤ module.rank R M :=
(mkq p).dim_le_of_surjective (surjective_quot_mk _)
variables [nontrivial R]
lemma {m} cardinal_lift_le_dim_of_linear_independent
{ι : Type w} {v : ι → M} (hv : linear_independent R v) :
cardinal.lift.{max v m} (#ι) ≤ cardinal.lift.{max w m} (module.rank R M) :=
begin
apply le_trans,
{ exact cardinal.lift_mk_le.mpr
⟨(equiv.of_injective _ hv.injective).to_embedding⟩, },
{ simp only [cardinal.lift_le],
apply le_trans,
swap,
exact le_csupr (cardinal.bdd_above_range.{v v} _) ⟨range v, hv.coe_range⟩,
exact le_rfl, },
end
lemma cardinal_lift_le_dim_of_linear_independent'
{ι : Type w} {v : ι → M} (hv : linear_independent R v) :
cardinal.lift.{v} (#ι) ≤ cardinal.lift.{w} (module.rank R M) :=
cardinal_lift_le_dim_of_linear_independent.{u v w 0} hv
lemma cardinal_le_dim_of_linear_independent
{ι : Type v} {v : ι → M} (hv : linear_independent R v) :
#ι ≤ module.rank R M :=
by simpa using cardinal_lift_le_dim_of_linear_independent hv
lemma cardinal_le_dim_of_linear_independent'
{s : set M} (hs : linear_independent R (λ x, x : s → M)) :
#s ≤ module.rank R M :=
cardinal_le_dim_of_linear_independent hs
variables (R M)
@[simp] lemma dim_punit : module.rank R punit = 0 :=
begin
apply le_bot_iff.mp,
apply csupr_le',
rintro ⟨s, li⟩,
apply le_bot_iff.mpr,
apply cardinal.mk_emptyc_iff.mpr,
simp only [subtype.coe_mk],
by_contradiction h,
have ne : s.nonempty := ne_empty_iff_nonempty.mp h,
simpa using linear_independent.ne_zero (⟨_, ne.some_mem⟩ : s) li,
end
@[simp] lemma dim_bot : module.rank R (⊥ : submodule R M) = 0 :=
begin
have : (⊥ : submodule R M) ≃ₗ[R] punit := bot_equiv_punit,
rw [this.dim_eq, dim_punit],
end
variables {R M}
/-- A linearly-independent family of vectors in a module over a non-trivial ring must be finite if
the module is Noetherian. -/
lemma linear_independent.finite_of_is_noetherian [is_noetherian R M]
{v : ι → M} (hv : linear_independent R v) : finite ι :=
begin
have hwf := is_noetherian_iff_well_founded.mp (by apply_instance : is_noetherian R M),
refine complete_lattice.well_founded.finite_of_independent hwf
hv.independent_span_singleton (λ i contra, _),
apply hv.ne_zero i,
have : v i ∈ R ∙ v i := submodule.mem_span_singleton_self (v i),
rwa [contra, submodule.mem_bot] at this,
end
lemma linear_independent.set_finite_of_is_noetherian [is_noetherian R M]
{s : set M} (hi : linear_independent R (coe : s → M)) : s.finite :=
@set.to_finite _ _ hi.finite_of_is_noetherian
/--
Over any nontrivial ring, the existence of a finite spanning set implies that any basis is finite.
-/
-- One might hope that a finite spanning set implies that any linearly independent set is finite.
-- While this is true over a division ring
-- (simply because any linearly independent set can be extended to a basis),
-- I'm not certain what more general statements are possible.
def basis_fintype_of_finite_spans (w : set M) [fintype w] (s : span R w = ⊤)
{ι : Type w} (b : basis ι R M) : fintype ι :=
begin
-- We'll work by contradiction, assuming `ι` is infinite.
apply fintype_of_not_infinite _,
introI i,
-- Let `S` be the union of the supports of `x ∈ w` expressed as linear combinations of `b`.
-- This is a finite set since `w` is finite.
let S : finset ι := finset.univ.sup (λ x : w, (b.repr x).support),
let bS : set M := b '' S,
have h : ∀ x ∈ w, x ∈ span R bS,
{ intros x m,
rw [←b.total_repr x, finsupp.span_image_eq_map_total, submodule.mem_map],
use b.repr x,
simp only [and_true, eq_self_iff_true, finsupp.mem_supported],
change (b.repr x).support ≤ S,
convert (finset.le_sup (by simp : (⟨x, m⟩ : w) ∈ finset.univ)),
refl, },
-- Thus this finite subset of the basis elements spans the entire module.
have k : span R bS = ⊤ := eq_top_iff.2 (le_trans s.ge (span_le.2 h)),
-- Now there is some `x : ι` not in `S`, since `ι` is infinite.
obtain ⟨x, nm⟩ := infinite.exists_not_mem_finset S,
-- However it must be in the span of the finite subset,
have k' : b x ∈ span R bS, { rw k, exact mem_top, },
-- giving the desire contradiction.
refine b.linear_independent.not_mem_span_image _ k',
exact nm,
end
/--
Over any ring `R`, if `b` is a basis for a module `M`,
and `s` is a maximal linearly independent set,
then the union of the supports of `x ∈ s` (when written out in the basis `b`) is all of `b`.
-/
-- From [Les familles libres maximales d'un module ont-elles le meme cardinal?][lazarus1973]
lemma union_support_maximal_linear_independent_eq_range_basis
{ι : Type w} (b : basis ι R M)
{κ : Type w'} (v : κ → M) (i : linear_independent R v) (m : i.maximal) :
(⋃ k, ((b.repr (v k)).support : set ι)) = univ :=
begin
-- If that's not the case,
by_contradiction h,
simp only [←ne.def, ne_univ_iff_exists_not_mem, mem_Union, not_exists_not,
finsupp.mem_support_iff, finset.mem_coe] at h,
-- We have some basis element `b b'` which is not in the support of any of the `v i`.
obtain ⟨b', w⟩ := h,
-- Using this, we'll construct a linearly independent family strictly larger than `v`,
-- by also using this `b b'`.
let v' : option κ → M := λ o, o.elim (b b') v,
have r : range v ⊆ range v',
{ rintro - ⟨k, rfl⟩,
use some k,
refl, },
have r' : b b' ∉ range v,
{ rintro ⟨k, p⟩,
simpa [w] using congr_arg (λ m, (b.repr m) b') p, },
have r'' : range v ≠ range v',
{ intro e,
have p : b b' ∈ range v', { use none, refl, },
rw ←e at p,
exact r' p, },
have inj' : injective v',
{ rintros (_|k) (_|k) z,
{ refl, },
{ exfalso, exact r' ⟨k, z.symm⟩, },
{ exfalso, exact r' ⟨k, z⟩, },
{ congr, exact i.injective z, }, },
-- The key step in the proof is checking that this strictly larger family is linearly independent.
have i' : linear_independent R (coe : range v' → M),
{ rw [linear_independent_subtype_range inj', linear_independent_iff],
intros l z,
rw [finsupp.total_option] at z,
simp only [v', option.elim] at z,
change _ + finsupp.total κ M R v l.some = 0 at z,
-- We have some linear combination of `b b'` and the `v i`, which we want to show is trivial.
-- We'll first show the coefficient of `b b'` is zero,
-- by expressing the `v i` in the basis `b`, and using that the `v i` have no `b b'` term.
have l₀ : l none = 0,
{ rw ←eq_neg_iff_add_eq_zero at z,
replace z := eq_neg_of_eq_neg z,
apply_fun (λ x, b.repr x b') at z,
simp only [repr_self, linear_equiv.map_smul, mul_one, finsupp.single_eq_same, pi.neg_apply,
finsupp.smul_single', linear_equiv.map_neg, finsupp.coe_neg] at z,
erw finsupp.congr_fun (finsupp.apply_total R (b.repr : M →ₗ[R] ι →₀ R) v l.some) b' at z,
simpa [finsupp.total_apply, w] using z, },
-- Then all the other coefficients are zero, because `v` is linear independent.
have l₁ : l.some = 0,
{ rw [l₀, zero_smul, zero_add] at z,
exact linear_independent_iff.mp i _ z, },
-- Finally we put those facts together to show the linear combination is trivial.
ext (_|a),
{ simp only [l₀, finsupp.coe_zero, pi.zero_apply], },
{ erw finsupp.congr_fun l₁ a,
simp only [finsupp.coe_zero, pi.zero_apply], }, },
dsimp [linear_independent.maximal] at m,
specialize m (range v') i' r,
exact r'' m,
end
/--
Over any ring `R`, if `b` is an infinite basis for a module `M`,
and `s` is a maximal linearly independent set,
then the cardinality of `b` is bounded by the cardinality of `s`.
-/
lemma infinite_basis_le_maximal_linear_independent'
{ι : Type w} (b : basis ι R M) [infinite ι]
{κ : Type w'} (v : κ → M) (i : linear_independent R v) (m : i.maximal) :
cardinal.lift.{w'} (#ι) ≤ cardinal.lift.{w} (#κ) :=
begin
let Φ := λ k : κ, (b.repr (v k)).support,
have w₁ : #ι ≤ #(set.range Φ),
{ apply cardinal.le_range_of_union_finset_eq_top,
exact union_support_maximal_linear_independent_eq_range_basis b v i m, },
have w₂ :
cardinal.lift.{w'} (#(set.range Φ)) ≤ cardinal.lift.{w} (#κ) :=
cardinal.mk_range_le_lift,
exact (cardinal.lift_le.mpr w₁).trans w₂,
end
/--
Over any ring `R`, if `b` is an infinite basis for a module `M`,
and `s` is a maximal linearly independent set,
then the cardinality of `b` is bounded by the cardinality of `s`.
-/
-- (See `infinite_basis_le_maximal_linear_independent'` for the more general version
-- where the index types can live in different universes.)
lemma infinite_basis_le_maximal_linear_independent
{ι : Type w} (b : basis ι R M) [infinite ι]
{κ : Type w} (v : κ → M) (i : linear_independent R v) (m : i.maximal) :
#ι ≤ #κ :=
cardinal.lift_le.mp (infinite_basis_le_maximal_linear_independent' b v i m)
lemma complete_lattice.independent.subtype_ne_bot_le_rank [no_zero_smul_divisors R M]
{V : ι → submodule R M} (hV : complete_lattice.independent V) :
cardinal.lift.{v} (#{i : ι // V i ≠ ⊥}) ≤ cardinal.lift.{w} (module.rank R M) :=
begin
set I := {i : ι // V i ≠ ⊥},
have hI : ∀ i : I, ∃ v ∈ V i, v ≠ (0:M),
{ intros i,
rw ← submodule.ne_bot_iff,
exact i.prop },
choose v hvV hv using hI,
have : linear_independent R v,
{ exact (hV.comp subtype.coe_injective).linear_independent _ hvV hv },
exact cardinal_lift_le_dim_of_linear_independent' this
end
end
section rank_zero
variables {R : Type u} {M : Type v}
variables [ring R] [nontrivial R] [add_comm_group M] [module R M] [no_zero_smul_divisors R M]
lemma dim_zero_iff_forall_zero : module.rank R M = 0 ↔ ∀ x : M, x = 0 :=
begin
refine ⟨λ h, _, λ h, _⟩,
{ contrapose! h,
obtain ⟨x, hx⟩ := h,
suffices : 1 ≤ module.rank R M,
{ intro h, exact lt_irrefl _ (lt_of_lt_of_le cardinal.zero_lt_one (h ▸ this)) },
suffices : linear_independent R (λ (y : ({x} : set M)), ↑y),
{ simpa using (cardinal_le_dim_of_linear_independent this), },
exact linear_independent_singleton hx },
{ have : (⊤ : submodule R M) = ⊥,
{ ext x, simp [h x] },
rw [←dim_top, this, dim_bot] }
end
lemma dim_zero_iff : module.rank R M = 0 ↔ subsingleton M :=
dim_zero_iff_forall_zero.trans (subsingleton_iff_forall_eq 0).symm
lemma dim_pos_iff_exists_ne_zero : 0 < module.rank R M ↔ ∃ x : M, x ≠ 0 :=
begin
rw ←not_iff_not,
simpa using dim_zero_iff_forall_zero
end
lemma dim_pos_iff_nontrivial : 0 < module.rank R M ↔ nontrivial M :=
dim_pos_iff_exists_ne_zero.trans (nontrivial_iff_exists_ne 0).symm
lemma dim_pos [h : nontrivial M] : 0 < module.rank R M :=
dim_pos_iff_nontrivial.2 h
end rank_zero
section invariant_basis_number
variables {R : Type u} [ring R] [invariant_basis_number R]
variables {M : Type v} [add_comm_group M] [module R M]
/-- The dimension theorem: if `v` and `v'` are two bases, their index types
have the same cardinalities. -/
theorem mk_eq_mk_of_basis (v : basis ι R M) (v' : basis ι' R M) :
cardinal.lift.{w'} (#ι) = cardinal.lift.{w} (#ι') :=
begin
haveI := nontrivial_of_invariant_basis_number R,
casesI fintype_or_infinite ι,
{ -- `v` is a finite basis, so by `basis_fintype_of_finite_spans` so is `v'`.
haveI : fintype (range v) := set.fintype_range v,
haveI := basis_fintype_of_finite_spans _ v.span_eq v',
-- We clean up a little:
rw [cardinal.mk_fintype, cardinal.mk_fintype],
simp only [cardinal.lift_nat_cast, cardinal.nat_cast_inj],
-- Now we can use invariant basis number to show they have the same cardinality.
apply card_eq_of_lequiv R,
exact (((finsupp.linear_equiv_fun_on_fintype R R ι).symm.trans v.repr.symm) ≪≫ₗ
v'.repr) ≪≫ₗ (finsupp.linear_equiv_fun_on_fintype R R ι'), },
{ -- `v` is an infinite basis,
-- so by `infinite_basis_le_maximal_linear_independent`, `v'` is at least as big,
-- and then applying `infinite_basis_le_maximal_linear_independent` again
-- we see they have the same cardinality.
have w₁ :=
infinite_basis_le_maximal_linear_independent' v _ v'.linear_independent v'.maximal,
rcases cardinal.lift_mk_le'.mp w₁ with ⟨f⟩,
haveI : infinite ι' := infinite.of_injective f f.2,
have w₂ :=
infinite_basis_le_maximal_linear_independent' v' _ v.linear_independent v.maximal,
exact le_antisymm w₁ w₂, }
end
/-- Given two bases indexed by `ι` and `ι'` of an `R`-module, where `R` satisfies the invariant
basis number property, an equiv `ι ≃ ι' `. -/
def basis.index_equiv (v : basis ι R M) (v' : basis ι' R M) : ι ≃ ι' :=
nonempty.some (cardinal.lift_mk_eq.1 (cardinal.lift_umax_eq.2 (mk_eq_mk_of_basis v v')))
theorem mk_eq_mk_of_basis' {ι' : Type w} (v : basis ι R M) (v' : basis ι' R M) :
#ι = #ι' :=
cardinal.lift_inj.1 $ mk_eq_mk_of_basis v v'
end invariant_basis_number
section rank_condition
variables {R : Type u} [ring R] [rank_condition R]
variables {M : Type v} [add_comm_group M] [module R M]
/--
An auxiliary lemma for `basis.le_span`.
If `R` satisfies the rank condition,
then for any finite basis `b : basis ι R M`,
and any finite spanning set `w : set M`,
the cardinality of `ι` is bounded by the cardinality of `w`.
-/
lemma basis.le_span'' {ι : Type*} [fintype ι] (b : basis ι R M)
{w : set M} [fintype w] (s : span R w = ⊤) :
fintype.card ι ≤ fintype.card w :=
begin
-- We construct an surjective linear map `(w → R) →ₗ[R] (ι → R)`,
-- by expressing a linear combination in `w` as a linear combination in `ι`.
fapply card_le_of_surjective' R,
{ exact b.repr.to_linear_map.comp (finsupp.total w M R coe), },
{ apply surjective.comp,
apply linear_equiv.surjective,
rw [←linear_map.range_eq_top, finsupp.range_total],
simpa using s, },
end
/--
Another auxiliary lemma for `basis.le_span`, which does not require assuming the basis is finite,
but still assumes we have a finite spanning set.
-/
lemma basis_le_span' {ι : Type*} (b : basis ι R M)
{w : set M} [fintype w] (s : span R w = ⊤) :
#ι ≤ fintype.card w :=
begin
haveI := nontrivial_of_invariant_basis_number R,
haveI := basis_fintype_of_finite_spans w s b,
rw cardinal.mk_fintype ι,
simp only [cardinal.nat_cast_le],
exact basis.le_span'' b s,
end
/--
If `R` satisfies the rank condition,
then the cardinality of any basis is bounded by the cardinality of any spanning set.
-/
-- Note that if `R` satisfies the strong rank condition,
-- this also follows from `linear_independent_le_span` below.
theorem basis.le_span {J : set M} (v : basis ι R M)
(hJ : span R J = ⊤) : #(range v) ≤ #J :=
begin
haveI := nontrivial_of_invariant_basis_number R,
casesI fintype_or_infinite J,
{ rw [←cardinal.lift_le, cardinal.mk_range_eq_of_injective v.injective, cardinal.mk_fintype J],
convert cardinal.lift_le.{w v}.2 (basis_le_span' v hJ),
simp, },
{ have := cardinal.mk_range_eq_of_injective v.injective,
let S : J → set ι := λ j, ↑(v.repr j).support,
let S' : J → set M := λ j, v '' S j,
have hs : range v ⊆ ⋃ j, S' j,
{ intros b hb,
rcases mem_range.1 hb with ⟨i, hi⟩,
have : span R J ≤ comap v.repr.to_linear_map (finsupp.supported R R (⋃ j, S j)) :=
span_le.2 (λ j hj x hx, ⟨_, ⟨⟨j, hj⟩, rfl⟩, hx⟩),
rw hJ at this,
replace : v.repr (v i) ∈ (finsupp.supported R R (⋃ j, S j)) := this trivial,
rw [v.repr_self, finsupp.mem_supported,
finsupp.support_single_ne_zero _ one_ne_zero] at this,
{ subst b,
rcases mem_Union.1 (this (finset.mem_singleton_self _)) with ⟨j, hj⟩,
exact mem_Union.2 ⟨j, (mem_image _ _ _).2 ⟨i, hj, rfl⟩⟩ },
{ apply_instance } },
refine le_of_not_lt (λ IJ, _),
suffices : #(⋃ j, S' j) < #(range v),
{ exact not_le_of_lt this ⟨set.embedding_of_subset _ _ hs⟩ },
refine lt_of_le_of_lt (le_trans cardinal.mk_Union_le_sum_mk
(cardinal.sum_le_sum _ (λ _, ℵ₀) _)) _,
{ exact λ j, (cardinal.lt_aleph_0_of_finite _).le },
{ simpa } },
end
end rank_condition
section strong_rank_condition
variables {R : Type u} [ring R] [strong_rank_condition R]
variables {M : Type v} [add_comm_group M] [module R M]
open submodule
-- An auxiliary lemma for `linear_independent_le_span'`,
-- with the additional assumption that the linearly independent family is finite.
lemma linear_independent_le_span_aux'
{ι : Type*} [fintype ι] (v : ι → M) (i : linear_independent R v)
(w : set M) [fintype w] (s : range v ≤ span R w) :
fintype.card ι ≤ fintype.card w :=
begin
-- We construct an injective linear map `(ι → R) →ₗ[R] (w → R)`,
-- by thinking of `f : ι → R` as a linear combination of the finite family `v`,
-- and expressing that (using the axiom of choice) as a linear combination over `w`.
-- We can do this linearly by constructing the map on a basis.
fapply card_le_of_injective' R,
{ apply finsupp.total,
exact λ i, span.repr R w ⟨v i, s (mem_range_self i)⟩, },
{ intros f g h,
apply_fun finsupp.total w M R coe at h,
simp only [finsupp.total_total, submodule.coe_mk, span.finsupp_total_repr] at h,
rw [←sub_eq_zero, ←linear_map.map_sub] at h,
exact sub_eq_zero.mp (linear_independent_iff.mp i _ h), },
end
/--
If `R` satisfies the strong rank condition,
then any linearly independent family `v : ι → M`
contained in the span of some finite `w : set M`,
is itself finite.
-/
def linear_independent_fintype_of_le_span_fintype
{ι : Type*} (v : ι → M) (i : linear_independent R v)
(w : set M) [fintype w] (s : range v ≤ span R w) : fintype ι :=
fintype_of_finset_card_le (fintype.card w) (λ t, begin
let v' := λ x : (t : set ι), v x,
have i' : linear_independent R v' := i.comp _ subtype.val_injective,
have s' : range v' ≤ span R w := (range_comp_subset_range _ _).trans s,
simpa using linear_independent_le_span_aux' v' i' w s',
end)
/--
If `R` satisfies the strong rank condition,
then for any linearly independent family `v : ι → M`
contained in the span of some finite `w : set M`,
the cardinality of `ι` is bounded by the cardinality of `w`.
-/
lemma linear_independent_le_span' {ι : Type*} (v : ι → M) (i : linear_independent R v)
(w : set M) [fintype w] (s : range v ≤ span R w) :
#ι ≤ fintype.card w :=
begin
haveI : fintype ι := linear_independent_fintype_of_le_span_fintype v i w s,
rw cardinal.mk_fintype,
simp only [cardinal.nat_cast_le],
exact linear_independent_le_span_aux' v i w s,
end
/--
If `R` satisfies the strong rank condition,
then for any linearly independent family `v : ι → M`
and any finite spanning set `w : set M`,
the cardinality of `ι` is bounded by the cardinality of `w`.
-/
lemma linear_independent_le_span {ι : Type*} (v : ι → M) (i : linear_independent R v)
(w : set M) [fintype w] (s : span R w = ⊤) :
#ι ≤ fintype.card w :=
begin
apply linear_independent_le_span' v i w,
rw s,
exact le_top,
end
/--
An auxiliary lemma for `linear_independent_le_basis`:
we handle the case where the basis `b` is infinite.
-/
lemma linear_independent_le_infinite_basis
{ι : Type*} (b : basis ι R M) [infinite ι]
{κ : Type*} (v : κ → M) (i : linear_independent R v) :
#κ ≤ #ι :=
begin
by_contradiction,
rw [not_le, ← cardinal.mk_finset_of_infinite ι] at h,
let Φ := λ k : κ, (b.repr (v k)).support,
obtain ⟨s, w : infinite ↥(Φ ⁻¹' {s})⟩ := cardinal.exists_infinite_fiber Φ h (by apply_instance),
let v' := λ k : Φ ⁻¹' {s}, v k,
have i' : linear_independent R v' := i.comp _ subtype.val_injective,
have w' : fintype (Φ ⁻¹' {s}),
{ apply linear_independent_fintype_of_le_span_fintype v' i' (s.image b),
rintros m ⟨⟨p,⟨rfl⟩⟩,rfl⟩,
simp only [set_like.mem_coe, subtype.coe_mk, finset.coe_image],
apply basis.mem_span_repr_support, },
exactI w.false,
end
/--
Over any ring `R` satisfying the strong rank condition,
if `b` is a basis for a module `M`,
and `s` is a linearly independent set,
then the cardinality of `s` is bounded by the cardinality of `b`.
-/
lemma linear_independent_le_basis
{ι : Type*} (b : basis ι R M)
{κ : Type*} (v : κ → M) (i : linear_independent R v) :
#κ ≤ #ι :=
begin
-- We split into cases depending on whether `ι` is infinite.
cases fintype_or_infinite ι; resetI,
{ -- When `ι` is finite, we have `linear_independent_le_span`,
rw cardinal.mk_fintype ι,
haveI : nontrivial R := nontrivial_of_invariant_basis_number R,
rw fintype.card_congr (equiv.of_injective b b.injective),
exact linear_independent_le_span v i (range b) b.span_eq, },
{ -- and otherwise we have `linear_indepedent_le_infinite_basis`.
exact linear_independent_le_infinite_basis b v i, },
end
/-- In an `n`-dimensional space, the rank is at most `m`. -/
lemma basis.card_le_card_of_linear_independent_aux
{R : Type*} [ring R] [strong_rank_condition R]
(n : ℕ) {m : ℕ} (v : fin m → fin n → R) :
linear_independent R v → m ≤ n :=
λ h, by simpa using (linear_independent_le_basis (pi.basis_fun R (fin n)) v h)
/--
Over any ring `R` satisfying the strong rank condition,
if `b` is an infinite basis for a module `M`,
then every maximal linearly independent set has the same cardinality as `b`.
This proof (along with some of the lemmas above) comes from
[Les familles libres maximales d'un module ont-elles le meme cardinal?][lazarus1973]
-/
-- When the basis is not infinite this need not be true!
lemma maximal_linear_independent_eq_infinite_basis
{ι : Type*} (b : basis ι R M) [infinite ι]
{κ : Type*} (v : κ → M) (i : linear_independent R v) (m : i.maximal) :
#κ = #ι :=
begin
apply le_antisymm,
{ exact linear_independent_le_basis b v i, },
{ haveI : nontrivial R := nontrivial_of_invariant_basis_number R,
exact infinite_basis_le_maximal_linear_independent b v i m, }
end
theorem basis.mk_eq_dim'' {ι : Type v} (v : basis ι R M) :
#ι = module.rank R M :=
begin
haveI := nontrivial_of_invariant_basis_number R,
apply le_antisymm,
{ transitivity,
swap,
apply le_csupr (cardinal.bdd_above_range.{v v} _),
exact ⟨set.range v, by { convert v.reindex_range.linear_independent, ext, simp }⟩,
exact (cardinal.mk_range_eq v v.injective).ge, },
{ apply csupr_le',
rintro ⟨s, li⟩,
apply linear_independent_le_basis v _ li, },
end
-- By this stage we want to have a complete API for `module.rank`,
-- so we set it `irreducible` here, to keep ourselves honest.
attribute [irreducible] module.rank
theorem basis.mk_range_eq_dim (v : basis ι R M) :
#(range v) = module.rank R M :=
v.reindex_range.mk_eq_dim''
/-- If a vector space has a finite basis, then its dimension (seen as a cardinal) is equal to the
cardinality of the basis. -/
lemma dim_eq_card_basis {ι : Type w} [fintype ι] (h : basis ι R M) :
module.rank R M = fintype.card ι :=
by {haveI := nontrivial_of_invariant_basis_number R,
rw [←h.mk_range_eq_dim, cardinal.mk_fintype, set.card_range_of_injective h.injective] }
lemma basis.card_le_card_of_linear_independent {ι : Type*} [fintype ι]
(b : basis ι R M) {ι' : Type*} [fintype ι'] {v : ι' → M} (hv : linear_independent R v) :
fintype.card ι' ≤ fintype.card ι :=
begin
letI := nontrivial_of_invariant_basis_number R,
simpa [dim_eq_card_basis b, cardinal.mk_fintype] using
cardinal_lift_le_dim_of_linear_independent' hv
end
lemma basis.card_le_card_of_submodule (N : submodule R M) [fintype ι] (b : basis ι R M)
[fintype ι'] (b' : basis ι' R N) : fintype.card ι' ≤ fintype.card ι :=
b.card_le_card_of_linear_independent (b'.linear_independent.map' N.subtype N.ker_subtype)
lemma basis.card_le_card_of_le
{N O : submodule R M} (hNO : N ≤ O) [fintype ι] (b : basis ι R O) [fintype ι']
(b' : basis ι' R N) : fintype.card ι' ≤ fintype.card ι :=
b.card_le_card_of_linear_independent
(b'.linear_independent.map' (submodule.of_le hNO) (N.ker_of_le O _))
theorem basis.mk_eq_dim (v : basis ι R M) :
cardinal.lift.{v} (#ι) = cardinal.lift.{w} (module.rank R M) :=
begin
haveI := nontrivial_of_invariant_basis_number R,
rw [←v.mk_range_eq_dim, cardinal.mk_range_eq_of_injective v.injective]
end
theorem {m} basis.mk_eq_dim' (v : basis ι R M) :
cardinal.lift.{max v m} (#ι) = cardinal.lift.{max w m} (module.rank R M) :=
by simpa using v.mk_eq_dim
/-- If a module has a finite dimension, all bases are indexed by a finite type. -/
lemma basis.nonempty_fintype_index_of_dim_lt_aleph_0 {ι : Type*}
(b : basis ι R M) (h : module.rank R M < ℵ₀) :
nonempty (fintype ι) :=
by rwa [← cardinal.lift_lt, ← b.mk_eq_dim,
-- ensure `aleph_0` has the correct universe
cardinal.lift_aleph_0, ← cardinal.lift_aleph_0.{u_1 v},
cardinal.lift_lt, cardinal.lt_aleph_0_iff_fintype] at h
/-- If a module has a finite dimension, all bases are indexed by a finite type. -/
noncomputable def basis.fintype_index_of_dim_lt_aleph_0 {ι : Type*}
(b : basis ι R M) (h : module.rank R M < ℵ₀) :
fintype ι :=
classical.choice (b.nonempty_fintype_index_of_dim_lt_aleph_0 h)
/-- If a module has a finite dimension, all bases are indexed by a finite set. -/
lemma basis.finite_index_of_dim_lt_aleph_0 {ι : Type*} {s : set ι}
(b : basis s R M) (h : module.rank R M < ℵ₀) :
s.finite :=
finite_def.2 (b.nonempty_fintype_index_of_dim_lt_aleph_0 h)
lemma dim_span {v : ι → M} (hv : linear_independent R v) :
module.rank R ↥(span R (range v)) = #(range v) :=
begin
haveI := nontrivial_of_invariant_basis_number R,
rw [←cardinal.lift_inj, ← (basis.span hv).mk_eq_dim,
cardinal.mk_range_eq_of_injective (@linear_independent.injective ι R M v _ _ _ _ hv)]
end
lemma dim_span_set {s : set M} (hs : linear_independent R (λ x, x : s → M)) :
module.rank R ↥(span R s) = #s :=
by { rw [← @set_of_mem_eq _ s, ← subtype.range_coe_subtype], exact dim_span hs }
/-- If `N` is a submodule in a free, finitely generated module,
do induction on adjoining a linear independent element to a submodule. -/
def submodule.induction_on_rank [is_domain R] [fintype ι] (b : basis ι R M)
(P : submodule R M → Sort*) (ih : ∀ (N : submodule R M),
(∀ (N' ≤ N) (x ∈ N), (∀ (c : R) (y ∈ N'), c • x + y = (0 : M) → c = 0) → P N') →
P N)
(N : submodule R M) : P N :=
submodule.induction_on_rank_aux b P ih (fintype.card ι) N (λ s hs hli,
by simpa using b.card_le_card_of_linear_independent hli)
/-- If `S` a finite-dimensional ring extension of `R` which is free as an `R`-module,
then the rank of an ideal `I` of `S` over `R` is the same as the rank of `S`.
-/
lemma ideal.rank_eq {R S : Type*} [comm_ring R] [strong_rank_condition R] [ring S] [is_domain S]
[algebra R S] {n m : Type*} [fintype n] [fintype m]
(b : basis n R S) {I : ideal S} (hI : I ≠ ⊥) (c : basis m R I) :
fintype.card m = fintype.card n :=
begin
obtain ⟨a, ha⟩ := submodule.nonzero_mem_of_bot_lt (bot_lt_iff_ne_bot.mpr hI),
have : linear_independent R (λ i, b i • a),
{ have hb := b.linear_independent,
rw fintype.linear_independent_iff at ⊢ hb,
intros g hg,
apply hb g,
simp only [← smul_assoc, ← finset.sum_smul, smul_eq_zero] at hg,
exact hg.resolve_right ha },
exact le_antisymm
(b.card_le_card_of_linear_independent (c.linear_independent.map' (submodule.subtype I)
(linear_map.ker_eq_bot.mpr subtype.coe_injective)))
(c.card_le_card_of_linear_independent this),
end
variables (R)
@[simp] lemma dim_self : module.rank R R = 1 :=
by rw [←cardinal.lift_inj, ← (basis.singleton punit R).mk_eq_dim, cardinal.mk_punit]
end strong_rank_condition
section division_ring
variables [division_ring K] [add_comm_group V] [module K V] [add_comm_group V₁] [module K V₁]
variables {K V}
/-- If a vector space has a finite dimension, the index set of `basis.of_vector_space` is finite. -/
lemma basis.finite_of_vector_space_index_of_dim_lt_aleph_0 (h : module.rank K V < ℵ₀) :
(basis.of_vector_space_index K V).finite :=
finite_def.2 $ (basis.of_vector_space K V).nonempty_fintype_index_of_dim_lt_aleph_0 h
variables [add_comm_group V'] [module K V']
/-- Two vector spaces are isomorphic if they have the same dimension. -/
theorem nonempty_linear_equiv_of_lift_dim_eq
(cond : cardinal.lift.{v'} (module.rank K V) = cardinal.lift.{v} (module.rank K V')) :
nonempty (V ≃ₗ[K] V') :=
begin
let B := basis.of_vector_space K V,
let B' := basis.of_vector_space K V',
have : cardinal.lift.{v' v} (#_) = cardinal.lift.{v v'} (#_),
by rw [B.mk_eq_dim'', cond, B'.mk_eq_dim''],
exact (cardinal.lift_mk_eq.{v v' 0}.1 this).map (B.equiv B')
end
/-- Two vector spaces are isomorphic if they have the same dimension. -/
theorem nonempty_linear_equiv_of_dim_eq (cond : module.rank K V = module.rank K V₁) :
nonempty (V ≃ₗ[K] V₁) :=
nonempty_linear_equiv_of_lift_dim_eq $ congr_arg _ cond
section
variables (V V' V₁)
/-- Two vector spaces are isomorphic if they have the same dimension. -/
def linear_equiv.of_lift_dim_eq
(cond : cardinal.lift.{v'} (module.rank K V) = cardinal.lift.{v} (module.rank K V')) :
V ≃ₗ[K] V' :=
classical.choice (nonempty_linear_equiv_of_lift_dim_eq cond)
/-- Two vector spaces are isomorphic if they have the same dimension. -/
def linear_equiv.of_dim_eq (cond : module.rank K V = module.rank K V₁) : V ≃ₗ[K] V₁ :=
classical.choice (nonempty_linear_equiv_of_dim_eq cond)
end
/-- Two vector spaces are isomorphic if and only if they have the same dimension. -/
theorem linear_equiv.nonempty_equiv_iff_lift_dim_eq :
nonempty (V ≃ₗ[K] V') ↔
cardinal.lift.{v'} (module.rank K V) = cardinal.lift.{v} (module.rank K V') :=
⟨λ ⟨h⟩, linear_equiv.lift_dim_eq h, λ h, nonempty_linear_equiv_of_lift_dim_eq h⟩
/-- Two vector spaces are isomorphic if and only if they have the same dimension. -/
theorem linear_equiv.nonempty_equiv_iff_dim_eq :
nonempty (V ≃ₗ[K] V₁) ↔ module.rank K V = module.rank K V₁ :=
⟨λ ⟨h⟩, linear_equiv.dim_eq h, λ h, nonempty_linear_equiv_of_dim_eq h⟩
-- TODO how far can we generalise this?
-- When `s` is finite, we could prove this for any ring satisfying the strong rank condition
-- using `linear_independent_le_span'`
lemma dim_span_le (s : set V) : module.rank K (span K s) ≤ #s :=
begin
obtain ⟨b, hb, hsab, hlib⟩ := exists_linear_independent K s,
convert cardinal.mk_le_mk_of_subset hb,
rw [← hsab, dim_span_set hlib]
end
lemma dim_span_of_finset (s : finset V) :
module.rank K (span K (↑s : set V)) < ℵ₀ :=
calc module.rank K (span K (↑s : set V)) ≤ #(↑s : set V) : dim_span_le ↑s
... = s.card : by rw [finset.coe_sort_coe, cardinal.mk_coe_finset]
... < ℵ₀ : cardinal.nat_lt_aleph_0 _
theorem dim_prod : module.rank K (V × V₁) = module.rank K V + module.rank K V₁ :=
begin
let b := basis.of_vector_space K V,
let c := basis.of_vector_space K V₁,
rw [← cardinal.lift_inj,
← (basis.prod b c).mk_eq_dim,
cardinal.lift_add, ← cardinal.mk_ulift,
← b.mk_eq_dim, ← c.mk_eq_dim,
← cardinal.mk_ulift, ← cardinal.mk_ulift,
cardinal.add_def (ulift _)],
exact cardinal.lift_inj.1 (cardinal.lift_mk_eq.2
⟨equiv.ulift.trans (equiv.sum_congr equiv.ulift equiv.ulift).symm ⟩),
end
section fintype
variable [fintype η]
variables [∀i, add_comm_group (φ i)] [∀i, module K (φ i)]
open linear_map
lemma dim_pi : module.rank K (Πi, φ i) = cardinal.sum (λi, module.rank K (φ i)) :=
begin
let b := assume i, basis.of_vector_space K (φ i),
let this : basis (Σ j, _) K (Π j, φ j) := pi.basis b,
rw [← cardinal.lift_inj, ← this.mk_eq_dim],
simp [← (b _).mk_range_eq_dim]
end
lemma dim_fun {V η : Type u} [fintype η] [add_comm_group V] [module K V] :
module.rank K (η → V) = fintype.card η * module.rank K V :=
by rw [dim_pi, cardinal.sum_const', cardinal.mk_fintype]
lemma dim_fun_eq_lift_mul :
module.rank K (η → V) = (fintype.card η : cardinal.{max u₁' v}) *
cardinal.lift.{u₁'} (module.rank K V) :=
by rw [dim_pi, cardinal.sum_const, cardinal.mk_fintype, cardinal.lift_nat_cast]
lemma dim_fun' : module.rank K (η → K) = fintype.card η :=
by rw [dim_fun_eq_lift_mul, dim_self, cardinal.lift_one, mul_one, cardinal.nat_cast_inj]
lemma dim_fin_fun (n : ℕ) : module.rank K (fin n → K) = n :=
by simp [dim_fun']
end fintype
end division_ring
section field
variables [field K] [add_comm_group V] [module K V] [add_comm_group V₁] [module K V₁]
variables [add_comm_group V'] [module K V']
theorem dim_quotient_add_dim (p : submodule K V) :
module.rank K (V ⧸ p) + module.rank K p = module.rank K V :=
by classical; exact let ⟨f⟩ := quotient_prod_linear_equiv p in dim_prod.symm.trans f.dim_eq
/-- rank-nullity theorem -/
theorem dim_range_add_dim_ker (f : V →ₗ[K] V₁) :
module.rank K f.range + module.rank K f.ker = module.rank K V :=
begin
haveI := λ (p : submodule K V), classical.dec_eq (V ⧸ p),
rw [← f.quot_ker_equiv_range.dim_eq, dim_quotient_add_dim]
end
lemma dim_eq_of_surjective (f : V →ₗ[K] V₁) (h : surjective f) :
module.rank K V = module.rank K V₁ + module.rank K f.ker :=
by rw [← dim_range_add_dim_ker f, ← dim_range_of_surjective f h]
section
variables [add_comm_group V₂] [module K V₂]
variables [add_comm_group V₃] [module K V₃]
open linear_map
/-- This is mostly an auxiliary lemma for `dim_sup_add_dim_inf_eq`. -/
lemma dim_add_dim_split
(db : V₂ →ₗ[K] V) (eb : V₃ →ₗ[K] V) (cd : V₁ →ₗ[K] V₂) (ce : V₁ →ₗ[K] V₃)
(hde : ⊤ ≤ db.range ⊔ eb.range)
(hgd : ker cd = ⊥)
(eq : db.comp cd = eb.comp ce)
(eq₂ : ∀d e, db d = eb e → (∃c, cd c = d ∧ ce c = e)) :
module.rank K V + module.rank K V₁ = module.rank K V₂ + module.rank K V₃ :=
have hf : surjective (coprod db eb),
by rwa [←range_eq_top, range_coprod, eq_top_iff],
begin
conv {to_rhs, rw [← dim_prod, dim_eq_of_surjective _ hf] },
congr' 1,
apply linear_equiv.dim_eq,
refine linear_equiv.of_bijective _ _ _,
{ refine cod_restrict _ (prod cd (- ce)) _,
{ assume c,
simp only [add_eq_zero_iff_eq_neg, linear_map.prod_apply, mem_ker, pi.prod,
coprod_apply, neg_neg, map_neg, neg_apply],
exact linear_map.ext_iff.1 eq c } },
{ rw [← ker_eq_bot, ker_cod_restrict, ker_prod, hgd, bot_inf_eq] },
{ rw [← range_eq_top, eq_top_iff, range_cod_restrict, ← map_le_iff_le_comap,
map_top, range_subtype],
rintros ⟨d, e⟩,
have h := eq₂ d (-e),
simp only [add_eq_zero_iff_eq_neg, linear_map.prod_apply, mem_ker, set_like.mem_coe,
prod.mk.inj_iff, coprod_apply, map_neg, neg_apply, linear_map.mem_range, pi.prod] at ⊢ h,
assume hde,
rcases h hde with ⟨c, h₁, h₂⟩,
refine ⟨c, h₁, _⟩,
rw [h₂, _root_.neg_neg] }
end
lemma dim_sup_add_dim_inf_eq (s t : submodule K V) :
module.rank K (s ⊔ t : submodule K V) + module.rank K (s ⊓ t : submodule K V) =
module.rank K s + module.rank K t :=
dim_add_dim_split (of_le le_sup_left) (of_le le_sup_right) (of_le inf_le_left) (of_le inf_le_right)
begin
rw [← map_le_map_iff' (ker_subtype $ s ⊔ t), map_sup, map_top,
← linear_map.range_comp, ← linear_map.range_comp, subtype_comp_of_le, subtype_comp_of_le,
range_subtype, range_subtype, range_subtype],
exact le_rfl
end
(ker_of_le _ _ _)
begin ext ⟨x, hx⟩, refl end
begin
rintros ⟨b₁, hb₁⟩ ⟨b₂, hb₂⟩ eq,
obtain rfl : b₁ = b₂ := congr_arg subtype.val eq,
exact ⟨⟨b₁, hb₁, hb₂⟩, rfl, rfl⟩
end
lemma dim_add_le_dim_add_dim (s t : submodule K V) :
module.rank K (s ⊔ t : submodule K V) ≤ module.rank K s + module.rank K t :=
by { rw [← dim_sup_add_dim_inf_eq], exact self_le_add_right _ _ }
end
lemma exists_mem_ne_zero_of_dim_pos {s : submodule K V} (h : 0 < module.rank K s) :
∃ b : V, b ∈ s ∧ b ≠ 0 :=
exists_mem_ne_zero_of_ne_bot $ assume eq, by rw [eq, dim_bot] at h; exact lt_irrefl _ h
end field
section rank
section
variables [ring K] [add_comm_group V] [module K V] [add_comm_group V₁] [module K V₁]
variables [add_comm_group V'] [module K V']
/-- `rank f` is the rank of a `linear_map f`, defined as the dimension of `f.range`. -/
def rank (f : V →ₗ[K] V') : cardinal := module.rank K f.range
lemma rank_le_range (f : V →ₗ[K] V₁) : rank f ≤ module.rank K V₁ :=
dim_submodule_le _
@[simp] lemma rank_zero [nontrivial K] : rank (0 : V →ₗ[K] V') = 0 :=
by rw [rank, linear_map.range_zero, dim_bot]
variables [add_comm_group V''] [module K V'']
lemma rank_comp_le1 (g : V →ₗ[K] V') (f : V' →ₗ[K] V'') : rank (f.comp g) ≤ rank f :=
begin
refine dim_le_of_submodule _ _ _,
rw [linear_map.range_comp],
exact linear_map.map_le_range,
end
variables [add_comm_group V'₁] [module K V'₁]
lemma rank_comp_le2 (g : V →ₗ[K] V') (f : V' →ₗ[K] V'₁) : rank (f.comp g) ≤ rank g :=
by rw [rank, rank, linear_map.range_comp]; exact dim_map_le _ _
end
section field
variables [field K] [add_comm_group V] [module K V] [add_comm_group V₁] [module K V₁]
variables [add_comm_group V'] [module K V']
lemma rank_le_domain (f : V →ₗ[K] V₁) : rank f ≤ module.rank K V :=
by { rw [← dim_range_add_dim_ker f], exact self_le_add_right _ _ }
lemma rank_add_le (f g : V →ₗ[K] V') : rank (f + g) ≤ rank f + rank g :=
calc rank (f + g) ≤ module.rank K (f.range ⊔ g.range : submodule K V') :
begin
refine dim_le_of_submodule _ _ _,
exact (linear_map.range_le_iff_comap.2 $ eq_top_iff'.2 $
assume x, show f x + g x ∈ (f.range ⊔ g.range : submodule K V'), from
mem_sup.2 ⟨_, ⟨x, rfl⟩, _, ⟨x, rfl⟩, rfl⟩)
end
... ≤ rank f + rank g : dim_add_le_dim_add_dim _ _
lemma rank_finset_sum_le {η} (s : finset η) (f : η → V →ₗ[K] V') :
rank (∑ d in s, f d) ≤ ∑ d in s, rank (f d) :=
@finset.sum_hom_rel _ _ _ _ _ (λa b, rank a ≤ b) f (λ d, rank (f d)) s (le_of_eq rank_zero)
(λ i g c h, le_trans (rank_add_le _ _) (add_le_add_left h _))
end field
end rank
section division_ring
variables [division_ring K] [add_comm_group V] [module K V] [add_comm_group V'] [module K V']
/-- The `ι` indexed basis on `V`, where `ι` is an empty type and `V` is zero-dimensional.
See also `finite_dimensional.fin_basis`.
-/
def basis.of_dim_eq_zero {ι : Type*} [is_empty ι] (hV : module.rank K V = 0) :
basis ι K V :=
begin
haveI : subsingleton V := dim_zero_iff.1 hV,
exact basis.empty _
end
@[simp] lemma basis.of_dim_eq_zero_apply {ι : Type*} [is_empty ι]
(hV : module.rank K V = 0) (i : ι) :
basis.of_dim_eq_zero hV i = 0 :=
rfl
lemma le_dim_iff_exists_linear_independent {c : cardinal} :
c ≤ module.rank K V ↔ ∃ s : set V, #s = c ∧ linear_independent K (coe : s → V) :=
begin
split,
{ intro h,
let t := basis.of_vector_space K V,
rw [← t.mk_eq_dim'', cardinal.le_mk_iff_exists_subset] at h,
rcases h with ⟨s, hst, hsc⟩,
exact ⟨s, hsc, (of_vector_space_index.linear_independent K V).mono hst⟩ },
{ rintro ⟨s, rfl, si⟩,
exact cardinal_le_dim_of_linear_independent si }
end
lemma le_dim_iff_exists_linear_independent_finset {n : ℕ} :
↑n ≤ module.rank K V ↔
∃ s : finset V, s.card = n ∧ linear_independent K (coe : (s : set V) → V) :=
begin
simp only [le_dim_iff_exists_linear_independent, cardinal.mk_eq_nat_iff_finset],
split,
{ rintro ⟨s, ⟨t, rfl, rfl⟩, si⟩,
exact ⟨t, rfl, si⟩ },
{ rintro ⟨s, rfl, si⟩,
exact ⟨s, ⟨s, rfl, rfl⟩, si⟩ }
end
/-- A vector space has dimension at most `1` if and only if there is a
single vector of which all vectors are multiples. -/
lemma dim_le_one_iff : module.rank K V ≤ 1 ↔ ∃ v₀ : V, ∀ v, ∃ r : K, r • v₀ = v :=
begin
let b := basis.of_vector_space K V,
split,
{ intro hd,
rw [← b.mk_eq_dim'', cardinal.le_one_iff_subsingleton, subsingleton_coe] at hd,
rcases eq_empty_or_nonempty (of_vector_space_index K V) with hb | ⟨⟨v₀, hv₀⟩⟩,
{ use 0,
have h' : ∀ v : V, v = 0, { simpa [hb, submodule.eq_bot_iff] using b.span_eq.symm },
intro v,
simp [h' v] },
{ use v₀,
have h' : (K ∙ v₀) = ⊤, { simpa [hd.eq_singleton_of_mem hv₀] using b.span_eq },
intro v,
have hv : v ∈ (⊤ : submodule K V) := mem_top,
rwa [←h', mem_span_singleton] at hv } },
{ rintros ⟨v₀, hv₀⟩,
have h : (K ∙ v₀) = ⊤,
{ ext, simp [mem_span_singleton, hv₀] },
rw [←dim_top, ←h],
convert dim_span_le _,
simp }
end
/-- A submodule has dimension at most `1` if and only if there is a
single vector in the submodule such that the submodule is contained in
its span. -/
lemma dim_submodule_le_one_iff (s : submodule K V) : module.rank K s ≤ 1 ↔ ∃ v₀ ∈ s, s ≤ K ∙ v₀ :=
begin
simp_rw [dim_le_one_iff, le_span_singleton_iff],
split,
{ rintro ⟨⟨v₀, hv₀⟩, h⟩,
use [v₀, hv₀],
intros v hv,
obtain ⟨r, hr⟩ := h ⟨v, hv⟩,
use r,
simp_rw [subtype.ext_iff, coe_smul, submodule.coe_mk] at hr,
exact hr },
{ rintro ⟨v₀, hv₀, h⟩,
use ⟨v₀, hv₀⟩,
rintro ⟨v, hv⟩,
obtain ⟨r, hr⟩ := h v hv,
use r,
simp_rw [subtype.ext_iff, coe_smul, submodule.coe_mk],
exact hr }
end
/-- A submodule has dimension at most `1` if and only if there is a
single vector, not necessarily in the submodule, such that the
submodule is contained in its span. -/
lemma dim_submodule_le_one_iff' (s : submodule K V) : module.rank K s ≤ 1 ↔ ∃ v₀, s ≤ K ∙ v₀ :=
begin
rw dim_submodule_le_one_iff,
split,
{ rintros ⟨v₀, hv₀, h⟩,
exact ⟨v₀, h⟩ },
{ rintros ⟨v₀, h⟩,
by_cases hw : ∃ w : V, w ∈ s ∧ w ≠ 0,
{ rcases hw with ⟨w, hw, hw0⟩,
use [w, hw],
rcases mem_span_singleton.1 (h hw) with ⟨r', rfl⟩,
have h0 : r' ≠ 0,
{ rintro rfl,
simpa using hw0 },
rwa span_singleton_smul_eq (is_unit.mk0 _ h0) _ },
{ push_neg at hw,
rw ←submodule.eq_bot_iff at hw,
simp [hw] } }
end
lemma submodule.rank_le_one_iff_is_principal (W : submodule K V) :
module.rank K W ≤ 1 ↔ W.is_principal :=
begin
simp only [dim_le_one_iff, submodule.is_principal_iff, le_antisymm_iff,
le_span_singleton_iff, span_singleton_le_iff_mem],
split,
{ rintro ⟨⟨m, hm⟩, hm'⟩,
choose f hf using hm',
exact ⟨m, ⟨λ v hv, ⟨f ⟨v, hv⟩, congr_arg coe (hf ⟨v, hv⟩)⟩, hm⟩⟩ },
{ rintro ⟨a, ⟨h, ha⟩⟩,
choose f hf using h,
exact ⟨⟨a, ha⟩, λ v, ⟨f v.1 v.2, subtype.ext (hf v.1 v.2)⟩⟩ }
end
lemma module.rank_le_one_iff_top_is_principal :
module.rank K V ≤ 1 ↔ (⊤ : submodule K V).is_principal :=
by rw [← submodule.rank_le_one_iff_is_principal, dim_top]
end division_ring
section field
variables [field K] [add_comm_group V] [module K V] [add_comm_group V'] [module K V']
lemma le_rank_iff_exists_linear_independent {c : cardinal} {f : V →ₗ[K] V'} :
c ≤ rank f ↔
∃ s : set V, cardinal.lift.{v'} (#s) = cardinal.lift.{v} c ∧
linear_independent K (λ x : s, f x) :=
begin
rcases f.range_restrict.exists_right_inverse_of_surjective f.range_range_restrict with ⟨g, hg⟩,
have fg : left_inverse f.range_restrict g, from linear_map.congr_fun hg,
refine ⟨λ h, _, _⟩,
{ rcases le_dim_iff_exists_linear_independent.1 h with ⟨s, rfl, si⟩,
refine ⟨g '' s, cardinal.mk_image_eq_lift _ _ fg.injective, _⟩,
replace fg : ∀ x, f (g x) = x, by { intro x, convert congr_arg subtype.val (fg x) },
replace si : linear_independent K (λ x : s, f (g x)),
by simpa only [fg] using si.map' _ (ker_subtype _),
exact si.image_of_comp s g f },
{ rintro ⟨s, hsc, si⟩,
have : linear_independent K (λ x : s, f.range_restrict x),
from linear_independent.of_comp (f.range.subtype) (by convert si),
convert cardinal_le_dim_of_linear_independent this.image,
rw [← cardinal.lift_inj, ← hsc, cardinal.mk_image_eq_of_inj_on_lift],
exact inj_on_iff_injective.2 this.injective }
end
lemma le_rank_iff_exists_linear_independent_finset {n : ℕ} {f : V →ₗ[K] V'} :
↑n ≤ rank f ↔ ∃ s : finset V, s.card = n ∧ linear_independent K (λ x : (s : set V), f x) :=
begin
simp only [le_rank_iff_exists_linear_independent, cardinal.lift_nat_cast,
cardinal.lift_eq_nat_iff, cardinal.mk_eq_nat_iff_finset],
split,
{ rintro ⟨s, ⟨t, rfl, rfl⟩, si⟩,
exact ⟨t, rfl, si⟩ },
{ rintro ⟨s, rfl, si⟩,
exact ⟨s, ⟨s, rfl, rfl⟩, si⟩ }
end
end field
end module
|