Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 4,885 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
/-
Copyright (c) 2022 Jireh Loreaux. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jireh Loreaux
-/
import group_theory.subsemigroup.operations
/-!
# Subsemigroups: membership criteria
In this file we prove various facts about membership in a subsemigroup.
The intent is to mimic `group_theory/submonoid/membership`, but currently this file is mostly a
stub and only provides rudimentary support.
* `mem_supr_of_directed`, `coe_supr_of_directed`, `mem_Sup_of_directed_on`,
`coe_Sup_of_directed_on`: the supremum of a directed collection of subsemigroup is their union.
## TODO
* Define the `free_semigroup` generated by a set. This might require some rather substantial
additions to low-level API. For example, developing the subtype of nonempty lists, then defining
a product on nonempty lists, powers where the exponent is a positive natural, et cetera.
Another option would be to define the `free_semigroup` as the subsemigroup (pushed to be a
semigroup) of the `free_monoid` consisting of non-identity elements.
## Tags
subsemigroup
-/
variables {ΞΉ : Sort*} {M A B : Type*}
section non_assoc
variables [has_mul M]
open set
namespace subsemigroup
-- TODO: this section can be generalized to `[mul_mem_class B M] [complete_lattice B]`
-- such that `complete_lattice.le` coincides with `set_like.le`
@[to_additive]
lemma mem_supr_of_directed {S : ΞΉ β subsemigroup M} (hS : directed (β€) S) {x : M} :
x β (β¨ i, S i) β β i, x β S i :=
begin
refine β¨_, Ξ» β¨i, hiβ©, (set_like.le_def.1 $ le_supr S i) hiβ©,
suffices : x β closure (β i, (S i : set M)) β β i, x β S i,
by simpa only [closure_Union, closure_eq (S _)] using this,
refine (Ξ» hx, closure_induction hx (Ξ» y hy, mem_Union.mp hy) _),
{ rintros x y β¨i, hiβ© β¨j, hjβ©,
rcases hS i j with β¨k, hki, hkjβ©,
exact β¨k, (S k).mul_mem (hki hi) (hkj hj)β© }
end
@[to_additive]
lemma coe_supr_of_directed {S : ΞΉ β subsemigroup M} (hS : directed (β€) S) :
((β¨ i, S i : subsemigroup M) : set M) = β i, β(S i) :=
set.ext $ Ξ» x, by simp [mem_supr_of_directed hS]
@[to_additive]
lemma mem_Sup_of_directed_on {S : set (subsemigroup M)}
(hS : directed_on (β€) S) {x : M} :
x β Sup S β β s β S, x β s :=
by simp only [Sup_eq_supr', mem_supr_of_directed hS.directed_coe, set_coe.exists, subtype.coe_mk]
@[to_additive]
lemma coe_Sup_of_directed_on {S : set (subsemigroup M)}
(hS : directed_on (β€) S) :
(β(Sup S) : set M) = β s β S, βs :=
set.ext $ Ξ» x, by simp [mem_Sup_of_directed_on hS]
@[to_additive]
lemma mem_sup_left {S T : subsemigroup M} : β {x : M}, x β S β x β S β T :=
show S β€ S β T, from le_sup_left
@[to_additive]
lemma mem_sup_right {S T : subsemigroup M} : β {x : M}, x β T β x β S β T :=
show T β€ S β T, from le_sup_right
@[to_additive]
lemma mul_mem_sup {S T : subsemigroup M} {x y : M} (hx : x β S) (hy : y β T) : x * y β S β T :=
mul_mem (mem_sup_left hx) (mem_sup_right hy)
@[to_additive]
lemma mem_supr_of_mem {S : ΞΉ β subsemigroup M} (i : ΞΉ) :
β {x : M}, x β S i β x β supr S :=
show S i β€ supr S, from le_supr _ _
@[to_additive]
lemma mem_Sup_of_mem {S : set (subsemigroup M)} {s : subsemigroup M}
(hs : s β S) : β {x : M}, x β s β x β Sup S :=
show s β€ Sup S, from le_Sup hs
/-- An induction principle for elements of `β¨ i, S i`.
If `C` holds all elements of `S i` for all `i`, and is preserved under multiplication,
then it holds for all elements of the supremum of `S`. -/
@[elab_as_eliminator, to_additive /-" An induction principle for elements of `β¨ i, S i`.
If `C` holds all elements of `S i` for all `i`, and is preserved under addition,
then it holds for all elements of the supremum of `S`. "-/]
lemma supr_induction (S : ΞΉ β subsemigroup M) {C : M β Prop} {x : M} (hx : x β β¨ i, S i)
(hp : β i (x β S i), C x)
(hmul : β x y, C x β C y β C (x * y)) : C x :=
begin
rw supr_eq_closure at hx,
refine closure_induction hx (Ξ» x hx, _) hmul,
obtain β¨i, hiβ© := set.mem_Union.mp hx,
exact hp _ _ hi,
end
/-- A dependent version of `subsemigroup.supr_induction`. -/
@[elab_as_eliminator, to_additive /-"A dependent version of `add_subsemigroup.supr_induction`. "-/]
lemma supr_induction' (S : ΞΉ β subsemigroup M) {C : Ξ x, (x β β¨ i, S i) β Prop}
(hp : β i (x β S i), C x (mem_supr_of_mem i βΉ_βΊ))
(hmul : β x y hx hy, C x hx β C y hy β C (x * y) (mul_mem βΉ_βΊ βΉ_βΊ))
{x : M} (hx : x β β¨ i, S i) : C x hx :=
begin
refine exists.elim _ (Ξ» (hx : x β β¨ i, S i) (hc : C x hx), hc),
refine supr_induction S hx (Ξ» i x hx, _) (Ξ» x y, _),
{ exact β¨_, hp _ _ hxβ© },
{ rintro β¨_, Cxβ© β¨_, Cyβ©,
exact β¨_, hmul _ _ _ _ Cx Cyβ© },
end
end subsemigroup
end non_assoc
|