Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 10,023 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import algebra.geom_sum
import linear_algebra.smodeq
import ring_theory.ideal.quotient
import ring_theory.jacobson_ideal
/-!
# Completion of a module with respect to an ideal.
In this file we define the notions of Hausdorff, precomplete, and complete for an `R`-module `M`
with respect to an ideal `I`:
## Main definitions
- `is_Hausdorff I M`: this says that the intersection of `I^n M` is `0`.
- `is_precomplete I M`: this says that every Cauchy sequence converges.
- `is_adic_complete I M`: this says that `M` is Hausdorff and precomplete.
- `Hausdorffification I M`: this is the universal Hausdorff module with a map from `M`.
- `completion I M`: if `I` is finitely generated, then this is the universal complete module (TODO)
with a map from `M`. This map is injective iff `M` is Hausdorff and surjective iff `M` is
precomplete.
-/
open submodule
variables {R : Type*} [comm_ring R] (I : ideal R)
variables (M : Type*) [add_comm_group M] [module R M]
variables {N : Type*} [add_comm_group N] [module R N]
/-- A module `M` is Hausdorff with respect to an ideal `I` if `β I^n M = 0`. -/
class is_Hausdorff : Prop :=
(haus' : β x : M, (β n : β, x β‘ 0 [SMOD (I ^ n β’ β€ : submodule R M)]) β x = 0)
/-- A module `M` is precomplete with respect to an ideal `I` if every Cauchy sequence converges. -/
class is_precomplete : Prop :=
(prec' : β f : β β M,
(β {m n}, m β€ n β f m β‘ f n [SMOD (I ^ m β’ β€ : submodule R M)]) β
β L : M, β n, f n β‘ L [SMOD (I ^ n β’ β€ : submodule R M)])
/-- A module `M` is `I`-adically complete if it is Hausdorff and precomplete. -/
class is_adic_complete extends is_Hausdorff I M, is_precomplete I M : Prop
variables {I M}
theorem is_Hausdorff.haus (h : is_Hausdorff I M) :
β x : M, (β n : β, x β‘ 0 [SMOD (I ^ n β’ β€ : submodule R M)]) β x = 0 := is_Hausdorff.haus'
theorem is_Hausdorff_iff : is_Hausdorff I M β
β x : M, (β n : β, x β‘ 0 [SMOD (I ^ n β’ β€ : submodule R M)]) β x = 0 :=
β¨is_Hausdorff.haus, Ξ» h, β¨hβ©β©
theorem is_precomplete.prec (h : is_precomplete I M) {f : β β M} :
(β {m n}, m β€ n β f m β‘ f n [SMOD (I ^ m β’ β€ : submodule R M)]) β
β L : M, β n, f n β‘ L [SMOD (I ^ n β’ β€ : submodule R M)] := is_precomplete.prec' _
theorem is_precomplete_iff : is_precomplete I M β β f : β β M,
(β {m n}, m β€ n β f m β‘ f n [SMOD (I ^ m β’ β€ : submodule R M)]) β
β L : M, β n, f n β‘ L [SMOD (I ^ n β’ β€ : submodule R M)] :=
β¨Ξ» h, h.1, Ξ» h, β¨hβ©β©
variables (I M)
/-- The Hausdorffification of a module with respect to an ideal. -/
@[reducible] def Hausdorffification : Type* :=
M β§Έ (β¨
n : β, I ^ n β’ β€ : submodule R M)
/-- The completion of a module with respect to an ideal. This is not necessarily Hausdorff.
In fact, this is only complete if the ideal is finitely generated. -/
def adic_completion : submodule R (Ξ n : β, (M β§Έ (I ^ n β’ β€ : submodule R M))) :=
{ carrier := { f | β {m n} (h : m β€ n), liftq _ (mkq _)
(by { rw ker_mkq, exact smul_mono (ideal.pow_le_pow h) le_rfl }) (f n) = f m },
zero_mem' := Ξ» m n hmn, by rw [pi.zero_apply, pi.zero_apply, linear_map.map_zero],
add_mem' := Ξ» f g hf hg m n hmn, by rw [pi.add_apply, pi.add_apply,
linear_map.map_add, hf hmn, hg hmn],
smul_mem' := Ξ» c f hf m n hmn, by rw [pi.smul_apply, pi.smul_apply, linear_map.map_smul, hf hmn] }
namespace is_Hausdorff
instance bot : is_Hausdorff (β₯ : ideal R) M :=
β¨Ξ» x hx, by simpa only [pow_one β₯, bot_smul, smodeq.bot] using hx 1β©
variables {M}
protected theorem subsingleton (h : is_Hausdorff (β€ : ideal R) M) : subsingleton M :=
β¨Ξ» x y, eq_of_sub_eq_zero $ h.haus (x - y) $ Ξ» n,
by { rw [ideal.top_pow, top_smul], exact smodeq.top }β©
variables (M)
@[priority 100] instance of_subsingleton [subsingleton M] : is_Hausdorff I M :=
β¨Ξ» x _, subsingleton.elim _ _β©
variables {I M}
theorem infi_pow_smul (h : is_Hausdorff I M) :
(β¨
n : β, I ^ n β’ β€ : submodule R M) = β₯ :=
eq_bot_iff.2 $ Ξ» x hx, (mem_bot _).2 $ h.haus x $ Ξ» n, smodeq.zero.2 $
(mem_infi $ Ξ» n : β, I ^ n β’ β€).1 hx n
end is_Hausdorff
namespace Hausdorffification
/-- The canonical linear map to the Hausdorffification. -/
def of : M ββ[R] Hausdorffification I M := mkq _
variables {I M}
@[elab_as_eliminator]
lemma induction_on {C : Hausdorffification I M β Prop} (x : Hausdorffification I M)
(ih : β x, C (of I M x)) : C x :=
quotient.induction_on' x ih
variables (I M)
instance : is_Hausdorff I (Hausdorffification I M) :=
β¨Ξ» x, quotient.induction_on' x $ Ξ» x hx, (quotient.mk_eq_zero _).2 $ (mem_infi _).2 $ Ξ» n, begin
have := comap_map_mkq (β¨
n : β, I ^ n β’ β€ : submodule R M) (I ^ n β’ β€),
simp only [sup_of_le_right (infi_le (Ξ» n, (I ^ n β’ β€ : submodule R M)) n)] at this,
rw [β this, map_smul'', mem_comap, map_top, range_mkq, β smodeq.zero], exact hx n
endβ©
variables {M} [h : is_Hausdorff I N]
include h
/-- universal property of Hausdorffification: any linear map to a Hausdorff module extends to a
unique map from the Hausdorffification. -/
def lift (f : M ββ[R] N) : Hausdorffification I M ββ[R] N :=
liftq _ f $ map_le_iff_le_comap.1 $ h.infi_pow_smul βΈ le_infi (Ξ» n,
le_trans (map_mono $ infi_le _ n) $ by { rw map_smul'', exact smul_mono le_rfl le_top })
theorem lift_of (f : M ββ[R] N) (x : M) : lift I f (of I M x) = f x := rfl
theorem lift_comp_of (f : M ββ[R] N) : (lift I f).comp (of I M) = f :=
linear_map.ext $ Ξ» _, rfl
/-- Uniqueness of lift. -/
theorem lift_eq (f : M ββ[R] N) (g : Hausdorffification I M ββ[R] N) (hg : g.comp (of I M) = f) :
g = lift I f :=
linear_map.ext $ Ξ» x, induction_on x $ Ξ» x, by rw [lift_of, β hg, linear_map.comp_apply]
end Hausdorffification
namespace is_precomplete
instance bot : is_precomplete (β₯ : ideal R) M :=
begin
refine β¨Ξ» f hf, β¨f 1, Ξ» n, _β©β©, cases n,
{ rw [pow_zero, ideal.one_eq_top, top_smul], exact smodeq.top },
specialize hf (nat.le_add_left 1 n),
rw [pow_one, bot_smul, smodeq.bot] at hf, rw hf
end
instance top : is_precomplete (β€ : ideal R) M :=
β¨Ξ» f hf, β¨0, Ξ» n, by { rw [ideal.top_pow, top_smul], exact smodeq.top }β©β©
@[priority 100] instance of_subsingleton [subsingleton M] : is_precomplete I M :=
β¨Ξ» f hf, β¨0, Ξ» n, by rw subsingleton.elim (f n) 0β©β©
end is_precomplete
namespace adic_completion
/-- The canonical linear map to the completion. -/
def of : M ββ[R] adic_completion I M :=
{ to_fun := Ξ» x, β¨Ξ» n, mkq _ x, Ξ» m n hmn, rflβ©,
map_add' := Ξ» x y, rfl,
map_smul' := Ξ» c x, rfl }
@[simp] lemma of_apply (x : M) (n : β) : (of I M x).1 n = mkq _ x := rfl
/-- Linearly evaluating a sequence in the completion at a given input. -/
def eval (n : β) : adic_completion I M ββ[R] (M β§Έ (I ^ n β’ β€ : submodule R M)) :=
{ to_fun := Ξ» f, f.1 n,
map_add' := Ξ» f g, rfl,
map_smul' := Ξ» c f, rfl }
@[simp] lemma coe_eval (n : β) :
(eval I M n : adic_completion I M β (M β§Έ (I ^ n β’ β€ : submodule R M))) = Ξ» f, f.1 n := rfl
lemma eval_apply (n : β) (f : adic_completion I M) : eval I M n f = f.1 n := rfl
lemma eval_of (n : β) (x : M) : eval I M n (of I M x) = mkq _ x := rfl
@[simp] lemma eval_comp_of (n : β) : (eval I M n).comp (of I M) = mkq _ := rfl
@[simp] lemma range_eval (n : β) : (eval I M n).range = β€ :=
linear_map.range_eq_top.2 $ Ξ» x, quotient.induction_on' x $ Ξ» x, β¨of I M x, rflβ©
variables {I M}
@[ext] lemma ext {x y : adic_completion I M} (h : β n, eval I M n x = eval I M n y) : x = y :=
subtype.eq $ funext h
variables (I M)
instance : is_Hausdorff I (adic_completion I M) :=
β¨Ξ» x hx, ext $ Ξ» n, smul_induction_on (smodeq.zero.1 $ hx n)
(Ξ» r hr x _, ((eval I M n).map_smul r x).symm βΈ quotient.induction_on' (eval I M n x)
(Ξ» x, smodeq.zero.2 $ smul_mem_smul hr mem_top))
(Ξ» _ _ ih1 ih2, by rw [linear_map.map_add, ih1, ih2, linear_map.map_zero, add_zero])β©
end adic_completion
namespace is_adic_complete
instance bot : is_adic_complete (β₯ : ideal R) M := {}
protected theorem subsingleton (h : is_adic_complete (β€ : ideal R) M) : subsingleton M :=
h.1.subsingleton
@[priority 100] instance of_subsingleton [subsingleton M] : is_adic_complete I M := {}
open_locale big_operators
open finset
lemma le_jacobson_bot [is_adic_complete I R] : I β€ (β₯ : ideal R).jacobson :=
begin
intros x hx,
rw [β ideal.neg_mem_iff, ideal.mem_jacobson_bot],
intros y,
rw add_comm,
let f : β β R := Ξ» n, β i in range n, (x * y) ^ i,
have hf : β m n, m β€ n β f m β‘ f n [SMOD I ^ m β’ (β€ : submodule R R)],
{ intros m n h,
simp only [f, algebra.id.smul_eq_mul, ideal.mul_top, smodeq.sub_mem],
rw [β add_tsub_cancel_of_le h, finset.sum_range_add, β sub_sub, sub_self, zero_sub,
neg_mem_iff],
apply submodule.sum_mem,
intros n hn,
rw [mul_pow, pow_add, mul_assoc],
exact ideal.mul_mem_right _ (I ^ m) (ideal.pow_mem_pow hx m) },
obtain β¨L, hLβ© := is_precomplete.prec to_is_precomplete hf,
{ rw is_unit_iff_exists_inv,
use L,
rw [β sub_eq_zero, neg_mul],
apply is_Hausdorff.haus (to_is_Hausdorff : is_Hausdorff I R),
intros n,
specialize hL n,
rw [smodeq.sub_mem, algebra.id.smul_eq_mul, ideal.mul_top] at β’ hL,
rw sub_zero,
suffices : (1 - x * y) * (f n) - 1 β I ^ n,
{ convert (ideal.sub_mem _ this (ideal.mul_mem_left _ (1 + - (x * y)) hL)) using 1,
ring },
cases n,
{ simp only [ideal.one_eq_top, pow_zero] },
{ dsimp [f],
rw [β neg_sub _ (1:R), neg_mul, mul_geom_sum, neg_sub,
sub_sub, add_comm, β sub_sub, sub_self, zero_sub, neg_mem_iff, mul_pow],
exact ideal.mul_mem_right _ (I ^ _) (ideal.pow_mem_pow hx _), } },
end
end is_adic_complete
|