Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 22,378 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
/-
Copyright (c) 2018 Kevin Buzzard, Patrick Massot. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kevin Buzzard, Patrick Massot

This file is to a certain extent based on `quotient_module.lean` by Johannes Hölzl.
-/
import group_theory.coset
import group_theory.congruence

/-!
# Quotients of groups by normal subgroups

This files develops the basic theory of quotients of groups by normal subgroups. In particular it
proves Noether's first and second isomorphism theorems.

## Main definitions

* `mk'`: the canonical group homomorphism `G →* G/N` given a normal subgroup `N` of `G`.
* `lift φ`: the group homomorphism `G/N →* H` given a group homomorphism `φ : G →* H` such that
  `N ⊆ ker φ`.
* `map f`: the group homomorphism `G/N →* H/M` given a group homomorphism `f : G →* H` such that
  `N ⊆ f⁻¹(M)`.

## Main statements

* `quotient_ker_equiv_range`: Noether's first isomorphism theorem, an explicit isomorphism
  `G/ker φ → range φ` for every group homomorphism `φ : G →* H`.
* `quotient_inf_equiv_prod_normal_quotient`: Noether's second isomorphism theorem, an explicit
  isomorphism between `H/(H ∩ N)` and `(HN)/N` given a subgroup `H` and a normal subgroup `N` of a
  group `G`.
* `quotient_group.quotient_quotient_equiv_quotient`: Noether's third isomorphism theorem,
  the canonical isomorphism between `(G / N) / (M / N)` and `G / M`, where `N ≤ M`.

## Tags

isomorphism theorems, quotient groups
-/

universes u v

namespace quotient_group

variables {G : Type u} [group G] (N : subgroup G) [nN : N.normal] {H : Type v} [group H]
include nN

/-- The congruence relation generated by a normal subgroup. -/
@[to_additive "The additive congruence relation generated by a normal additive subgroup."]
protected def con : con G :=
{ to_setoid := left_rel N,
  mul' := λ a b c d hab hcd, begin
    rw [left_rel_eq] at hab hcd ⊢,
    calc (a * c)⁻¹ * (b * d) = c⁻¹ * (a⁻¹ * b) * c⁻¹⁻¹ * (c⁻¹ * d) :
      by simp only [mul_inv_rev, mul_assoc, inv_mul_cancel_left]
    ... ∈ N : N.mul_mem (nN.conj_mem _ hab _) hcd
  end }

@[to_additive quotient_add_group.add_group]
instance quotient.group : group (G ⧸ N) :=
(quotient_group.con N).group

/-- The group homomorphism from `G` to `G/N`. -/
@[to_additive quotient_add_group.mk' "The additive group homomorphism from `G` to `G/N`."]
def mk' : G →* G ⧸ N := monoid_hom.mk' (quotient_group.mk) (λ _ _, rfl)

@[simp, to_additive]
lemma coe_mk' : (mk' N : G → G ⧸ N) = coe := rfl

@[simp, to_additive]
lemma mk'_apply (x : G) : mk' N x = x := rfl

@[to_additive]
lemma mk'_surjective : function.surjective $ mk' N := @mk_surjective _ _ N

@[to_additive]
lemma mk'_eq_mk' {x y : G} : mk' N x = mk' N y ↔ ∃ z ∈ N, x * z = y :=
quotient_group.eq'.trans $
  by simp only [← _root_.eq_inv_mul_iff_mul_eq, exists_prop, exists_eq_right]

/-- Two `monoid_hom`s from a quotient group are equal if their compositions with
`quotient_group.mk'` are equal.

See note [partially-applied ext lemmas]. -/
@[ext, to_additive /-" Two `add_monoid_hom`s from an additive quotient group are equal if their
compositions with `add_quotient_group.mk'` are equal.

See note [partially-applied ext lemmas]. "-/]
lemma monoid_hom_ext ⦃f g : G ⧸ N →* H⦄ (h : f.comp (mk' N) = g.comp (mk' N)) : f = g :=
monoid_hom.ext $ λ x, quotient_group.induction_on x $ (monoid_hom.congr_fun h : _)

@[simp, to_additive quotient_add_group.eq_zero_iff]
lemma eq_one_iff {N : subgroup G} [nN : N.normal] (x : G) : (x : G ⧸ N) = 1 ↔ x ∈ N :=
begin
  refine quotient_group.eq.trans _,
  rw [mul_one, subgroup.inv_mem_iff],
end

@[simp, to_additive quotient_add_group.ker_mk]
lemma ker_mk :
  monoid_hom.ker (quotient_group.mk' N : G →* G ⧸ N) = N :=
subgroup.ext eq_one_iff

@[to_additive quotient_add_group.eq_iff_sub_mem]
lemma eq_iff_div_mem {N : subgroup G} [nN : N.normal] {x y : G} :
  (x : G ⧸ N) = y ↔ x / y ∈ N :=
begin
  refine eq_comm.trans (quotient_group.eq.trans _),
  rw [nN.mem_comm_iff, div_eq_mul_inv]
end

-- for commutative groups we don't need normality assumption
omit nN

@[to_additive quotient_add_group.add_comm_group]
instance {G : Type*} [comm_group G] (N : subgroup G) : comm_group (G ⧸ N) :=
{ mul_comm := λ a b, quotient.induction_on₂' a b
    (λ a b, congr_arg mk (mul_comm a b)),
  .. @quotient_group.quotient.group _ _ N N.normal_of_comm }

include nN

local notation ` Q ` := G ⧸ N

@[simp, to_additive quotient_add_group.coe_zero]
lemma coe_one : ((1 : G) : Q) = 1 := rfl

@[simp, to_additive quotient_add_group.coe_add]
lemma coe_mul (a b : G) : ((a * b : G) : Q) = a * b := rfl

@[simp, to_additive quotient_add_group.coe_neg]
lemma coe_inv (a : G) : ((a⁻¹ : G) : Q) = a⁻¹ := rfl

@[simp, to_additive quotient_add_group.coe_sub]
lemma coe_div (a b : G) : ((a / b : G) : Q) = a / b := rfl

@[simp, to_additive quotient_add_group.coe_nsmul]
lemma coe_pow (a : G) (n : ℕ) : ((a ^ n : G) : Q) = a ^ n := rfl

@[simp, to_additive quotient_add_group.coe_zsmul]
lemma coe_zpow (a : G) (n : ℤ) : ((a ^ n : G) : Q) = a ^ n := rfl

/-- A group homomorphism `φ : G →* H` with `N ⊆ ker(φ)` descends (i.e. `lift`s) to a
group homomorphism `G/N →* H`. -/
@[to_additive quotient_add_group.lift "An `add_group` homomorphism `φ : G →+ H` with `N ⊆ ker(φ)`
descends (i.e. `lift`s) to a group homomorphism `G/N →* H`."]
def lift (φ : G →* H) (HN : ∀x∈N, φ x = 1) : Q →* H :=
(quotient_group.con N).lift φ $ λ x y h, begin
  simp only [quotient_group.con, left_rel_apply, con.rel_mk] at h,
  calc φ x = φ (y * (x⁻¹ * y)⁻¹) : by rw [mul_inv_rev, inv_inv, mul_inv_cancel_left]
       ... = φ y                 : by rw [φ.map_mul, HN _ (N.inv_mem h), mul_one]
  end

@[simp, to_additive quotient_add_group.lift_mk]
lemma lift_mk {φ : G →* H} (HN : ∀x∈N, φ x = 1) (g : G) :
  lift N φ HN (g : Q) = φ g := rfl

@[simp, to_additive quotient_add_group.lift_mk']
lemma lift_mk' {φ : G →* H} (HN : ∀x∈N, φ x = 1) (g : G) :
  lift N φ HN (mk g : Q) = φ g := rfl

@[simp, to_additive quotient_add_group.lift_quot_mk]
lemma lift_quot_mk {φ : G →* H} (HN : ∀x∈N, φ x = 1) (g : G) :
  lift N φ HN (quot.mk _ g : Q) = φ g := rfl

/-- A group homomorphism `f : G →* H` induces a map `G/N →* H/M` if `N ⊆ f⁻¹(M)`. -/
@[to_additive quotient_add_group.map "An `add_group` homomorphism `f : G →+ H` induces a map
`G/N →+ H/M` if `N ⊆ f⁻¹(M)`."]
def map (M : subgroup H) [M.normal] (f : G →* H) (h : N ≤ M.comap f) :
  G ⧸ N →* H ⧸ M :=
begin
  refine quotient_group.lift N ((mk' M).comp f) _,
  assume x hx,
  refine quotient_group.eq.2 _,
  rw [mul_one, subgroup.inv_mem_iff],
  exact h hx,
end

@[simp, to_additive quotient_add_group.map_coe] lemma map_coe
  (M : subgroup H) [M.normal] (f : G →* H) (h : N ≤ M.comap f) (x : G) :
  map N M f h ↑x = ↑(f x) :=
lift_mk' _ _ x

@[to_additive quotient_add_group.map_mk'] lemma map_mk'
  (M : subgroup H) [M.normal] (f : G →* H) (h : N ≤ M.comap f) (x : G) :
  map N M f h (mk' _ x) = ↑(f x) :=
quotient_group.lift_mk' _ _ x

omit nN
variables (φ : G →* H)

open function monoid_hom

/-- The induced map from the quotient by the kernel to the codomain. -/
@[to_additive quotient_add_group.ker_lift "The induced map from the quotient by the kernel to the
codomain."]
def ker_lift : G ⧸ ker φ →* H :=
lift _ φ $ λ g, φ.mem_ker.mp

@[simp, to_additive quotient_add_group.ker_lift_mk]
lemma ker_lift_mk (g : G) : (ker_lift φ) g = φ g :=
lift_mk _ _ _

@[simp, to_additive quotient_add_group.ker_lift_mk']
lemma ker_lift_mk' (g : G) : (ker_lift φ) (mk g) = φ g :=
lift_mk' _ _ _

@[to_additive quotient_add_group.ker_lift_injective]
lemma ker_lift_injective : injective (ker_lift φ) :=
assume a b, quotient.induction_on₂' a b $
  assume a b (h : φ a = φ b), quotient.sound' $
  by rw [left_rel_apply, mem_ker, φ.map_mul, ← h, φ.map_inv, inv_mul_self]

-- Note that `ker φ` isn't definitionally `ker (φ.range_restrict)`
-- so there is a bit of annoying code duplication here

/-- The induced map from the quotient by the kernel to the range. -/
@[to_additive quotient_add_group.range_ker_lift "The induced map from the quotient by the kernel to
the range."]
def range_ker_lift : G ⧸ ker φ →* φ.range :=
lift _ φ.range_restrict $ λ g hg, (mem_ker _).mp $ by rwa range_restrict_ker

@[to_additive quotient_add_group.range_ker_lift_injective]
lemma range_ker_lift_injective : injective (range_ker_lift φ) :=
assume a b, quotient.induction_on₂' a b $
  assume a b (h : φ.range_restrict a = φ.range_restrict b), quotient.sound' $
  by rw [left_rel_apply, ←range_restrict_ker, mem_ker,
  φ.range_restrict.map_mul, ← h, φ.range_restrict.map_inv, inv_mul_self]

@[to_additive quotient_add_group.range_ker_lift_surjective]
lemma range_ker_lift_surjective : surjective (range_ker_lift φ) :=
begin
  rintro ⟨_, g, rfl⟩,
  use mk g,
  refl,
end

/-- **Noether's first isomorphism theorem** (a definition): the canonical isomorphism between
`G/(ker φ)` to `range φ`. -/
@[to_additive quotient_add_group.quotient_ker_equiv_range "The first isomorphism theorem
(a definition): the canonical isomorphism between `G/(ker φ)` to `range φ`."]
noncomputable def quotient_ker_equiv_range : G ⧸ ker φ ≃* range φ :=
mul_equiv.of_bijective (range_ker_lift φ) ⟨range_ker_lift_injective φ, range_ker_lift_surjective φ⟩

/-- The canonical isomorphism `G/(ker φ) ≃* H` induced by a homomorphism `φ : G →* H`
with a right inverse `ψ : H → G`. -/
@[to_additive quotient_add_group.quotient_ker_equiv_of_right_inverse "The canonical isomorphism
`G/(ker φ) ≃+ H` induced by a homomorphism `φ : G →+ H` with a right inverse `ψ : H → G`.",
  simps]
def quotient_ker_equiv_of_right_inverse (ψ : H → G) (hφ : function.right_inverse ψ φ) :
  G ⧸ ker φ ≃* H :=
{ to_fun := ker_lift φ,
  inv_fun := mk ∘ ψ,
  left_inv := λ x, ker_lift_injective φ (by rw [function.comp_app, ker_lift_mk', hφ]),
  right_inv := hφ,
  .. ker_lift φ }

/-- The canonical isomorphism `G/⊥ ≃* G`. -/
@[to_additive quotient_add_group.quotient_bot "The canonical isomorphism `G/⊥ ≃+ G`.", simps]
def quotient_bot : G ⧸ (⊥ : subgroup G) ≃* G :=
quotient_ker_equiv_of_right_inverse (monoid_hom.id G) id (λ x, rfl)

/-- The canonical isomorphism `G/(ker φ) ≃* H` induced by a surjection `φ : G →* H`.

For a `computable` version, see `quotient_group.quotient_ker_equiv_of_right_inverse`.
-/
@[to_additive quotient_add_group.quotient_ker_equiv_of_surjective "The canonical isomorphism
`G/(ker φ) ≃+ H` induced by a surjection `φ : G →+ H`.

For a `computable` version, see `quotient_add_group.quotient_ker_equiv_of_right_inverse`."]
noncomputable def quotient_ker_equiv_of_surjective (hφ : function.surjective φ) :
  G ⧸ (ker φ) ≃* H :=
quotient_ker_equiv_of_right_inverse φ _ hφ.has_right_inverse.some_spec

/-- If two normal subgroups `M` and `N` of `G` are the same, their quotient groups are
isomorphic. -/
@[to_additive "If two normal subgroups `M` and `N` of `G` are the same, their quotient groups are
isomorphic."]
def equiv_quotient_of_eq {M N : subgroup G} [M.normal] [N.normal] (h : M = N) :
  G ⧸ M ≃* G ⧸ N :=
{ to_fun := (lift M (mk' N) (λ m hm, quotient_group.eq.mpr (by simpa [← h] using M.inv_mem hm))),
  inv_fun := (lift N (mk' M) (λ n hn, quotient_group.eq.mpr (by simpa [← h] using N.inv_mem hn))),
  left_inv := λ x, x.induction_on' $ by { intro, refl },
  right_inv := λ x, x.induction_on' $ by { intro, refl },
  map_mul' := λ x y, by rw monoid_hom.map_mul }

@[simp, to_additive]
lemma equiv_quotient_of_eq_mk {M N : subgroup G} [M.normal] [N.normal] (h : M = N) (x : G) :
  quotient_group.equiv_quotient_of_eq h (quotient_group.mk x) = (quotient_group.mk x) :=
rfl

/-- Let `A', A, B', B` be subgroups of `G`. If `A' ≤ B'` and `A ≤ B`,
then there is a map `A / (A' ⊓ A) →* B / (B' ⊓ B)` induced by the inclusions. -/
@[to_additive "Let `A', A, B', B` be subgroups of `G`. If `A' ≤ B'` and `A ≤ B`,
then there is a map `A / (A' ⊓ A) →+ B / (B' ⊓ B)` induced by the inclusions."]
def quotient_map_subgroup_of_of_le {A' A B' B : subgroup G}
  [hAN : (A'.subgroup_of A).normal] [hBN : (B'.subgroup_of B).normal]
  (h' : A' ≤ B') (h : A ≤ B) :
  A ⧸ (A'.subgroup_of A) →* B ⧸ (B'.subgroup_of B) :=
map _ _ (subgroup.inclusion h) $
  by simp [subgroup.subgroup_of, subgroup.comap_comap]; exact subgroup.comap_mono h'

@[simp, to_additive]
lemma quotient_map_subgroup_of_of_le_coe {A' A B' B : subgroup G}
  [hAN : (A'.subgroup_of A).normal] [hBN : (B'.subgroup_of B).normal]
  (h' : A' ≤ B') (h : A ≤ B) (x : A) :
  quotient_map_subgroup_of_of_le h' h x = ↑(subgroup.inclusion h x : B) := rfl

/-- Let `A', A, B', B` be subgroups of `G`.
If `A' = B'` and `A = B`, then the quotients `A / (A' ⊓ A)` and `B / (B' ⊓ B)` are isomorphic.

Applying this equiv is nicer than rewriting along the equalities, since the type of
`(A'.subgroup_of A : subgroup A)` depends on on `A`.
-/
@[to_additive "Let `A', A, B', B` be subgroups of `G`.
If `A' = B'` and `A = B`, then the quotients `A / (A' ⊓ A)` and `B / (B' ⊓ B)` are isomorphic.

Applying this equiv is nicer than rewriting along the equalities, since the type of
`(A'.add_subgroup_of A : add_subgroup A)` depends on on `A`.
"]
def equiv_quotient_subgroup_of_of_eq {A' A B' B : subgroup G}
  [hAN : (A'.subgroup_of A).normal] [hBN : (B'.subgroup_of B).normal]
  (h' : A' = B') (h : A = B) :
  A ⧸ (A'.subgroup_of A) ≃* B ⧸ (B'.subgroup_of B) :=
monoid_hom.to_mul_equiv
  (quotient_map_subgroup_of_of_le h'.le h.le) (quotient_map_subgroup_of_of_le h'.ge h.ge)
  (by { ext ⟨x, hx⟩, refl })
  (by { ext ⟨x, hx⟩, refl })

section zpow

variables {A B C : Type u} [comm_group A] [comm_group B] [comm_group C]
variables (f : A →* B) (g : B →* A) (e : A ≃* B) (d : B ≃* C) (n : ℤ)

/-- The map of quotients by powers of an integer induced by a group homomorphism. -/
@[to_additive "The map of quotients by multiples of an integer induced by an additive group
homomorphism."]
def hom_quotient_zpow_of_hom :
  A ⧸ (zpow_group_hom n : A →* A).range →* B ⧸ (zpow_group_hom n : B →* B).range :=
lift _ ((mk' _).comp f) $
  λ g ⟨h, (hg : h ^ n = g)⟩, (eq_one_iff _).mpr ⟨_, by simpa only [← hg, map_zpow]⟩

@[to_additive, simp]
lemma hom_quotient_zpow_of_hom_id :
  hom_quotient_zpow_of_hom (monoid_hom.id A) n = monoid_hom.id _ :=
monoid_hom_ext _ rfl

@[to_additive, simp]
lemma hom_quotient_zpow_of_hom_comp :
  hom_quotient_zpow_of_hom (f.comp g) n
    = (hom_quotient_zpow_of_hom f n).comp (hom_quotient_zpow_of_hom g n) :=
monoid_hom_ext _ rfl

@[to_additive, simp]
lemma hom_quotient_zpow_of_hom_comp_of_right_inverse (i : function.right_inverse g f) :
  (hom_quotient_zpow_of_hom f n).comp (hom_quotient_zpow_of_hom g n) = monoid_hom.id _ :=
monoid_hom_ext _ $ monoid_hom.ext $ λ x, congr_arg coe $ i x

/-- The equivalence of quotients by powers of an integer induced by a group isomorphism. -/
@[to_additive "The equivalence of quotients by multiples of an integer induced by an additive group
isomorphism."]
def equiv_quotient_zpow_of_equiv :
  A ⧸ (zpow_group_hom n : A →* A).range ≃* B ⧸ (zpow_group_hom n : B →* B).range :=
monoid_hom.to_mul_equiv _ _ (hom_quotient_zpow_of_hom_comp_of_right_inverse e.symm e n e.left_inv)
  (hom_quotient_zpow_of_hom_comp_of_right_inverse e e.symm n e.right_inv)

@[to_additive, simp]
lemma equiv_quotient_zpow_of_equiv_refl :
  mul_equiv.refl (A ⧸ (zpow_group_hom n : A →* A).range)
    = equiv_quotient_zpow_of_equiv (mul_equiv.refl A) n :=
by { ext x, rw [← quotient.out_eq' x], refl }

@[to_additive, simp]
lemma equiv_quotient_zpow_of_equiv_symm :
  (equiv_quotient_zpow_of_equiv e n).symm = equiv_quotient_zpow_of_equiv e.symm n :=
rfl

@[to_additive, simp]
lemma equiv_quotient_zpow_of_equiv_trans :
  (equiv_quotient_zpow_of_equiv e n).trans (equiv_quotient_zpow_of_equiv d n)
    = equiv_quotient_zpow_of_equiv (e.trans d) n :=
by { ext x, rw [← quotient.out_eq' x], refl }

end zpow

section snd_isomorphism_thm

open _root_.subgroup

/-- **Noether's second isomorphism theorem**: given two subgroups `H` and `N` of a group `G`, where
`N` is normal, defines an isomorphism between `H/(H ∩ N)` and `(HN)/N`. -/
@[to_additive "The second isomorphism theorem: given two subgroups `H` and `N` of a group `G`,
where `N` is normal, defines an isomorphism between `H/(H ∩ N)` and `(H + N)/N`"]
noncomputable def quotient_inf_equiv_prod_normal_quotient (H N : subgroup G) [N.normal] :
  H ⧸ ((H ⊓ N).comap H.subtype) ≃* _ ⧸ (N.comap (H ⊔ N).subtype) :=
/- φ is the natural homomorphism H →* (HN)/N. -/
let φ : H →* _ ⧸ (N.comap (H ⊔ N).subtype) :=
  (mk' $ N.comap (H ⊔ N).subtype).comp (inclusion le_sup_left) in
have φ_surjective : function.surjective φ := λ x, x.induction_on' $
  begin
    rintro ⟨y, (hy : y ∈ ↑(H ⊔ N))⟩, rw mul_normal H N at hy,
    rcases hy with ⟨h, n, hh, hn, rfl⟩,
    use [h, hh], apply quotient.eq.mpr,
    change setoid.r _ _,
    rw left_rel_apply,
    change h⁻¹ * (h * n) ∈ N,
    rwa [←mul_assoc, inv_mul_self, one_mul],
  end,
(equiv_quotient_of_eq (by simp [comap_comap, ←comap_ker])).trans
  (quotient_ker_equiv_of_surjective φ φ_surjective)

end snd_isomorphism_thm

section third_iso_thm

variables (M : subgroup G) [nM : M.normal]

include nM nN

@[to_additive quotient_add_group.map_normal]
instance map_normal : (M.map (quotient_group.mk' N)).normal :=
{ conj_mem := begin
    rintro _ ⟨x, hx, rfl⟩ y,
    refine induction_on' y (λ y, ⟨y * x * y⁻¹, subgroup.normal.conj_mem nM x hx y, _⟩),
    simp only [mk'_apply, coe_mul, coe_inv]
  end }

variables (h : N ≤ M)

/-- The map from the third isomorphism theorem for groups: `(G / N) / (M / N) → G / M`. -/
@[to_additive quotient_add_group.quotient_quotient_equiv_quotient_aux
"The map from the third isomorphism theorem for additive groups: `(A / N) / (M / N) → A / M`."]
def quotient_quotient_equiv_quotient_aux :
  (G ⧸ N) ⧸ (M.map (mk' N)) →* G ⧸ M :=
lift (M.map (mk' N))
  (map N M (monoid_hom.id G) h)
  (by { rintro _ ⟨x, hx, rfl⟩, rw map_mk' N M _ _ x,
        exact (quotient_group.eq_one_iff _).mpr hx })

@[simp, to_additive quotient_add_group.quotient_quotient_equiv_quotient_aux_coe]
lemma quotient_quotient_equiv_quotient_aux_coe (x : G ⧸ N) :
  quotient_quotient_equiv_quotient_aux N M h x = quotient_group.map N M (monoid_hom.id G) h x :=
quotient_group.lift_mk' _ _ x

@[to_additive quotient_add_group.quotient_quotient_equiv_quotient_aux_coe_coe]
lemma quotient_quotient_equiv_quotient_aux_coe_coe (x : G) :
  quotient_quotient_equiv_quotient_aux N M h (x : G ⧸ N) =
    x :=
quotient_group.lift_mk' _ _ x

/-- **Noether's third isomorphism theorem** for groups: `(G / N) / (M / N) ≃ G / M`. -/
@[to_additive quotient_add_group.quotient_quotient_equiv_quotient
"**Noether's third isomorphism theorem** for additive groups: `(A / N) / (M / N) ≃ A / M`."]
def quotient_quotient_equiv_quotient :
  (G ⧸ N) ⧸ (M.map (quotient_group.mk' N)) ≃* G ⧸ M :=
monoid_hom.to_mul_equiv
  (quotient_quotient_equiv_quotient_aux N M h)
  (quotient_group.map _ _ (quotient_group.mk' N) (subgroup.le_comap_map _ _))
  (by { ext, simp })
  (by { ext, simp })

end third_iso_thm

section trivial

@[to_additive] lemma subsingleton_quotient_top :
  subsingleton (G ⧸ (⊤ : subgroup G)) :=
begin
  dsimp [has_quotient.quotient, subgroup.has_quotient, quotient],
  rw left_rel_eq,
  exact @trunc.subsingleton G,
end

/-- If the quotient by a subgroup gives a singleton then the subgroup is the whole group. -/
@[to_additive "If the quotient by an additive subgroup gives a singleton then the additive subgroup
is the whole additive group."] lemma subgroup_eq_top_of_subsingleton (H : subgroup G)
  (h : subsingleton (G ⧸ H)) : H = ⊤ :=
top_unique $ λ x _,
  have this : 1⁻¹ * x ∈ H := quotient_group.eq.1 (subsingleton.elim _ _),
  by rwa [inv_one, one_mul] at this

end trivial

@[to_additive quotient_add_group.comap_comap_center]
lemma comap_comap_center {H₁ : subgroup G} [H₁.normal] {H₂ : subgroup (G ⧸ H₁)} [H₂.normal] :
  (((subgroup.center ((G ⧸ H₁) ⧸ H₂))).comap (mk' H₂)).comap (mk' H₁) =
  (subgroup.center (G ⧸ H₂.comap (mk' H₁))).comap (mk' (H₂.comap (mk' H₁))) :=
begin
  ext x,
  simp only [mk'_apply, subgroup.mem_comap, subgroup.mem_center_iff, forall_coe,
    ← coe_mul, eq_iff_div_mem, coe_div]
end

end quotient_group

namespace group

open_locale classical
open quotient_group subgroup

variables {F G H : Type u} [group F] [group G] [group H] [fintype F] [fintype H]
variables (f : F →* G) (g : G →* H)

/-- If `F` and `H` are finite such that `ker(G →* H) ≤ im(F →* G)`, then `G` is finite. -/
@[to_additive "If `F` and `H` are finite such that `ker(G →+ H) ≤ im(F →+ G)`, then `G` is finite."]
noncomputable def fintype_of_ker_le_range (h : g.ker ≤ f.range) : fintype G :=
@fintype.of_equiv _ _ (@prod.fintype _ _ (fintype.of_injective _ $ ker_lift_injective g) $
                                          fintype.of_injective _ $ inclusion_injective h)
  group_equiv_quotient_times_subgroup.symm

/-- If `F` and `H` are finite such that `ker(G →* H) = im(F →* G)`, then `G` is finite. -/
@[to_additive "If `F` and `H` are finite such that `ker(G →+ H) = im(F →+ G)`, then `G` is finite."]
noncomputable def fintype_of_ker_eq_range (h : g.ker = f.range) : fintype G :=
fintype_of_ker_le_range _ _ h.le

/-- If `ker(G →* H)` and `H` are finite, then `G` is finite. -/
@[to_additive "If `ker(G →+ H)` and `H` are finite, then `G` is finite."]
noncomputable def fintype_of_ker_of_codom [fintype g.ker] : fintype G :=
fintype_of_ker_le_range ((top_equiv : _ ≃* G).to_monoid_hom.comp $ inclusion le_top) g $
  λ x hx, ⟨⟨x, hx⟩, rfl⟩

/-- If `F` and `coker(F →* G)` are finite, then `G` is finite. -/
@[to_additive "If `F` and `coker(F →+ G)` are finite, then `G` is finite."]
noncomputable def fintype_of_dom_of_coker [normal f.range] [fintype $ G ⧸ f.range] : fintype G :=
fintype_of_ker_le_range _ (mk' f.range) $ λ x, (eq_one_iff x).mp

end group