Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 14,667 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
/-
Copyright (c) 2018 . All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Thomas Browning
-/

import data.zmod.basic
import group_theory.index
import group_theory.group_action.conj_act
import group_theory.group_action.quotient
import group_theory.perm.cycle.type
import group_theory.specific_groups.cyclic
import tactic.interval_cases

/-!
# p-groups

This file contains a proof that if `G` is a `p`-group acting on a finite set `α`,
then the number of fixed points of the action is congruent mod `p` to the cardinality of `α`.
It also contains proofs of some corollaries of this lemma about existence of fixed points.
-/

open_locale big_operators

open fintype mul_action

variables (p : ℕ) (G : Type*) [group G]

/-- A p-group is a group in which every element has prime power order -/
def is_p_group : Prop := ∀ g : G, ∃ k : ℕ, g ^ (p ^ k) = 1

variables {p} {G}

namespace is_p_group

lemma iff_order_of [hp : fact p.prime] :
  is_p_group p G ↔ ∀ g : G, ∃ k : ℕ, order_of g = p ^ k :=
forall_congr (λ g, ⟨λ ⟨k, hk⟩, exists_imp_exists (by exact λ j, Exists.snd)
  ((nat.dvd_prime_pow hp.out).mp (order_of_dvd_of_pow_eq_one hk)),
  exists_imp_exists (λ k hk, by rw [←hk, pow_order_of_eq_one])⟩)

lemma of_card [fintype G] {n : ℕ} (hG : card G = p ^ n) : is_p_group p G :=
λ g, ⟨n, by rw [←hG, pow_card_eq_one]⟩

lemma of_bot : is_p_group p (⊥ : subgroup G) :=
of_card (subgroup.card_bot.trans (pow_zero p).symm)

lemma iff_card [fact p.prime] [fintype G] :
  is_p_group p G ↔ ∃ n : ℕ, card G = p ^ n :=
begin
  have hG : card G ≠ 0 := card_ne_zero,
  refine ⟨λ h, _, λ ⟨n, hn⟩, of_card hn⟩,
  suffices : ∀ q ∈ nat.factors (card G), q = p,
  { use (card G).factors.length,
    rw [←list.prod_repeat, ←list.eq_repeat_of_mem this, nat.prod_factors hG] },
  intros q hq,
  obtain ⟨hq1, hq2⟩ := (nat.mem_factors hG).mp hq,
  haveI : fact q.prime := ⟨hq1⟩,
  obtain ⟨g, hg⟩ := exists_prime_order_of_dvd_card q hq2,
  obtain ⟨k, hk⟩ := (iff_order_of.mp h) g,
  exact (hq1.pow_eq_iff.mp (hg.symm.trans hk).symm).1.symm,
end

section G_is_p_group

variables (hG : is_p_group p G)

include hG

lemma of_injective {H : Type*} [group H] (ϕ : H →* G) (hϕ : function.injective ϕ) :
  is_p_group p H :=
begin
  simp_rw [is_p_group, ←hϕ.eq_iff, ϕ.map_pow, ϕ.map_one],
  exact λ h, hG (ϕ h),
end

lemma to_subgroup (H : subgroup G) : is_p_group p H :=
hG.of_injective H.subtype subtype.coe_injective

lemma of_surjective {H : Type*} [group H] (ϕ : G →* H) (hϕ : function.surjective ϕ) :
  is_p_group p H :=
begin
  refine λ h, exists.elim (hϕ h) (λ g hg, exists_imp_exists (λ k hk, _) (hG g)),
  rw [←hg, ←ϕ.map_pow, hk, ϕ.map_one],
end

lemma to_quotient (H : subgroup G) [H.normal] :
  is_p_group p (G ⧸ H) :=
hG.of_surjective (quotient_group.mk' H) quotient.surjective_quotient_mk'

lemma of_equiv {H : Type*} [group H] (ϕ : G ≃* H) : is_p_group p H :=
hG.of_surjective ϕ.to_monoid_hom ϕ.surjective

variables [hp : fact p.prime]

include hp

lemma index (H : subgroup G) [finite (G ⧸ H)] :
  ∃ n : ℕ, H.index = p ^ n :=
begin
  casesI nonempty_fintype (G ⧸ H),
  obtain ⟨n, hn⟩ := iff_card.mp (hG.to_quotient H.normal_core),
  obtain ⟨k, hk1, hk2⟩ := (nat.dvd_prime_pow hp.out).mp ((congr_arg _
    (H.normal_core.index_eq_card.trans hn)).mp (subgroup.index_dvd_of_le H.normal_core_le)),
  exact ⟨k, hk2⟩,
end

lemma nontrivial_iff_card [fintype G] : nontrivial G ↔ ∃ n > 0, card G = p ^ n :=
⟨λ hGnt, let ⟨k, hk⟩ := iff_card.1 hG in ⟨k, nat.pos_of_ne_zero $ λ hk0,
  by rw [hk0, pow_zero] at hk; exactI fintype.one_lt_card.ne' hk, hk⟩,
λ ⟨k, hk0, hk⟩, one_lt_card_iff_nontrivial.1 $ hk.symm ▸
  one_lt_pow (fact.out p.prime).one_lt (ne_of_gt hk0)⟩

variables {α : Type*} [mul_action G α]

lemma card_orbit (a : α) [fintype (orbit G a)] :
  ∃ n : ℕ, card (orbit G a) = p ^ n :=
begin
  let ϕ := orbit_equiv_quotient_stabilizer G a,
  haveI := fintype.of_equiv (orbit G a) ϕ,
  rw [card_congr ϕ, ←subgroup.index_eq_card],
  exact hG.index (stabilizer G a),
end

variables (α) [fintype α]

/-- If `G` is a `p`-group acting on a finite set `α`, then the number of fixed points
  of the action is congruent mod `p` to the cardinality of `α` -/
lemma card_modeq_card_fixed_points [fintype (fixed_points G α)] :
  card α ≡ card (fixed_points G α) [MOD p] :=
begin
  classical,
  calc card α = card (Σ y : quotient (orbit_rel G α), {x // quotient.mk' x = y}) :
    card_congr (equiv.sigma_fiber_equiv (@quotient.mk' _ (orbit_rel G α))).symm
  ... = ∑ a : quotient (orbit_rel G α), card {x // quotient.mk' x = a} : card_sigma _
  ... ≡ ∑ a : fixed_points G α, 1 [MOD p] : _
  ... = _ : by simp; refl,
  rw [←zmod.eq_iff_modeq_nat p, nat.cast_sum, nat.cast_sum],
  have key : ∀ x, card {y // (quotient.mk' y : quotient (orbit_rel G α)) = quotient.mk' x} =
    card (orbit G x) := λ x, by simp only [quotient.eq']; congr,
  refine eq.symm (finset.sum_bij_ne_zero (λ a _ _, quotient.mk' a.1) (λ _ _ _, finset.mem_univ _)
    (λ a₁ a₂ _ _ _ _ h, subtype.eq ((mem_fixed_points' α).mp a₂.2 a₁.1 (quotient.exact' h)))
      (λ b, quotient.induction_on' b (λ b _ hb, _)) (λ a ha _, by
      { rw [key, mem_fixed_points_iff_card_orbit_eq_one.mp a.2] })),
  obtain ⟨k, hk⟩ := hG.card_orbit b,
  have : k = 0 := nat.le_zero_iff.1 (nat.le_of_lt_succ (lt_of_not_ge (mt (pow_dvd_pow p)
    (by rwa [pow_one, ←hk, ←nat.modeq_zero_iff_dvd, ←zmod.eq_iff_modeq_nat, ←key,
      nat.cast_zero])))),
  exact ⟨⟨b, mem_fixed_points_iff_card_orbit_eq_one.2 $ by rw [hk, this, pow_zero]⟩,
    finset.mem_univ _, (ne_of_eq_of_ne nat.cast_one one_ne_zero), rfl⟩,
end

/-- If a p-group acts on `α` and the cardinality of `α` is not a multiple
  of `p` then the action has a fixed point. -/
lemma nonempty_fixed_point_of_prime_not_dvd_card (hpα : ¬ p ∣ card α)
  [finite (fixed_points G α)] :
  (fixed_points G α).nonempty :=
@set.nonempty_of_nonempty_subtype _ _ begin
  casesI nonempty_fintype (fixed_points G α),
  rw [←card_pos_iff, pos_iff_ne_zero],
  contrapose! hpα,
  rw [←nat.modeq_zero_iff_dvd, ←hpα],
  exact hG.card_modeq_card_fixed_points α,
end

/-- If a p-group acts on `α` and the cardinality of `α` is a multiple
  of `p`, and the action has one fixed point, then it has another fixed point. -/
lemma exists_fixed_point_of_prime_dvd_card_of_fixed_point
  (hpα : p ∣ card α) {a : α} (ha : a ∈ fixed_points G α) :
  ∃ b, b ∈ fixed_points G α ∧ a ≠ b :=
begin
  casesI nonempty_fintype (fixed_points G α),
  have hpf : p ∣ card (fixed_points G α) :=
    nat.modeq_zero_iff_dvd.mp ((hG.card_modeq_card_fixed_points α).symm.trans hpα.modeq_zero_nat),
  have hα : 1 < card (fixed_points G α) :=
    (fact.out p.prime).one_lt.trans_le (nat.le_of_dvd (card_pos_iff.2 ⟨⟨a, ha⟩⟩) hpf),
  exact let ⟨⟨b, hb⟩, hba⟩ := exists_ne_of_one_lt_card hα ⟨a, ha⟩ in
  ⟨b, hb, λ hab, hba (by simp_rw [hab])⟩
end

lemma center_nontrivial [nontrivial G] [finite G] : nontrivial (subgroup.center G) :=
begin
  classical,
  casesI nonempty_fintype G,
  have := (hG.of_equiv conj_act.to_conj_act).exists_fixed_point_of_prime_dvd_card_of_fixed_point G,
  rw conj_act.fixed_points_eq_center at this,
  obtain ⟨g, hg⟩ := this _ (subgroup.center G).one_mem,
  { exact ⟨⟨1, ⟨g, hg.1⟩, mt subtype.ext_iff.mp hg.2⟩⟩ },
  { obtain ⟨n, hn0, hn⟩ := hG.nontrivial_iff_card.mp infer_instance,
    exact hn.symm ▸ dvd_pow_self _ (ne_of_gt hn0) },
end

lemma bot_lt_center [nontrivial G] [finite G] : ⊥ < subgroup.center G :=
begin
  haveI := center_nontrivial hG,
  casesI nonempty_fintype G,
  classical,
  exact bot_lt_iff_ne_bot.mpr ((subgroup.center G).one_lt_card_iff_ne_bot.mp fintype.one_lt_card),
end

end G_is_p_group

lemma to_le {H K : subgroup G} (hK : is_p_group p K) (hHK : H ≤ K) : is_p_group p H :=
hK.of_injective (subgroup.inclusion hHK) (λ a b h, subtype.ext (show _, from subtype.ext_iff.mp h))

lemma to_inf_left {H K : subgroup G} (hH : is_p_group p H) : is_p_group p (H ⊓ K : subgroup G) :=
hH.to_le inf_le_left

lemma to_inf_right {H K : subgroup G} (hK : is_p_group p K) : is_p_group p (H ⊓ K : subgroup G) :=
hK.to_le inf_le_right

lemma map {H : subgroup G} (hH : is_p_group p H) {K : Type*} [group K]
  (ϕ : G →* K) : is_p_group p (H.map ϕ) :=
begin
  rw [←H.subtype_range, monoid_hom.map_range],
  exact hH.of_surjective (ϕ.restrict H).range_restrict (ϕ.restrict H).range_restrict_surjective,
end

lemma comap_of_ker_is_p_group {H : subgroup G} (hH : is_p_group p H) {K : Type*} [group K]
  (ϕ : K →* G) (hϕ : is_p_group p ϕ.ker) : is_p_group p (H.comap ϕ) :=
begin
  intro g,
  obtain ⟨j, hj⟩ := hH ⟨ϕ g.1, g.2⟩,
  rw [subtype.ext_iff, H.coe_pow, subtype.coe_mk, ←ϕ.map_pow] at hj,
  obtain ⟨k, hk⟩ := hϕ ⟨g.1 ^ p ^ j, hj⟩,
  rwa [subtype.ext_iff, ϕ.ker.coe_pow, subtype.coe_mk, ←pow_mul, ←pow_add] at hk,
  exact ⟨j + k, by rwa [subtype.ext_iff, (H.comap ϕ).coe_pow]⟩,
end

lemma ker_is_p_group_of_injective {K : Type*} [group K] {ϕ : K →* G} (hϕ : function.injective ϕ) :
  is_p_group p ϕ.ker :=
(congr_arg (λ Q : subgroup K, is_p_group p Q) (ϕ.ker_eq_bot_iff.mpr hϕ)).mpr is_p_group.of_bot

lemma comap_of_injective {H : subgroup G} (hH : is_p_group p H) {K : Type*} [group K]
  (ϕ : K →* G) (hϕ : function.injective ϕ) : is_p_group p (H.comap ϕ) :=
hH.comap_of_ker_is_p_group ϕ (ker_is_p_group_of_injective hϕ)

lemma comap_subtype {H : subgroup G} (hH : is_p_group p H) {K : subgroup G} :
  is_p_group p (H.comap K.subtype) :=
hH.comap_of_injective K.subtype subtype.coe_injective

lemma to_sup_of_normal_right {H K : subgroup G} (hH : is_p_group p H) (hK : is_p_group p K)
  [K.normal] : is_p_group p (H ⊔ K : subgroup G) :=
begin
  rw [←quotient_group.ker_mk K, ←subgroup.comap_map_eq],
  apply (hH.map (quotient_group.mk' K)).comap_of_ker_is_p_group,
  rwa quotient_group.ker_mk,
end

lemma to_sup_of_normal_left {H K : subgroup G} (hH : is_p_group p H) (hK : is_p_group p K)
  [H.normal] : is_p_group p (H ⊔ K : subgroup G) :=
(congr_arg (λ H : subgroup G, is_p_group p H) sup_comm).mp (to_sup_of_normal_right hK hH)

lemma to_sup_of_normal_right' {H K : subgroup G} (hH : is_p_group p H) (hK : is_p_group p K)
  (hHK : H ≤ K.normalizer) : is_p_group p (H ⊔ K : subgroup G) :=
let hHK' := to_sup_of_normal_right (hH.of_equiv (subgroup.comap_subtype_equiv_of_le hHK).symm)
  (hK.of_equiv (subgroup.comap_subtype_equiv_of_le subgroup.le_normalizer).symm) in
((congr_arg (λ H : subgroup K.normalizer, is_p_group p H)
  (subgroup.sup_subgroup_of_eq hHK subgroup.le_normalizer)).mp hHK').of_equiv
  (subgroup.comap_subtype_equiv_of_le (sup_le hHK subgroup.le_normalizer))

lemma to_sup_of_normal_left' {H K : subgroup G} (hH : is_p_group p H) (hK : is_p_group p K)
  (hHK : K ≤ H.normalizer) : is_p_group p (H ⊔ K : subgroup G) :=
(congr_arg (λ H : subgroup G, is_p_group p H) sup_comm).mp (to_sup_of_normal_right' hK hH hHK)

/-- finite p-groups with different p have coprime orders -/
lemma coprime_card_of_ne {G₂ : Type*} [group G₂]
  (p₁ p₂ : ℕ) [hp₁ : fact p₁.prime] [hp₂ : fact p₂.prime] (hne : p₁ ≠ p₂)
  (H₁ : subgroup G) (H₂ : subgroup G₂) [fintype H₁] [fintype H₂]
  (hH₁ : is_p_group p₁ H₁) (hH₂ : is_p_group p₂ H₂) :
  nat.coprime (fintype.card H₁) (fintype.card H₂) :=
begin
  obtain ⟨n₁, heq₁⟩ := iff_card.mp hH₁, rw heq₁, clear heq₁,
  obtain ⟨n₂, heq₂⟩ := iff_card.mp hH₂, rw heq₂, clear heq₂,
  exact nat.coprime_pow_primes _ _ (hp₁.elim) (hp₂.elim) hne,
end

/-- p-groups with different p are disjoint -/
lemma disjoint_of_ne (p₁ p₂ : ℕ) [hp₁ : fact p₁.prime] [hp₂ : fact p₂.prime] (hne : p₁ ≠ p₂)
  (H₁ H₂ : subgroup G) (hH₁ : is_p_group p₁ H₁) (hH₂ : is_p_group p₂ H₂) :
  disjoint H₁ H₂ :=
begin
  rintro x ⟨hx₁, hx₂⟩,
  rw subgroup.mem_bot,
  obtain ⟨n₁, hn₁⟩ := iff_order_of.mp hH₁ ⟨x, hx₁⟩,
  obtain ⟨n₂, hn₂⟩ := iff_order_of.mp hH₂ ⟨x, hx₂⟩,
  rw [← order_of_subgroup, subgroup.coe_mk] at hn₁ hn₂,
  have : p₁ ^ n₁ = p₂ ^ n₂, by rw [← hn₁, ← hn₂],
  have : n₁ = 0,
  { contrapose! hne with h,
    rw ← associated_iff_eq at this ⊢,
    exact associated.of_pow_associated_of_prime
      (nat.prime_iff.mp hp₁.elim) (nat.prime_iff.mp hp₂.elim) (ne.bot_lt h) this },
  simpa [this] using hn₁,
end

section p2comm

variables [fintype G] [fact p.prime] {n : ℕ} (hGpn : card G = p ^ n)
include hGpn
open subgroup

/-- The cardinality of the `center` of a `p`-group is `p ^ k` where `k` is positive. -/
lemma card_center_eq_prime_pow (hn : 0 < n) [fintype (center G)] :
  ∃ k > 0, card (center G) = p ^ k :=
begin
  have hcG := to_subgroup (of_card hGpn) (center G),
  rcases iff_card.1 hcG with ⟨k, hk⟩,
  haveI : nontrivial G := (nontrivial_iff_card $ of_card hGpn).2 ⟨n, hn, hGpn⟩,
  exact (nontrivial_iff_card hcG).mp (center_nontrivial (of_card hGpn)),
end

omit hGpn

/-- The quotient by the center of a group of cardinality `p ^ 2` is cyclic. -/
lemma cyclic_center_quotient_of_card_eq_prime_sq (hG : card G = p ^ 2) :
  is_cyclic (G ⧸ (center G)) :=
begin
  classical,
  rcases card_center_eq_prime_pow hG zero_lt_two with ⟨k, hk0, hk⟩,
  rw [card_eq_card_quotient_mul_card_subgroup (center G), mul_comm, hk] at hG,
  have hk2 := (nat.pow_dvd_pow_iff_le_right (fact.out p.prime).one_lt).1 ⟨_, hG.symm⟩,
  interval_cases k,
  { rw [sq, pow_one, nat.mul_right_inj (fact.out p.prime).pos] at hG,
    exact is_cyclic_of_prime_card hG },
  { exact @is_cyclic_of_subsingleton _ _ ⟨fintype.card_le_one_iff.1 ((nat.mul_right_inj
      (pow_pos (fact.out p.prime).pos 2)).1 (hG.trans (mul_one (p ^ 2)).symm)).le⟩ },
end

/-- A group of order `p ^ 2` is commutative. See also `is_p_group.comm_group_of_card_eq_prime_sq`
for the `comm_group` instance. -/
def comm_group_of_card_eq_prime_sq (hG : card G = p ^ 2) : comm_group G :=
@comm_group_of_cycle_center_quotient _ _ _ _ (cyclic_center_quotient_of_card_eq_prime_sq hG) _
  (quotient_group.ker_mk (center G)).le

/-- A group of order `p ^ 2` is commutative. See also `is_p_group.commutative_of_card_eq_prime_sq`
for just the proof that `∀ a b, a * b = b * a` -/
lemma commutative_of_card_eq_prime_sq (hG : card G = p ^ 2) : ∀ a b : G, a * b = b * a :=
(comm_group_of_card_eq_prime_sq hG).mul_comm

end p2comm

end is_p_group