Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 22,378 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 |
/-
Copyright (c) 2018 Kevin Buzzard, Patrick Massot. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kevin Buzzard, Patrick Massot
This file is to a certain extent based on `quotient_module.lean` by Johannes Hölzl.
-/
import group_theory.coset
import group_theory.congruence
/-!
# Quotients of groups by normal subgroups
This files develops the basic theory of quotients of groups by normal subgroups. In particular it
proves Noether's first and second isomorphism theorems.
## Main definitions
* `mk'`: the canonical group homomorphism `G →* G/N` given a normal subgroup `N` of `G`.
* `lift φ`: the group homomorphism `G/N →* H` given a group homomorphism `φ : G →* H` such that
`N ⊆ ker φ`.
* `map f`: the group homomorphism `G/N →* H/M` given a group homomorphism `f : G →* H` such that
`N ⊆ f⁻¹(M)`.
## Main statements
* `quotient_ker_equiv_range`: Noether's first isomorphism theorem, an explicit isomorphism
`G/ker φ → range φ` for every group homomorphism `φ : G →* H`.
* `quotient_inf_equiv_prod_normal_quotient`: Noether's second isomorphism theorem, an explicit
isomorphism between `H/(H ∩ N)` and `(HN)/N` given a subgroup `H` and a normal subgroup `N` of a
group `G`.
* `quotient_group.quotient_quotient_equiv_quotient`: Noether's third isomorphism theorem,
the canonical isomorphism between `(G / N) / (M / N)` and `G / M`, where `N ≤ M`.
## Tags
isomorphism theorems, quotient groups
-/
universes u v
namespace quotient_group
variables {G : Type u} [group G] (N : subgroup G) [nN : N.normal] {H : Type v} [group H]
include nN
/-- The congruence relation generated by a normal subgroup. -/
@[to_additive "The additive congruence relation generated by a normal additive subgroup."]
protected def con : con G :=
{ to_setoid := left_rel N,
mul' := λ a b c d hab hcd, begin
rw [left_rel_eq] at hab hcd ⊢,
calc (a * c)⁻¹ * (b * d) = c⁻¹ * (a⁻¹ * b) * c⁻¹⁻¹ * (c⁻¹ * d) :
by simp only [mul_inv_rev, mul_assoc, inv_mul_cancel_left]
... ∈ N : N.mul_mem (nN.conj_mem _ hab _) hcd
end }
@[to_additive quotient_add_group.add_group]
instance quotient.group : group (G ⧸ N) :=
(quotient_group.con N).group
/-- The group homomorphism from `G` to `G/N`. -/
@[to_additive quotient_add_group.mk' "The additive group homomorphism from `G` to `G/N`."]
def mk' : G →* G ⧸ N := monoid_hom.mk' (quotient_group.mk) (λ _ _, rfl)
@[simp, to_additive]
lemma coe_mk' : (mk' N : G → G ⧸ N) = coe := rfl
@[simp, to_additive]
lemma mk'_apply (x : G) : mk' N x = x := rfl
@[to_additive]
lemma mk'_surjective : function.surjective $ mk' N := @mk_surjective _ _ N
@[to_additive]
lemma mk'_eq_mk' {x y : G} : mk' N x = mk' N y ↔ ∃ z ∈ N, x * z = y :=
quotient_group.eq'.trans $
by simp only [← _root_.eq_inv_mul_iff_mul_eq, exists_prop, exists_eq_right]
/-- Two `monoid_hom`s from a quotient group are equal if their compositions with
`quotient_group.mk'` are equal.
See note [partially-applied ext lemmas]. -/
@[ext, to_additive /-" Two `add_monoid_hom`s from an additive quotient group are equal if their
compositions with `add_quotient_group.mk'` are equal.
See note [partially-applied ext lemmas]. "-/]
lemma monoid_hom_ext ⦃f g : G ⧸ N →* H⦄ (h : f.comp (mk' N) = g.comp (mk' N)) : f = g :=
monoid_hom.ext $ λ x, quotient_group.induction_on x $ (monoid_hom.congr_fun h : _)
@[simp, to_additive quotient_add_group.eq_zero_iff]
lemma eq_one_iff {N : subgroup G} [nN : N.normal] (x : G) : (x : G ⧸ N) = 1 ↔ x ∈ N :=
begin
refine quotient_group.eq.trans _,
rw [mul_one, subgroup.inv_mem_iff],
end
@[simp, to_additive quotient_add_group.ker_mk]
lemma ker_mk :
monoid_hom.ker (quotient_group.mk' N : G →* G ⧸ N) = N :=
subgroup.ext eq_one_iff
@[to_additive quotient_add_group.eq_iff_sub_mem]
lemma eq_iff_div_mem {N : subgroup G} [nN : N.normal] {x y : G} :
(x : G ⧸ N) = y ↔ x / y ∈ N :=
begin
refine eq_comm.trans (quotient_group.eq.trans _),
rw [nN.mem_comm_iff, div_eq_mul_inv]
end
-- for commutative groups we don't need normality assumption
omit nN
@[to_additive quotient_add_group.add_comm_group]
instance {G : Type*} [comm_group G] (N : subgroup G) : comm_group (G ⧸ N) :=
{ mul_comm := λ a b, quotient.induction_on₂' a b
(λ a b, congr_arg mk (mul_comm a b)),
.. @quotient_group.quotient.group _ _ N N.normal_of_comm }
include nN
local notation ` Q ` := G ⧸ N
@[simp, to_additive quotient_add_group.coe_zero]
lemma coe_one : ((1 : G) : Q) = 1 := rfl
@[simp, to_additive quotient_add_group.coe_add]
lemma coe_mul (a b : G) : ((a * b : G) : Q) = a * b := rfl
@[simp, to_additive quotient_add_group.coe_neg]
lemma coe_inv (a : G) : ((a⁻¹ : G) : Q) = a⁻¹ := rfl
@[simp, to_additive quotient_add_group.coe_sub]
lemma coe_div (a b : G) : ((a / b : G) : Q) = a / b := rfl
@[simp, to_additive quotient_add_group.coe_nsmul]
lemma coe_pow (a : G) (n : ℕ) : ((a ^ n : G) : Q) = a ^ n := rfl
@[simp, to_additive quotient_add_group.coe_zsmul]
lemma coe_zpow (a : G) (n : ℤ) : ((a ^ n : G) : Q) = a ^ n := rfl
/-- A group homomorphism `φ : G →* H` with `N ⊆ ker(φ)` descends (i.e. `lift`s) to a
group homomorphism `G/N →* H`. -/
@[to_additive quotient_add_group.lift "An `add_group` homomorphism `φ : G →+ H` with `N ⊆ ker(φ)`
descends (i.e. `lift`s) to a group homomorphism `G/N →* H`."]
def lift (φ : G →* H) (HN : ∀x∈N, φ x = 1) : Q →* H :=
(quotient_group.con N).lift φ $ λ x y h, begin
simp only [quotient_group.con, left_rel_apply, con.rel_mk] at h,
calc φ x = φ (y * (x⁻¹ * y)⁻¹) : by rw [mul_inv_rev, inv_inv, mul_inv_cancel_left]
... = φ y : by rw [φ.map_mul, HN _ (N.inv_mem h), mul_one]
end
@[simp, to_additive quotient_add_group.lift_mk]
lemma lift_mk {φ : G →* H} (HN : ∀x∈N, φ x = 1) (g : G) :
lift N φ HN (g : Q) = φ g := rfl
@[simp, to_additive quotient_add_group.lift_mk']
lemma lift_mk' {φ : G →* H} (HN : ∀x∈N, φ x = 1) (g : G) :
lift N φ HN (mk g : Q) = φ g := rfl
@[simp, to_additive quotient_add_group.lift_quot_mk]
lemma lift_quot_mk {φ : G →* H} (HN : ∀x∈N, φ x = 1) (g : G) :
lift N φ HN (quot.mk _ g : Q) = φ g := rfl
/-- A group homomorphism `f : G →* H` induces a map `G/N →* H/M` if `N ⊆ f⁻¹(M)`. -/
@[to_additive quotient_add_group.map "An `add_group` homomorphism `f : G →+ H` induces a map
`G/N →+ H/M` if `N ⊆ f⁻¹(M)`."]
def map (M : subgroup H) [M.normal] (f : G →* H) (h : N ≤ M.comap f) :
G ⧸ N →* H ⧸ M :=
begin
refine quotient_group.lift N ((mk' M).comp f) _,
assume x hx,
refine quotient_group.eq.2 _,
rw [mul_one, subgroup.inv_mem_iff],
exact h hx,
end
@[simp, to_additive quotient_add_group.map_coe] lemma map_coe
(M : subgroup H) [M.normal] (f : G →* H) (h : N ≤ M.comap f) (x : G) :
map N M f h ↑x = ↑(f x) :=
lift_mk' _ _ x
@[to_additive quotient_add_group.map_mk'] lemma map_mk'
(M : subgroup H) [M.normal] (f : G →* H) (h : N ≤ M.comap f) (x : G) :
map N M f h (mk' _ x) = ↑(f x) :=
quotient_group.lift_mk' _ _ x
omit nN
variables (φ : G →* H)
open function monoid_hom
/-- The induced map from the quotient by the kernel to the codomain. -/
@[to_additive quotient_add_group.ker_lift "The induced map from the quotient by the kernel to the
codomain."]
def ker_lift : G ⧸ ker φ →* H :=
lift _ φ $ λ g, φ.mem_ker.mp
@[simp, to_additive quotient_add_group.ker_lift_mk]
lemma ker_lift_mk (g : G) : (ker_lift φ) g = φ g :=
lift_mk _ _ _
@[simp, to_additive quotient_add_group.ker_lift_mk']
lemma ker_lift_mk' (g : G) : (ker_lift φ) (mk g) = φ g :=
lift_mk' _ _ _
@[to_additive quotient_add_group.ker_lift_injective]
lemma ker_lift_injective : injective (ker_lift φ) :=
assume a b, quotient.induction_on₂' a b $
assume a b (h : φ a = φ b), quotient.sound' $
by rw [left_rel_apply, mem_ker, φ.map_mul, ← h, φ.map_inv, inv_mul_self]
-- Note that `ker φ` isn't definitionally `ker (φ.range_restrict)`
-- so there is a bit of annoying code duplication here
/-- The induced map from the quotient by the kernel to the range. -/
@[to_additive quotient_add_group.range_ker_lift "The induced map from the quotient by the kernel to
the range."]
def range_ker_lift : G ⧸ ker φ →* φ.range :=
lift _ φ.range_restrict $ λ g hg, (mem_ker _).mp $ by rwa range_restrict_ker
@[to_additive quotient_add_group.range_ker_lift_injective]
lemma range_ker_lift_injective : injective (range_ker_lift φ) :=
assume a b, quotient.induction_on₂' a b $
assume a b (h : φ.range_restrict a = φ.range_restrict b), quotient.sound' $
by rw [left_rel_apply, ←range_restrict_ker, mem_ker,
φ.range_restrict.map_mul, ← h, φ.range_restrict.map_inv, inv_mul_self]
@[to_additive quotient_add_group.range_ker_lift_surjective]
lemma range_ker_lift_surjective : surjective (range_ker_lift φ) :=
begin
rintro ⟨_, g, rfl⟩,
use mk g,
refl,
end
/-- **Noether's first isomorphism theorem** (a definition): the canonical isomorphism between
`G/(ker φ)` to `range φ`. -/
@[to_additive quotient_add_group.quotient_ker_equiv_range "The first isomorphism theorem
(a definition): the canonical isomorphism between `G/(ker φ)` to `range φ`."]
noncomputable def quotient_ker_equiv_range : G ⧸ ker φ ≃* range φ :=
mul_equiv.of_bijective (range_ker_lift φ) ⟨range_ker_lift_injective φ, range_ker_lift_surjective φ⟩
/-- The canonical isomorphism `G/(ker φ) ≃* H` induced by a homomorphism `φ : G →* H`
with a right inverse `ψ : H → G`. -/
@[to_additive quotient_add_group.quotient_ker_equiv_of_right_inverse "The canonical isomorphism
`G/(ker φ) ≃+ H` induced by a homomorphism `φ : G →+ H` with a right inverse `ψ : H → G`.",
simps]
def quotient_ker_equiv_of_right_inverse (ψ : H → G) (hφ : function.right_inverse ψ φ) :
G ⧸ ker φ ≃* H :=
{ to_fun := ker_lift φ,
inv_fun := mk ∘ ψ,
left_inv := λ x, ker_lift_injective φ (by rw [function.comp_app, ker_lift_mk', hφ]),
right_inv := hφ,
.. ker_lift φ }
/-- The canonical isomorphism `G/⊥ ≃* G`. -/
@[to_additive quotient_add_group.quotient_bot "The canonical isomorphism `G/⊥ ≃+ G`.", simps]
def quotient_bot : G ⧸ (⊥ : subgroup G) ≃* G :=
quotient_ker_equiv_of_right_inverse (monoid_hom.id G) id (λ x, rfl)
/-- The canonical isomorphism `G/(ker φ) ≃* H` induced by a surjection `φ : G →* H`.
For a `computable` version, see `quotient_group.quotient_ker_equiv_of_right_inverse`.
-/
@[to_additive quotient_add_group.quotient_ker_equiv_of_surjective "The canonical isomorphism
`G/(ker φ) ≃+ H` induced by a surjection `φ : G →+ H`.
For a `computable` version, see `quotient_add_group.quotient_ker_equiv_of_right_inverse`."]
noncomputable def quotient_ker_equiv_of_surjective (hφ : function.surjective φ) :
G ⧸ (ker φ) ≃* H :=
quotient_ker_equiv_of_right_inverse φ _ hφ.has_right_inverse.some_spec
/-- If two normal subgroups `M` and `N` of `G` are the same, their quotient groups are
isomorphic. -/
@[to_additive "If two normal subgroups `M` and `N` of `G` are the same, their quotient groups are
isomorphic."]
def equiv_quotient_of_eq {M N : subgroup G} [M.normal] [N.normal] (h : M = N) :
G ⧸ M ≃* G ⧸ N :=
{ to_fun := (lift M (mk' N) (λ m hm, quotient_group.eq.mpr (by simpa [← h] using M.inv_mem hm))),
inv_fun := (lift N (mk' M) (λ n hn, quotient_group.eq.mpr (by simpa [← h] using N.inv_mem hn))),
left_inv := λ x, x.induction_on' $ by { intro, refl },
right_inv := λ x, x.induction_on' $ by { intro, refl },
map_mul' := λ x y, by rw monoid_hom.map_mul }
@[simp, to_additive]
lemma equiv_quotient_of_eq_mk {M N : subgroup G} [M.normal] [N.normal] (h : M = N) (x : G) :
quotient_group.equiv_quotient_of_eq h (quotient_group.mk x) = (quotient_group.mk x) :=
rfl
/-- Let `A', A, B', B` be subgroups of `G`. If `A' ≤ B'` and `A ≤ B`,
then there is a map `A / (A' ⊓ A) →* B / (B' ⊓ B)` induced by the inclusions. -/
@[to_additive "Let `A', A, B', B` be subgroups of `G`. If `A' ≤ B'` and `A ≤ B`,
then there is a map `A / (A' ⊓ A) →+ B / (B' ⊓ B)` induced by the inclusions."]
def quotient_map_subgroup_of_of_le {A' A B' B : subgroup G}
[hAN : (A'.subgroup_of A).normal] [hBN : (B'.subgroup_of B).normal]
(h' : A' ≤ B') (h : A ≤ B) :
A ⧸ (A'.subgroup_of A) →* B ⧸ (B'.subgroup_of B) :=
map _ _ (subgroup.inclusion h) $
by simp [subgroup.subgroup_of, subgroup.comap_comap]; exact subgroup.comap_mono h'
@[simp, to_additive]
lemma quotient_map_subgroup_of_of_le_coe {A' A B' B : subgroup G}
[hAN : (A'.subgroup_of A).normal] [hBN : (B'.subgroup_of B).normal]
(h' : A' ≤ B') (h : A ≤ B) (x : A) :
quotient_map_subgroup_of_of_le h' h x = ↑(subgroup.inclusion h x : B) := rfl
/-- Let `A', A, B', B` be subgroups of `G`.
If `A' = B'` and `A = B`, then the quotients `A / (A' ⊓ A)` and `B / (B' ⊓ B)` are isomorphic.
Applying this equiv is nicer than rewriting along the equalities, since the type of
`(A'.subgroup_of A : subgroup A)` depends on on `A`.
-/
@[to_additive "Let `A', A, B', B` be subgroups of `G`.
If `A' = B'` and `A = B`, then the quotients `A / (A' ⊓ A)` and `B / (B' ⊓ B)` are isomorphic.
Applying this equiv is nicer than rewriting along the equalities, since the type of
`(A'.add_subgroup_of A : add_subgroup A)` depends on on `A`.
"]
def equiv_quotient_subgroup_of_of_eq {A' A B' B : subgroup G}
[hAN : (A'.subgroup_of A).normal] [hBN : (B'.subgroup_of B).normal]
(h' : A' = B') (h : A = B) :
A ⧸ (A'.subgroup_of A) ≃* B ⧸ (B'.subgroup_of B) :=
monoid_hom.to_mul_equiv
(quotient_map_subgroup_of_of_le h'.le h.le) (quotient_map_subgroup_of_of_le h'.ge h.ge)
(by { ext ⟨x, hx⟩, refl })
(by { ext ⟨x, hx⟩, refl })
section zpow
variables {A B C : Type u} [comm_group A] [comm_group B] [comm_group C]
variables (f : A →* B) (g : B →* A) (e : A ≃* B) (d : B ≃* C) (n : ℤ)
/-- The map of quotients by powers of an integer induced by a group homomorphism. -/
@[to_additive "The map of quotients by multiples of an integer induced by an additive group
homomorphism."]
def hom_quotient_zpow_of_hom :
A ⧸ (zpow_group_hom n : A →* A).range →* B ⧸ (zpow_group_hom n : B →* B).range :=
lift _ ((mk' _).comp f) $
λ g ⟨h, (hg : h ^ n = g)⟩, (eq_one_iff _).mpr ⟨_, by simpa only [← hg, map_zpow]⟩
@[to_additive, simp]
lemma hom_quotient_zpow_of_hom_id :
hom_quotient_zpow_of_hom (monoid_hom.id A) n = monoid_hom.id _ :=
monoid_hom_ext _ rfl
@[to_additive, simp]
lemma hom_quotient_zpow_of_hom_comp :
hom_quotient_zpow_of_hom (f.comp g) n
= (hom_quotient_zpow_of_hom f n).comp (hom_quotient_zpow_of_hom g n) :=
monoid_hom_ext _ rfl
@[to_additive, simp]
lemma hom_quotient_zpow_of_hom_comp_of_right_inverse (i : function.right_inverse g f) :
(hom_quotient_zpow_of_hom f n).comp (hom_quotient_zpow_of_hom g n) = monoid_hom.id _ :=
monoid_hom_ext _ $ monoid_hom.ext $ λ x, congr_arg coe $ i x
/-- The equivalence of quotients by powers of an integer induced by a group isomorphism. -/
@[to_additive "The equivalence of quotients by multiples of an integer induced by an additive group
isomorphism."]
def equiv_quotient_zpow_of_equiv :
A ⧸ (zpow_group_hom n : A →* A).range ≃* B ⧸ (zpow_group_hom n : B →* B).range :=
monoid_hom.to_mul_equiv _ _ (hom_quotient_zpow_of_hom_comp_of_right_inverse e.symm e n e.left_inv)
(hom_quotient_zpow_of_hom_comp_of_right_inverse e e.symm n e.right_inv)
@[to_additive, simp]
lemma equiv_quotient_zpow_of_equiv_refl :
mul_equiv.refl (A ⧸ (zpow_group_hom n : A →* A).range)
= equiv_quotient_zpow_of_equiv (mul_equiv.refl A) n :=
by { ext x, rw [← quotient.out_eq' x], refl }
@[to_additive, simp]
lemma equiv_quotient_zpow_of_equiv_symm :
(equiv_quotient_zpow_of_equiv e n).symm = equiv_quotient_zpow_of_equiv e.symm n :=
rfl
@[to_additive, simp]
lemma equiv_quotient_zpow_of_equiv_trans :
(equiv_quotient_zpow_of_equiv e n).trans (equiv_quotient_zpow_of_equiv d n)
= equiv_quotient_zpow_of_equiv (e.trans d) n :=
by { ext x, rw [← quotient.out_eq' x], refl }
end zpow
section snd_isomorphism_thm
open _root_.subgroup
/-- **Noether's second isomorphism theorem**: given two subgroups `H` and `N` of a group `G`, where
`N` is normal, defines an isomorphism between `H/(H ∩ N)` and `(HN)/N`. -/
@[to_additive "The second isomorphism theorem: given two subgroups `H` and `N` of a group `G`,
where `N` is normal, defines an isomorphism between `H/(H ∩ N)` and `(H + N)/N`"]
noncomputable def quotient_inf_equiv_prod_normal_quotient (H N : subgroup G) [N.normal] :
H ⧸ ((H ⊓ N).comap H.subtype) ≃* _ ⧸ (N.comap (H ⊔ N).subtype) :=
/- φ is the natural homomorphism H →* (HN)/N. -/
let φ : H →* _ ⧸ (N.comap (H ⊔ N).subtype) :=
(mk' $ N.comap (H ⊔ N).subtype).comp (inclusion le_sup_left) in
have φ_surjective : function.surjective φ := λ x, x.induction_on' $
begin
rintro ⟨y, (hy : y ∈ ↑(H ⊔ N))⟩, rw mul_normal H N at hy,
rcases hy with ⟨h, n, hh, hn, rfl⟩,
use [h, hh], apply quotient.eq.mpr,
change setoid.r _ _,
rw left_rel_apply,
change h⁻¹ * (h * n) ∈ N,
rwa [←mul_assoc, inv_mul_self, one_mul],
end,
(equiv_quotient_of_eq (by simp [comap_comap, ←comap_ker])).trans
(quotient_ker_equiv_of_surjective φ φ_surjective)
end snd_isomorphism_thm
section third_iso_thm
variables (M : subgroup G) [nM : M.normal]
include nM nN
@[to_additive quotient_add_group.map_normal]
instance map_normal : (M.map (quotient_group.mk' N)).normal :=
{ conj_mem := begin
rintro _ ⟨x, hx, rfl⟩ y,
refine induction_on' y (λ y, ⟨y * x * y⁻¹, subgroup.normal.conj_mem nM x hx y, _⟩),
simp only [mk'_apply, coe_mul, coe_inv]
end }
variables (h : N ≤ M)
/-- The map from the third isomorphism theorem for groups: `(G / N) / (M / N) → G / M`. -/
@[to_additive quotient_add_group.quotient_quotient_equiv_quotient_aux
"The map from the third isomorphism theorem for additive groups: `(A / N) / (M / N) → A / M`."]
def quotient_quotient_equiv_quotient_aux :
(G ⧸ N) ⧸ (M.map (mk' N)) →* G ⧸ M :=
lift (M.map (mk' N))
(map N M (monoid_hom.id G) h)
(by { rintro _ ⟨x, hx, rfl⟩, rw map_mk' N M _ _ x,
exact (quotient_group.eq_one_iff _).mpr hx })
@[simp, to_additive quotient_add_group.quotient_quotient_equiv_quotient_aux_coe]
lemma quotient_quotient_equiv_quotient_aux_coe (x : G ⧸ N) :
quotient_quotient_equiv_quotient_aux N M h x = quotient_group.map N M (monoid_hom.id G) h x :=
quotient_group.lift_mk' _ _ x
@[to_additive quotient_add_group.quotient_quotient_equiv_quotient_aux_coe_coe]
lemma quotient_quotient_equiv_quotient_aux_coe_coe (x : G) :
quotient_quotient_equiv_quotient_aux N M h (x : G ⧸ N) =
x :=
quotient_group.lift_mk' _ _ x
/-- **Noether's third isomorphism theorem** for groups: `(G / N) / (M / N) ≃ G / M`. -/
@[to_additive quotient_add_group.quotient_quotient_equiv_quotient
"**Noether's third isomorphism theorem** for additive groups: `(A / N) / (M / N) ≃ A / M`."]
def quotient_quotient_equiv_quotient :
(G ⧸ N) ⧸ (M.map (quotient_group.mk' N)) ≃* G ⧸ M :=
monoid_hom.to_mul_equiv
(quotient_quotient_equiv_quotient_aux N M h)
(quotient_group.map _ _ (quotient_group.mk' N) (subgroup.le_comap_map _ _))
(by { ext, simp })
(by { ext, simp })
end third_iso_thm
section trivial
@[to_additive] lemma subsingleton_quotient_top :
subsingleton (G ⧸ (⊤ : subgroup G)) :=
begin
dsimp [has_quotient.quotient, subgroup.has_quotient, quotient],
rw left_rel_eq,
exact @trunc.subsingleton G,
end
/-- If the quotient by a subgroup gives a singleton then the subgroup is the whole group. -/
@[to_additive "If the quotient by an additive subgroup gives a singleton then the additive subgroup
is the whole additive group."] lemma subgroup_eq_top_of_subsingleton (H : subgroup G)
(h : subsingleton (G ⧸ H)) : H = ⊤ :=
top_unique $ λ x _,
have this : 1⁻¹ * x ∈ H := quotient_group.eq.1 (subsingleton.elim _ _),
by rwa [inv_one, one_mul] at this
end trivial
@[to_additive quotient_add_group.comap_comap_center]
lemma comap_comap_center {H₁ : subgroup G} [H₁.normal] {H₂ : subgroup (G ⧸ H₁)} [H₂.normal] :
(((subgroup.center ((G ⧸ H₁) ⧸ H₂))).comap (mk' H₂)).comap (mk' H₁) =
(subgroup.center (G ⧸ H₂.comap (mk' H₁))).comap (mk' (H₂.comap (mk' H₁))) :=
begin
ext x,
simp only [mk'_apply, subgroup.mem_comap, subgroup.mem_center_iff, forall_coe,
← coe_mul, eq_iff_div_mem, coe_div]
end
end quotient_group
namespace group
open_locale classical
open quotient_group subgroup
variables {F G H : Type u} [group F] [group G] [group H] [fintype F] [fintype H]
variables (f : F →* G) (g : G →* H)
/-- If `F` and `H` are finite such that `ker(G →* H) ≤ im(F →* G)`, then `G` is finite. -/
@[to_additive "If `F` and `H` are finite such that `ker(G →+ H) ≤ im(F →+ G)`, then `G` is finite."]
noncomputable def fintype_of_ker_le_range (h : g.ker ≤ f.range) : fintype G :=
@fintype.of_equiv _ _ (@prod.fintype _ _ (fintype.of_injective _ $ ker_lift_injective g) $
fintype.of_injective _ $ inclusion_injective h)
group_equiv_quotient_times_subgroup.symm
/-- If `F` and `H` are finite such that `ker(G →* H) = im(F →* G)`, then `G` is finite. -/
@[to_additive "If `F` and `H` are finite such that `ker(G →+ H) = im(F →+ G)`, then `G` is finite."]
noncomputable def fintype_of_ker_eq_range (h : g.ker = f.range) : fintype G :=
fintype_of_ker_le_range _ _ h.le
/-- If `ker(G →* H)` and `H` are finite, then `G` is finite. -/
@[to_additive "If `ker(G →+ H)` and `H` are finite, then `G` is finite."]
noncomputable def fintype_of_ker_of_codom [fintype g.ker] : fintype G :=
fintype_of_ker_le_range ((top_equiv : _ ≃* G).to_monoid_hom.comp $ inclusion le_top) g $
λ x hx, ⟨⟨x, hx⟩, rfl⟩
/-- If `F` and `coker(F →* G)` are finite, then `G` is finite. -/
@[to_additive "If `F` and `coker(F →+ G)` are finite, then `G` is finite."]
noncomputable def fintype_of_dom_of_coker [normal f.range] [fintype $ G ⧸ f.range] : fintype G :=
fintype_of_ker_le_range _ (mk' f.range) $ λ x, (eq_one_iff x).mp
end group
|