Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 10,023 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/

import algebra.geom_sum
import linear_algebra.smodeq
import ring_theory.ideal.quotient
import ring_theory.jacobson_ideal

/-!
# Completion of a module with respect to an ideal.

In this file we define the notions of Hausdorff, precomplete, and complete for an `R`-module `M`
with respect to an ideal `I`:

## Main definitions

- `is_Hausdorff I M`: this says that the intersection of `I^n M` is `0`.
- `is_precomplete I M`: this says that every Cauchy sequence converges.
- `is_adic_complete I M`: this says that `M` is Hausdorff and precomplete.
- `Hausdorffification I M`: this is the universal Hausdorff module with a map from `M`.
- `completion I M`: if `I` is finitely generated, then this is the universal complete module (TODO)
  with a map from `M`. This map is injective iff `M` is Hausdorff and surjective iff `M` is
  precomplete.

-/

open submodule

variables {R : Type*} [comm_ring R] (I : ideal R)
variables (M : Type*) [add_comm_group M] [module R M]
variables {N : Type*} [add_comm_group N] [module R N]

/-- A module `M` is Hausdorff with respect to an ideal `I` if `β‹‚ I^n M = 0`. -/
class is_Hausdorff : Prop :=
(haus' : βˆ€ x : M, (βˆ€ n : β„•, x ≑ 0 [SMOD (I ^ n β€’ ⊀ : submodule R M)]) β†’ x = 0)

/-- A module `M` is precomplete with respect to an ideal `I` if every Cauchy sequence converges. -/
class is_precomplete : Prop :=
(prec' : βˆ€ f : β„• β†’ M,
  (βˆ€ {m n}, m ≀ n β†’ f m ≑ f n [SMOD (I ^ m β€’ ⊀ : submodule R M)]) β†’
  βˆƒ L : M, βˆ€ n, f n ≑ L [SMOD (I ^ n β€’ ⊀ : submodule R M)])

/-- A module `M` is `I`-adically complete if it is Hausdorff and precomplete. -/
class is_adic_complete extends is_Hausdorff I M, is_precomplete I M : Prop

variables {I M}

theorem is_Hausdorff.haus (h : is_Hausdorff I M) :
  βˆ€ x : M, (βˆ€ n : β„•, x ≑ 0 [SMOD (I ^ n β€’ ⊀ : submodule R M)]) β†’ x = 0 := is_Hausdorff.haus'

theorem is_Hausdorff_iff : is_Hausdorff I M ↔
  βˆ€ x : M, (βˆ€ n : β„•, x ≑ 0 [SMOD (I ^ n β€’ ⊀ : submodule R M)]) β†’ x = 0 :=
⟨is_Hausdorff.haus, λ h, ⟨h⟩⟩

theorem is_precomplete.prec (h : is_precomplete I M) {f : β„• β†’ M} :
  (βˆ€ {m n}, m ≀ n β†’ f m ≑ f n [SMOD (I ^ m β€’ ⊀ : submodule R M)]) β†’
  βˆƒ L : M, βˆ€ n, f n ≑ L [SMOD (I ^ n β€’ ⊀ : submodule R M)] := is_precomplete.prec' _

theorem is_precomplete_iff : is_precomplete I M ↔ βˆ€ f : β„• β†’ M,
  (βˆ€ {m n}, m ≀ n β†’ f m ≑ f n [SMOD (I ^ m β€’ ⊀ : submodule R M)]) β†’
  βˆƒ L : M, βˆ€ n, f n ≑ L [SMOD (I ^ n β€’ ⊀ : submodule R M)] :=
⟨λ h, h.1, λ h, ⟨h⟩⟩

variables (I M)

/-- The Hausdorffification of a module with respect to an ideal. -/
@[reducible] def Hausdorffification : Type* :=
M β§Έ (β¨… n : β„•, I ^ n β€’ ⊀ : submodule R M)

/-- The completion of a module with respect to an ideal. This is not necessarily Hausdorff.
In fact, this is only complete if the ideal is finitely generated. -/
def adic_completion : submodule R (Ξ  n : β„•, (M β§Έ (I ^ n β€’ ⊀ : submodule R M))) :=
{ carrier := { f | βˆ€ {m n} (h : m ≀ n), liftq _ (mkq _)
    (by { rw ker_mkq, exact smul_mono (ideal.pow_le_pow h) le_rfl }) (f n) = f m },
  zero_mem' := Ξ» m n hmn, by rw [pi.zero_apply, pi.zero_apply, linear_map.map_zero],
  add_mem' := Ξ» f g hf hg m n hmn, by rw [pi.add_apply, pi.add_apply,
    linear_map.map_add, hf hmn, hg hmn],
  smul_mem' := Ξ» c f hf m n hmn, by rw [pi.smul_apply, pi.smul_apply, linear_map.map_smul, hf hmn] }

namespace is_Hausdorff

instance bot : is_Hausdorff (βŠ₯ : ideal R) M :=
⟨λ x hx, by simpa only [pow_one βŠ₯, bot_smul, smodeq.bot] using hx 1⟩

variables {M}
protected theorem subsingleton (h : is_Hausdorff (⊀ : ideal R) M) : subsingleton M :=
⟨λ x y, eq_of_sub_eq_zero $ h.haus (x - y) $ λ n,
  by { rw [ideal.top_pow, top_smul], exact smodeq.top }⟩
variables (M)

@[priority 100] instance of_subsingleton [subsingleton M] : is_Hausdorff I M :=
⟨λ x _, subsingleton.elim _ _⟩

variables {I M}
theorem infi_pow_smul (h : is_Hausdorff I M) :
  (β¨… n : β„•, I ^ n β€’ ⊀ : submodule R M) = βŠ₯ :=
eq_bot_iff.2 $ Ξ» x hx, (mem_bot _).2 $ h.haus x $ Ξ» n, smodeq.zero.2 $
(mem_infi $ Ξ» n : β„•, I ^ n β€’ ⊀).1 hx n

end is_Hausdorff

namespace Hausdorffification

/-- The canonical linear map to the Hausdorffification. -/
def of : M β†’β‚—[R] Hausdorffification I M := mkq _

variables {I M}
@[elab_as_eliminator]
lemma induction_on {C : Hausdorffification I M β†’ Prop} (x : Hausdorffification I M)
  (ih : βˆ€ x, C (of I M x)) : C x :=
quotient.induction_on' x ih
variables (I M)

instance : is_Hausdorff I (Hausdorffification I M) :=
⟨λ x, quotient.induction_on' x $ λ x hx, (quotient.mk_eq_zero _).2 $ (mem_infi _).2 $ λ n, begin
  have := comap_map_mkq (β¨… n : β„•, I ^ n β€’ ⊀ : submodule R M) (I ^ n β€’ ⊀),
  simp only [sup_of_le_right (infi_le (Ξ» n, (I ^ n β€’ ⊀ : submodule R M)) n)] at this,
  rw [← this, map_smul'', mem_comap, map_top, range_mkq, ← smodeq.zero], exact hx n
end⟩

variables {M} [h : is_Hausdorff I N]
include h

/-- universal property of Hausdorffification: any linear map to a Hausdorff module extends to a
unique map from the Hausdorffification. -/
def lift (f : M β†’β‚—[R] N) : Hausdorffification I M β†’β‚—[R] N :=
liftq _ f $ map_le_iff_le_comap.1 $ h.infi_pow_smul β–Έ le_infi (Ξ» n,
le_trans (map_mono $ infi_le _ n) $ by { rw map_smul'', exact smul_mono le_rfl le_top })

theorem lift_of (f : M β†’β‚—[R] N) (x : M) : lift I f (of I M x) = f x := rfl

theorem lift_comp_of (f : M β†’β‚—[R] N) : (lift I f).comp (of I M) = f :=
linear_map.ext $ Ξ» _, rfl

/-- Uniqueness of lift. -/
theorem lift_eq (f : M β†’β‚—[R] N) (g : Hausdorffification I M β†’β‚—[R] N) (hg : g.comp (of I M) = f) :
  g = lift I f :=
linear_map.ext $ Ξ» x, induction_on x $ Ξ» x, by rw [lift_of, ← hg, linear_map.comp_apply]

end Hausdorffification

namespace is_precomplete

instance bot : is_precomplete (βŠ₯ : ideal R) M :=
begin
  refine ⟨λ f hf, ⟨f 1, λ n, _⟩⟩, cases n,
  { rw [pow_zero, ideal.one_eq_top, top_smul], exact smodeq.top },
  specialize hf (nat.le_add_left 1 n),
  rw [pow_one, bot_smul, smodeq.bot] at hf, rw hf
end

instance top : is_precomplete (⊀ : ideal R) M :=
⟨λ f hf, ⟨0, λ n, by { rw [ideal.top_pow, top_smul], exact smodeq.top }⟩⟩

@[priority 100] instance of_subsingleton [subsingleton M] : is_precomplete I M :=
⟨λ f hf, ⟨0, λ n, by rw subsingleton.elim (f n) 0⟩⟩

end is_precomplete

namespace adic_completion

/-- The canonical linear map to the completion. -/
def of : M β†’β‚—[R] adic_completion I M :=
{ to_fun    := λ x, ⟨λ n, mkq _ x, λ m n hmn, rfl⟩,
  map_add'  := Ξ» x y, rfl,
  map_smul' := Ξ» c x, rfl }

@[simp] lemma of_apply (x : M) (n : β„•) : (of I M x).1 n = mkq _ x := rfl

/-- Linearly evaluating a sequence in the completion at a given input. -/
def eval (n : β„•) : adic_completion I M β†’β‚—[R] (M β§Έ (I ^ n β€’ ⊀ : submodule R M)) :=
{ to_fun    := Ξ» f, f.1 n,
  map_add'  := Ξ» f g, rfl,
  map_smul' := Ξ» c f, rfl }

@[simp] lemma coe_eval (n : β„•) :
  (eval I M n : adic_completion I M β†’ (M β§Έ (I ^ n β€’ ⊀ : submodule R M))) = Ξ» f, f.1 n := rfl

lemma eval_apply (n : β„•) (f : adic_completion I M) : eval I M n f = f.1 n := rfl

lemma eval_of (n : β„•) (x : M) : eval I M n (of I M x) = mkq _ x := rfl

@[simp] lemma eval_comp_of (n : β„•) : (eval I M n).comp (of I M) = mkq _ := rfl

@[simp] lemma range_eval (n : β„•) : (eval I M n).range = ⊀ :=
linear_map.range_eq_top.2 $ λ x, quotient.induction_on' x $ λ x, ⟨of I M x, rfl⟩

variables {I M}
@[ext] lemma ext {x y : adic_completion I M} (h : βˆ€ n, eval I M n x = eval I M n y) : x = y :=
subtype.eq $ funext h
variables (I M)

instance : is_Hausdorff I (adic_completion I M) :=
⟨λ x hx, ext $ λ n, smul_induction_on (smodeq.zero.1 $ hx n)
  (Ξ» r hr x _, ((eval I M n).map_smul r x).symm β–Έ quotient.induction_on' (eval I M n x)
    (Ξ» x, smodeq.zero.2 $ smul_mem_smul hr mem_top))
  (λ _ _ ih1 ih2, by rw [linear_map.map_add, ih1, ih2, linear_map.map_zero, add_zero])⟩

end adic_completion

namespace is_adic_complete

instance bot : is_adic_complete (βŠ₯ : ideal R) M := {}

protected theorem subsingleton (h : is_adic_complete (⊀ : ideal R) M) : subsingleton M :=
h.1.subsingleton

@[priority 100] instance of_subsingleton [subsingleton M] : is_adic_complete I M := {}

open_locale big_operators
open finset

lemma le_jacobson_bot [is_adic_complete I R] : I ≀ (βŠ₯ : ideal R).jacobson :=
begin
  intros x hx,
  rw [← ideal.neg_mem_iff, ideal.mem_jacobson_bot],
  intros y,
  rw add_comm,
  let f : β„• β†’ R := Ξ» n, βˆ‘ i in range n, (x * y) ^ i,
  have hf : βˆ€ m n, m ≀ n β†’ f m ≑ f n [SMOD I ^ m β€’ (⊀ : submodule R R)],
  { intros m n h,
    simp only [f, algebra.id.smul_eq_mul, ideal.mul_top, smodeq.sub_mem],
    rw [← add_tsub_cancel_of_le h, finset.sum_range_add, ← sub_sub, sub_self, zero_sub,
      neg_mem_iff],
    apply submodule.sum_mem,
    intros n hn,
    rw [mul_pow, pow_add, mul_assoc],
    exact ideal.mul_mem_right _ (I ^ m) (ideal.pow_mem_pow hx m) },
  obtain ⟨L, hL⟩ := is_precomplete.prec to_is_precomplete hf,
  { rw is_unit_iff_exists_inv,
    use L,
    rw [← sub_eq_zero, neg_mul],
    apply is_Hausdorff.haus (to_is_Hausdorff : is_Hausdorff I R),
    intros n,
    specialize hL n,
    rw [smodeq.sub_mem, algebra.id.smul_eq_mul, ideal.mul_top] at ⊒ hL,
    rw sub_zero,
    suffices : (1 - x * y) * (f n) - 1 ∈ I ^ n,
    { convert (ideal.sub_mem _ this (ideal.mul_mem_left _ (1 + - (x * y)) hL)) using 1,
      ring },
    cases n,
    { simp only [ideal.one_eq_top, pow_zero] },
    { dsimp [f],
      rw [← neg_sub _ (1:R), neg_mul, mul_geom_sum, neg_sub,
        sub_sub, add_comm, ← sub_sub, sub_self, zero_sub, neg_mem_iff, mul_pow],
      exact ideal.mul_mem_right _ (I ^ _) (ideal.pow_mem_pow hx _), } },
end

end is_adic_complete