Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 14,667 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
/-
Copyright (c) 2018 . All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Thomas Browning
-/
import data.zmod.basic
import group_theory.index
import group_theory.group_action.conj_act
import group_theory.group_action.quotient
import group_theory.perm.cycle.type
import group_theory.specific_groups.cyclic
import tactic.interval_cases
/-!
# p-groups
This file contains a proof that if `G` is a `p`-group acting on a finite set `α`,
then the number of fixed points of the action is congruent mod `p` to the cardinality of `α`.
It also contains proofs of some corollaries of this lemma about existence of fixed points.
-/
open_locale big_operators
open fintype mul_action
variables (p : ℕ) (G : Type*) [group G]
/-- A p-group is a group in which every element has prime power order -/
def is_p_group : Prop := ∀ g : G, ∃ k : ℕ, g ^ (p ^ k) = 1
variables {p} {G}
namespace is_p_group
lemma iff_order_of [hp : fact p.prime] :
is_p_group p G ↔ ∀ g : G, ∃ k : ℕ, order_of g = p ^ k :=
forall_congr (λ g, ⟨λ ⟨k, hk⟩, exists_imp_exists (by exact λ j, Exists.snd)
((nat.dvd_prime_pow hp.out).mp (order_of_dvd_of_pow_eq_one hk)),
exists_imp_exists (λ k hk, by rw [←hk, pow_order_of_eq_one])⟩)
lemma of_card [fintype G] {n : ℕ} (hG : card G = p ^ n) : is_p_group p G :=
λ g, ⟨n, by rw [←hG, pow_card_eq_one]⟩
lemma of_bot : is_p_group p (⊥ : subgroup G) :=
of_card (subgroup.card_bot.trans (pow_zero p).symm)
lemma iff_card [fact p.prime] [fintype G] :
is_p_group p G ↔ ∃ n : ℕ, card G = p ^ n :=
begin
have hG : card G ≠ 0 := card_ne_zero,
refine ⟨λ h, _, λ ⟨n, hn⟩, of_card hn⟩,
suffices : ∀ q ∈ nat.factors (card G), q = p,
{ use (card G).factors.length,
rw [←list.prod_repeat, ←list.eq_repeat_of_mem this, nat.prod_factors hG] },
intros q hq,
obtain ⟨hq1, hq2⟩ := (nat.mem_factors hG).mp hq,
haveI : fact q.prime := ⟨hq1⟩,
obtain ⟨g, hg⟩ := exists_prime_order_of_dvd_card q hq2,
obtain ⟨k, hk⟩ := (iff_order_of.mp h) g,
exact (hq1.pow_eq_iff.mp (hg.symm.trans hk).symm).1.symm,
end
section G_is_p_group
variables (hG : is_p_group p G)
include hG
lemma of_injective {H : Type*} [group H] (ϕ : H →* G) (hϕ : function.injective ϕ) :
is_p_group p H :=
begin
simp_rw [is_p_group, ←hϕ.eq_iff, ϕ.map_pow, ϕ.map_one],
exact λ h, hG (ϕ h),
end
lemma to_subgroup (H : subgroup G) : is_p_group p H :=
hG.of_injective H.subtype subtype.coe_injective
lemma of_surjective {H : Type*} [group H] (ϕ : G →* H) (hϕ : function.surjective ϕ) :
is_p_group p H :=
begin
refine λ h, exists.elim (hϕ h) (λ g hg, exists_imp_exists (λ k hk, _) (hG g)),
rw [←hg, ←ϕ.map_pow, hk, ϕ.map_one],
end
lemma to_quotient (H : subgroup G) [H.normal] :
is_p_group p (G ⧸ H) :=
hG.of_surjective (quotient_group.mk' H) quotient.surjective_quotient_mk'
lemma of_equiv {H : Type*} [group H] (ϕ : G ≃* H) : is_p_group p H :=
hG.of_surjective ϕ.to_monoid_hom ϕ.surjective
variables [hp : fact p.prime]
include hp
lemma index (H : subgroup G) [finite (G ⧸ H)] :
∃ n : ℕ, H.index = p ^ n :=
begin
casesI nonempty_fintype (G ⧸ H),
obtain ⟨n, hn⟩ := iff_card.mp (hG.to_quotient H.normal_core),
obtain ⟨k, hk1, hk2⟩ := (nat.dvd_prime_pow hp.out).mp ((congr_arg _
(H.normal_core.index_eq_card.trans hn)).mp (subgroup.index_dvd_of_le H.normal_core_le)),
exact ⟨k, hk2⟩,
end
lemma nontrivial_iff_card [fintype G] : nontrivial G ↔ ∃ n > 0, card G = p ^ n :=
⟨λ hGnt, let ⟨k, hk⟩ := iff_card.1 hG in ⟨k, nat.pos_of_ne_zero $ λ hk0,
by rw [hk0, pow_zero] at hk; exactI fintype.one_lt_card.ne' hk, hk⟩,
λ ⟨k, hk0, hk⟩, one_lt_card_iff_nontrivial.1 $ hk.symm ▸
one_lt_pow (fact.out p.prime).one_lt (ne_of_gt hk0)⟩
variables {α : Type*} [mul_action G α]
lemma card_orbit (a : α) [fintype (orbit G a)] :
∃ n : ℕ, card (orbit G a) = p ^ n :=
begin
let ϕ := orbit_equiv_quotient_stabilizer G a,
haveI := fintype.of_equiv (orbit G a) ϕ,
rw [card_congr ϕ, ←subgroup.index_eq_card],
exact hG.index (stabilizer G a),
end
variables (α) [fintype α]
/-- If `G` is a `p`-group acting on a finite set `α`, then the number of fixed points
of the action is congruent mod `p` to the cardinality of `α` -/
lemma card_modeq_card_fixed_points [fintype (fixed_points G α)] :
card α ≡ card (fixed_points G α) [MOD p] :=
begin
classical,
calc card α = card (Σ y : quotient (orbit_rel G α), {x // quotient.mk' x = y}) :
card_congr (equiv.sigma_fiber_equiv (@quotient.mk' _ (orbit_rel G α))).symm
... = ∑ a : quotient (orbit_rel G α), card {x // quotient.mk' x = a} : card_sigma _
... ≡ ∑ a : fixed_points G α, 1 [MOD p] : _
... = _ : by simp; refl,
rw [←zmod.eq_iff_modeq_nat p, nat.cast_sum, nat.cast_sum],
have key : ∀ x, card {y // (quotient.mk' y : quotient (orbit_rel G α)) = quotient.mk' x} =
card (orbit G x) := λ x, by simp only [quotient.eq']; congr,
refine eq.symm (finset.sum_bij_ne_zero (λ a _ _, quotient.mk' a.1) (λ _ _ _, finset.mem_univ _)
(λ a₁ a₂ _ _ _ _ h, subtype.eq ((mem_fixed_points' α).mp a₂.2 a₁.1 (quotient.exact' h)))
(λ b, quotient.induction_on' b (λ b _ hb, _)) (λ a ha _, by
{ rw [key, mem_fixed_points_iff_card_orbit_eq_one.mp a.2] })),
obtain ⟨k, hk⟩ := hG.card_orbit b,
have : k = 0 := nat.le_zero_iff.1 (nat.le_of_lt_succ (lt_of_not_ge (mt (pow_dvd_pow p)
(by rwa [pow_one, ←hk, ←nat.modeq_zero_iff_dvd, ←zmod.eq_iff_modeq_nat, ←key,
nat.cast_zero])))),
exact ⟨⟨b, mem_fixed_points_iff_card_orbit_eq_one.2 $ by rw [hk, this, pow_zero]⟩,
finset.mem_univ _, (ne_of_eq_of_ne nat.cast_one one_ne_zero), rfl⟩,
end
/-- If a p-group acts on `α` and the cardinality of `α` is not a multiple
of `p` then the action has a fixed point. -/
lemma nonempty_fixed_point_of_prime_not_dvd_card (hpα : ¬ p ∣ card α)
[finite (fixed_points G α)] :
(fixed_points G α).nonempty :=
@set.nonempty_of_nonempty_subtype _ _ begin
casesI nonempty_fintype (fixed_points G α),
rw [←card_pos_iff, pos_iff_ne_zero],
contrapose! hpα,
rw [←nat.modeq_zero_iff_dvd, ←hpα],
exact hG.card_modeq_card_fixed_points α,
end
/-- If a p-group acts on `α` and the cardinality of `α` is a multiple
of `p`, and the action has one fixed point, then it has another fixed point. -/
lemma exists_fixed_point_of_prime_dvd_card_of_fixed_point
(hpα : p ∣ card α) {a : α} (ha : a ∈ fixed_points G α) :
∃ b, b ∈ fixed_points G α ∧ a ≠ b :=
begin
casesI nonempty_fintype (fixed_points G α),
have hpf : p ∣ card (fixed_points G α) :=
nat.modeq_zero_iff_dvd.mp ((hG.card_modeq_card_fixed_points α).symm.trans hpα.modeq_zero_nat),
have hα : 1 < card (fixed_points G α) :=
(fact.out p.prime).one_lt.trans_le (nat.le_of_dvd (card_pos_iff.2 ⟨⟨a, ha⟩⟩) hpf),
exact let ⟨⟨b, hb⟩, hba⟩ := exists_ne_of_one_lt_card hα ⟨a, ha⟩ in
⟨b, hb, λ hab, hba (by simp_rw [hab])⟩
end
lemma center_nontrivial [nontrivial G] [finite G] : nontrivial (subgroup.center G) :=
begin
classical,
casesI nonempty_fintype G,
have := (hG.of_equiv conj_act.to_conj_act).exists_fixed_point_of_prime_dvd_card_of_fixed_point G,
rw conj_act.fixed_points_eq_center at this,
obtain ⟨g, hg⟩ := this _ (subgroup.center G).one_mem,
{ exact ⟨⟨1, ⟨g, hg.1⟩, mt subtype.ext_iff.mp hg.2⟩⟩ },
{ obtain ⟨n, hn0, hn⟩ := hG.nontrivial_iff_card.mp infer_instance,
exact hn.symm ▸ dvd_pow_self _ (ne_of_gt hn0) },
end
lemma bot_lt_center [nontrivial G] [finite G] : ⊥ < subgroup.center G :=
begin
haveI := center_nontrivial hG,
casesI nonempty_fintype G,
classical,
exact bot_lt_iff_ne_bot.mpr ((subgroup.center G).one_lt_card_iff_ne_bot.mp fintype.one_lt_card),
end
end G_is_p_group
lemma to_le {H K : subgroup G} (hK : is_p_group p K) (hHK : H ≤ K) : is_p_group p H :=
hK.of_injective (subgroup.inclusion hHK) (λ a b h, subtype.ext (show _, from subtype.ext_iff.mp h))
lemma to_inf_left {H K : subgroup G} (hH : is_p_group p H) : is_p_group p (H ⊓ K : subgroup G) :=
hH.to_le inf_le_left
lemma to_inf_right {H K : subgroup G} (hK : is_p_group p K) : is_p_group p (H ⊓ K : subgroup G) :=
hK.to_le inf_le_right
lemma map {H : subgroup G} (hH : is_p_group p H) {K : Type*} [group K]
(ϕ : G →* K) : is_p_group p (H.map ϕ) :=
begin
rw [←H.subtype_range, monoid_hom.map_range],
exact hH.of_surjective (ϕ.restrict H).range_restrict (ϕ.restrict H).range_restrict_surjective,
end
lemma comap_of_ker_is_p_group {H : subgroup G} (hH : is_p_group p H) {K : Type*} [group K]
(ϕ : K →* G) (hϕ : is_p_group p ϕ.ker) : is_p_group p (H.comap ϕ) :=
begin
intro g,
obtain ⟨j, hj⟩ := hH ⟨ϕ g.1, g.2⟩,
rw [subtype.ext_iff, H.coe_pow, subtype.coe_mk, ←ϕ.map_pow] at hj,
obtain ⟨k, hk⟩ := hϕ ⟨g.1 ^ p ^ j, hj⟩,
rwa [subtype.ext_iff, ϕ.ker.coe_pow, subtype.coe_mk, ←pow_mul, ←pow_add] at hk,
exact ⟨j + k, by rwa [subtype.ext_iff, (H.comap ϕ).coe_pow]⟩,
end
lemma ker_is_p_group_of_injective {K : Type*} [group K] {ϕ : K →* G} (hϕ : function.injective ϕ) :
is_p_group p ϕ.ker :=
(congr_arg (λ Q : subgroup K, is_p_group p Q) (ϕ.ker_eq_bot_iff.mpr hϕ)).mpr is_p_group.of_bot
lemma comap_of_injective {H : subgroup G} (hH : is_p_group p H) {K : Type*} [group K]
(ϕ : K →* G) (hϕ : function.injective ϕ) : is_p_group p (H.comap ϕ) :=
hH.comap_of_ker_is_p_group ϕ (ker_is_p_group_of_injective hϕ)
lemma comap_subtype {H : subgroup G} (hH : is_p_group p H) {K : subgroup G} :
is_p_group p (H.comap K.subtype) :=
hH.comap_of_injective K.subtype subtype.coe_injective
lemma to_sup_of_normal_right {H K : subgroup G} (hH : is_p_group p H) (hK : is_p_group p K)
[K.normal] : is_p_group p (H ⊔ K : subgroup G) :=
begin
rw [←quotient_group.ker_mk K, ←subgroup.comap_map_eq],
apply (hH.map (quotient_group.mk' K)).comap_of_ker_is_p_group,
rwa quotient_group.ker_mk,
end
lemma to_sup_of_normal_left {H K : subgroup G} (hH : is_p_group p H) (hK : is_p_group p K)
[H.normal] : is_p_group p (H ⊔ K : subgroup G) :=
(congr_arg (λ H : subgroup G, is_p_group p H) sup_comm).mp (to_sup_of_normal_right hK hH)
lemma to_sup_of_normal_right' {H K : subgroup G} (hH : is_p_group p H) (hK : is_p_group p K)
(hHK : H ≤ K.normalizer) : is_p_group p (H ⊔ K : subgroup G) :=
let hHK' := to_sup_of_normal_right (hH.of_equiv (subgroup.comap_subtype_equiv_of_le hHK).symm)
(hK.of_equiv (subgroup.comap_subtype_equiv_of_le subgroup.le_normalizer).symm) in
((congr_arg (λ H : subgroup K.normalizer, is_p_group p H)
(subgroup.sup_subgroup_of_eq hHK subgroup.le_normalizer)).mp hHK').of_equiv
(subgroup.comap_subtype_equiv_of_le (sup_le hHK subgroup.le_normalizer))
lemma to_sup_of_normal_left' {H K : subgroup G} (hH : is_p_group p H) (hK : is_p_group p K)
(hHK : K ≤ H.normalizer) : is_p_group p (H ⊔ K : subgroup G) :=
(congr_arg (λ H : subgroup G, is_p_group p H) sup_comm).mp (to_sup_of_normal_right' hK hH hHK)
/-- finite p-groups with different p have coprime orders -/
lemma coprime_card_of_ne {G₂ : Type*} [group G₂]
(p₁ p₂ : ℕ) [hp₁ : fact p₁.prime] [hp₂ : fact p₂.prime] (hne : p₁ ≠ p₂)
(H₁ : subgroup G) (H₂ : subgroup G₂) [fintype H₁] [fintype H₂]
(hH₁ : is_p_group p₁ H₁) (hH₂ : is_p_group p₂ H₂) :
nat.coprime (fintype.card H₁) (fintype.card H₂) :=
begin
obtain ⟨n₁, heq₁⟩ := iff_card.mp hH₁, rw heq₁, clear heq₁,
obtain ⟨n₂, heq₂⟩ := iff_card.mp hH₂, rw heq₂, clear heq₂,
exact nat.coprime_pow_primes _ _ (hp₁.elim) (hp₂.elim) hne,
end
/-- p-groups with different p are disjoint -/
lemma disjoint_of_ne (p₁ p₂ : ℕ) [hp₁ : fact p₁.prime] [hp₂ : fact p₂.prime] (hne : p₁ ≠ p₂)
(H₁ H₂ : subgroup G) (hH₁ : is_p_group p₁ H₁) (hH₂ : is_p_group p₂ H₂) :
disjoint H₁ H₂ :=
begin
rintro x ⟨hx₁, hx₂⟩,
rw subgroup.mem_bot,
obtain ⟨n₁, hn₁⟩ := iff_order_of.mp hH₁ ⟨x, hx₁⟩,
obtain ⟨n₂, hn₂⟩ := iff_order_of.mp hH₂ ⟨x, hx₂⟩,
rw [← order_of_subgroup, subgroup.coe_mk] at hn₁ hn₂,
have : p₁ ^ n₁ = p₂ ^ n₂, by rw [← hn₁, ← hn₂],
have : n₁ = 0,
{ contrapose! hne with h,
rw ← associated_iff_eq at this ⊢,
exact associated.of_pow_associated_of_prime
(nat.prime_iff.mp hp₁.elim) (nat.prime_iff.mp hp₂.elim) (ne.bot_lt h) this },
simpa [this] using hn₁,
end
section p2comm
variables [fintype G] [fact p.prime] {n : ℕ} (hGpn : card G = p ^ n)
include hGpn
open subgroup
/-- The cardinality of the `center` of a `p`-group is `p ^ k` where `k` is positive. -/
lemma card_center_eq_prime_pow (hn : 0 < n) [fintype (center G)] :
∃ k > 0, card (center G) = p ^ k :=
begin
have hcG := to_subgroup (of_card hGpn) (center G),
rcases iff_card.1 hcG with ⟨k, hk⟩,
haveI : nontrivial G := (nontrivial_iff_card $ of_card hGpn).2 ⟨n, hn, hGpn⟩,
exact (nontrivial_iff_card hcG).mp (center_nontrivial (of_card hGpn)),
end
omit hGpn
/-- The quotient by the center of a group of cardinality `p ^ 2` is cyclic. -/
lemma cyclic_center_quotient_of_card_eq_prime_sq (hG : card G = p ^ 2) :
is_cyclic (G ⧸ (center G)) :=
begin
classical,
rcases card_center_eq_prime_pow hG zero_lt_two with ⟨k, hk0, hk⟩,
rw [card_eq_card_quotient_mul_card_subgroup (center G), mul_comm, hk] at hG,
have hk2 := (nat.pow_dvd_pow_iff_le_right (fact.out p.prime).one_lt).1 ⟨_, hG.symm⟩,
interval_cases k,
{ rw [sq, pow_one, nat.mul_right_inj (fact.out p.prime).pos] at hG,
exact is_cyclic_of_prime_card hG },
{ exact @is_cyclic_of_subsingleton _ _ ⟨fintype.card_le_one_iff.1 ((nat.mul_right_inj
(pow_pos (fact.out p.prime).pos 2)).1 (hG.trans (mul_one (p ^ 2)).symm)).le⟩ },
end
/-- A group of order `p ^ 2` is commutative. See also `is_p_group.comm_group_of_card_eq_prime_sq`
for the `comm_group` instance. -/
def comm_group_of_card_eq_prime_sq (hG : card G = p ^ 2) : comm_group G :=
@comm_group_of_cycle_center_quotient _ _ _ _ (cyclic_center_quotient_of_card_eq_prime_sq hG) _
(quotient_group.ker_mk (center G)).le
/-- A group of order `p ^ 2` is commutative. See also `is_p_group.commutative_of_card_eq_prime_sq`
for just the proof that `∀ a b, a * b = b * a` -/
lemma commutative_of_card_eq_prime_sq (hG : card G = p ^ 2) : ∀ a b : G, a * b = b * a :=
(comm_group_of_card_eq_prime_sq hG).mul_comm
end p2comm
end is_p_group
|