Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 32,645 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
/-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import data.fintype.basic
import group_theory.subgroup.basic

/-!
# Free groups

This file defines free groups over a type. Furthermore, it is shown that the free group construction
is an instance of a monad. For the result that `free_group` is the left adjoint to the forgetful
functor from groups to types, see `algebra/category/Group/adjunctions`.

## Main definitions

* `free_group`: the free group associated to a type `α` defined as the words over `a : α × bool`
  modulo the relation `a * x * x⁻¹ * b = a * b`.
* `free_group.mk`: the canonical quotient map `list (α × bool) → free_group α`.
* `free_group.of`: the canoical injection `α → free_group α`.
* `free_group.lift f`: the canonical group homomorphism `free_group α →* G`
  given a group `G` and a function `f : α → G`.

## Main statements

* `free_group.church_rosser`: The Church-Rosser theorem for word reduction
  (also known as Newman's diamond lemma).
* `free_group.free_group_unit_equiv_int`: The free group over the one-point type
  is isomorphic to the integers.
* The free group construction is an instance of a monad.

## Implementation details

First we introduce the one step reduction relation `free_group.red.step`:
`w * x * x⁻¹ * v   ~>   w * v`, its reflexive transitive closure `free_group.red.trans`
and prove that its join is an equivalence relation. Then we introduce `free_group α` as a quotient
over `free_group.red.step`.

## Tags

free group, Newman's diamond lemma, Church-Rosser theorem
-/

open relation

universes u v w

variables {α : Type u}

local attribute [simp] list.append_eq_has_append

namespace free_group
variables {L L₁ L₂ L₃ L₄ : list (α × bool)}

/-- Reduction step: `w * x * x⁻¹ * v ~> w * v` -/
inductive red.step : list (α × bool) → list (α × bool) → Prop
| bnot {L₁ L₂ x b} : red.step (L₁ ++ (x, b) :: (x, bnot b) :: L₂) (L₁ ++ L₂)
attribute [simp] red.step.bnot

/-- Reflexive-transitive closure of red.step -/
def red : list (α × bool) → list (α × bool) → Prop := refl_trans_gen red.step

@[refl] lemma red.refl : red L L := refl_trans_gen.refl
@[trans] lemma red.trans : red L₁ L₂ → red L₂ L₃ → red L₁ L₃ := refl_trans_gen.trans

namespace red

/-- Predicate asserting that word `w₁` can be reduced to `w₂` in one step, i.e. there are words
`w₃ w₄` and letter `x` such that `w₁ = w₃xx⁻¹w₄` and `w₂ = w₃w₄`  -/
theorem step.length : ∀ {L₁ L₂ : list (α × bool)}, step L₁ L₂ → L₂.length + 2 = L₁.length
| _ _ (@red.step.bnot _ L1 L2 x b) := by rw [list.length_append, list.length_append]; refl

@[simp] lemma step.bnot_rev {x b} : step (L₁ ++ (x, bnot b) :: (x, b) :: L₂) (L₁ ++ L₂) :=
by cases b; from step.bnot

@[simp] lemma step.cons_bnot {x b} : red.step ((x, b) :: (x, bnot b) :: L) L :=
@step.bnot _ [] _ _ _

@[simp] lemma step.cons_bnot_rev {x b} : red.step ((x, bnot b) :: (x, b) :: L) L :=
@red.step.bnot_rev _ [] _ _ _

theorem step.append_left : ∀ {L₁ L₂ L₃ : list (α × bool)}, step L₂ L₃ → step (L₁ ++ L₂) (L₁ ++ L₃)
| _ _ _ red.step.bnot := by rw [← list.append_assoc, ← list.append_assoc]; constructor

theorem step.cons {x} (H : red.step L₁ L₂) : red.step (x :: L₁) (x :: L₂) :=
@step.append_left _ [x] _ _ H

theorem step.append_right : ∀ {L₁ L₂ L₃ : list (α × bool)}, step L₁ L₂ → step (L₁ ++ L₃) (L₂ ++ L₃)
| _ _ _ red.step.bnot := by simp

lemma not_step_nil : ¬ step [] L :=
begin
  generalize h' : [] = L',
  assume h,
  cases h with L₁ L₂,
  simp [list.nil_eq_append_iff] at h',
  contradiction
end

lemma step.cons_left_iff {a : α} {b : bool} :
  step ((a, b) :: L₁) L₂ ↔ (∃L, step L₁ L ∧ L₂ = (a, b) :: L) ∨ (L₁ = (a, bnot b)::L₂) :=
begin
  split,
  { generalize hL : ((a, b) :: L₁ : list _) = L,
    assume h,
    rcases h with ⟨_ | ⟨p, s'⟩, e, a', b'⟩,
    { simp at hL, simp [*] },
    { simp at hL,
      rcases hL with ⟨rfl, rfl⟩,
      refine or.inl ⟨s' ++ e, step.bnot, _⟩,
      simp } },
  { assume h,
    rcases h with ⟨L, h, rfl⟩ | rfl,
    { exact step.cons h },
    { exact step.cons_bnot } }
end

lemma not_step_singleton : ∀ {p : α × bool}, ¬ step [p] L
| (a, b) := by simp [step.cons_left_iff, not_step_nil]

lemma step.cons_cons_iff : ∀{p : α × bool}, step (p :: L₁) (p :: L₂) ↔ step L₁ L₂ :=
by simp [step.cons_left_iff, iff_def, or_imp_distrib] {contextual := tt}

lemma step.append_left_iff : ∀L, step (L ++ L₁) (L ++ L₂) ↔ step L₁ L₂
| [] := by simp
| (p :: l) := by simp [step.append_left_iff l, step.cons_cons_iff]

private theorem step.diamond_aux : ∀ {L₁ L₂ L₃ L₄ : list (α × bool)} {x1 b1 x2 b2},
  L₁ ++ (x1, b1) :: (x1, bnot b1) :: L₂ = L₃ ++ (x2, b2) :: (x2, bnot b2) :: L₄ →
  L₁ ++ L₂ = L₃ ++ L₄ ∨ ∃ L₅, red.step (L₁ ++ L₂) L₅ ∧ red.step (L₃ ++ L₄) L₅
| []        _ []        _ _ _ _ _ H := by injections; subst_vars; simp
| []        _ [(x3,b3)] _ _ _ _ _ H := by injections; subst_vars; simp
| [(x3,b3)] _ []        _ _ _ _ _ H := by injections; subst_vars; simp
| []                     _ ((x3,b3)::(x4,b4)::tl) _ _ _ _ _ H :=
  by injections; subst_vars; simp; right; exact ⟨_, red.step.bnot, red.step.cons_bnot⟩
| ((x3,b3)::(x4,b4)::tl) _ []                     _ _ _ _ _ H :=
  by injections; subst_vars; simp; right; exact ⟨_, red.step.cons_bnot, red.step.bnot⟩
| ((x3,b3)::tl) _ ((x4,b4)::tl2) _ _ _ _ _ H :=
  let ⟨H1, H2⟩ := list.cons.inj H in
  match step.diamond_aux H2 with
    | or.inl H3 := or.inl $ by simp [H1, H3]
    | or.inr ⟨L₅, H3, H4⟩ := or.inr
      ⟨_, step.cons H3, by simpa [H1] using step.cons H4⟩
  end

theorem step.diamond : ∀ {L₁ L₂ L₃ L₄ : list (α × bool)},
  red.step L₁ L₃ → red.step L₂ L₄ → L₁ = L₂ →
  L₃ = L₄ ∨ ∃ L₅, red.step L₃ L₅ ∧ red.step L₄ L₅
| _ _ _ _ red.step.bnot red.step.bnot H := step.diamond_aux H

lemma step.to_red : step L₁ L₂ → red L₁ L₂ :=
refl_trans_gen.single

/-- **Church-Rosser theorem** for word reduction: If `w1 w2 w3` are words such that `w1` reduces
to `w2` and `w3` respectively, then there is a word `w4` such that `w2` and `w3` reduce to `w4`
respectively. This is also known as Newman's diamond lemma. -/
theorem church_rosser : red L₁ L₂ → red L₁ L₃ → join red L₂ L₃ :=
relation.church_rosser (assume a b c hab hac,
match b, c, red.step.diamond hab hac rfl with
| b, _, or.inl rfl           := ⟨b, by refl, by refl⟩
| b, c, or.inr ⟨d, hbd, hcd⟩ := ⟨d, refl_gen.single hbd, hcd.to_red⟩
end)

lemma cons_cons {p} : red L₁ L₂ → red (p :: L₁) (p :: L₂) :=
refl_trans_gen.lift (list.cons p) (assume a b, step.cons)

lemma cons_cons_iff (p) : red (p :: L₁) (p :: L₂) ↔ red L₁ L₂ :=
iff.intro
  begin
    generalize eq₁ : (p :: L₁ : list _) = LL₁,
    generalize eq₂ : (p :: L₂ : list _) = LL₂,
    assume h,
    induction h using relation.refl_trans_gen.head_induction_on
      with L₁ L₂ h₁₂ h ih
      generalizing L₁ L₂,
    { subst_vars, cases eq₂, constructor },
    { subst_vars,
      cases p with a b,
      rw [step.cons_left_iff] at h₁₂,
      rcases h₁₂ with ⟨L, h₁₂, rfl⟩ | rfl,
      { exact (ih rfl rfl).head h₁₂ },
      { exact (cons_cons h).tail step.cons_bnot_rev } }
  end
  cons_cons

lemma append_append_left_iff : ∀L, red (L ++ L₁) (L ++ L₂) ↔ red L₁ L₂
| []       := iff.rfl
| (p :: L) := by simp [append_append_left_iff L, cons_cons_iff]

lemma append_append (h₁ : red L₁ L₃) (h₂ : red L₂ L₄) : red (L₁ ++ L₂) (L₃ ++ L₄) :=
(h₁.lift (λL, L ++ L₂) (assume a b, step.append_right)).trans ((append_append_left_iff _).2 h₂)

lemma to_append_iff : red L (L₁ ++ L₂) ↔ (∃L₃ L₄, L = L₃ ++ L₄ ∧ red L₃ L₁ ∧ red L₄ L₂) :=
iff.intro
  begin
    generalize eq : L₁ ++ L₂ = L₁₂,
    assume h,
    induction h with L' L₁₂ hLL' h ih generalizing L₁ L₂,
    { exact ⟨_, _, eq.symm, by refl, by refl⟩ },
    { cases h with s e a b,
      rcases list.append_eq_append_iff.1 eq with ⟨s', rfl, rfl⟩ | ⟨e', rfl, rfl⟩,
      { have : L₁ ++ (s' ++ ((a, b) :: (a, bnot b) :: e)) =
                 (L₁ ++ s') ++ ((a, b) :: (a, bnot b) :: e),
        { simp },
        rcases ih this with ⟨w₁, w₂, rfl, h₁, h₂⟩,
        exact ⟨w₁, w₂, rfl, h₁, h₂.tail step.bnot⟩ },
      { have : (s ++ ((a, b) :: (a, bnot b) :: e')) ++ L₂ =
                 s ++ ((a, b) :: (a, bnot b) :: (e' ++ L₂)),
        { simp },
        rcases ih this with ⟨w₁, w₂, rfl, h₁, h₂⟩,
        exact ⟨w₁, w₂, rfl, h₁.tail step.bnot, h₂⟩ }, }
  end
  (assume ⟨L₃, L₄, eq, h₃, h₄⟩, eq.symm ▸ append_append h₃ h₄)

/-- The empty word `[]` only reduces to itself. -/
theorem nil_iff : red [] L ↔ L = [] :=
refl_trans_gen_iff_eq (assume l, red.not_step_nil)

/-- A letter only reduces to itself. -/
theorem singleton_iff {x} : red [x] L₁ ↔ L₁ = [x] :=
refl_trans_gen_iff_eq (assume l, not_step_singleton)

/-- If `x` is a letter and `w` is a word such that `xw` reduces to the empty word, then `w` reduces
to `x⁻¹` -/
theorem cons_nil_iff_singleton {x b} : red ((x, b) :: L) [] ↔ red L [(x, bnot b)] :=
iff.intro
  (assume h,
    have h₁ : red ((x, bnot b) :: (x, b) :: L) [(x, bnot b)], from cons_cons h,
    have h₂ : red ((x, bnot b) :: (x, b) :: L) L, from refl_trans_gen.single step.cons_bnot_rev,
    let ⟨L', h₁, h₂⟩ := church_rosser h₁ h₂ in
    by rw [singleton_iff] at h₁; subst L'; assumption)
  (assume h, (cons_cons h).tail step.cons_bnot)

theorem red_iff_irreducible {x1 b1 x2 b2} (h : (x1, b1) ≠ (x2, b2)) :
  red [(x1, bnot b1), (x2, b2)] L ↔ L = [(x1, bnot b1), (x2, b2)] :=
begin
  apply refl_trans_gen_iff_eq,
  generalize eq : [(x1, bnot b1), (x2, b2)] = L',
  assume L h',
  cases h',
  simp [list.cons_eq_append_iff, list.nil_eq_append_iff] at eq,
  rcases eq with ⟨rfl, ⟨rfl, rfl⟩, ⟨rfl, rfl⟩, rfl⟩, subst_vars,
  simp at h,
  contradiction
end

/-- If `x` and `y` are distinct letters and `w₁ w₂` are words such that `xw₁` reduces to `yw₂`, then
`w₁` reduces to `x⁻¹yw₂`. -/
theorem inv_of_red_of_ne {x1 b1 x2 b2}
  (H1 : (x1, b1) ≠ (x2, b2))
  (H2 : red ((x1, b1) :: L₁) ((x2, b2) :: L₂)) :
  red L₁ ((x1, bnot b1) :: (x2, b2) :: L₂) :=
begin
  have : red ((x1, b1) :: L₁) ([(x2, b2)] ++ L₂), from H2,
  rcases to_append_iff.1 this with ⟨_ | ⟨p, L₃⟩, L₄, eq, h₁, h₂⟩,
  { simp [nil_iff] at h₁, contradiction },
  { cases eq,
    show red (L₃ ++ L₄) ([(x1, bnot b1), (x2, b2)] ++ L₂),
    apply append_append _ h₂,
    have h₁ : red ((x1, bnot b1) :: (x1, b1) :: L₃) [(x1, bnot b1), (x2, b2)],
    { exact cons_cons h₁ },
    have h₂ : red ((x1, bnot b1) :: (x1, b1) :: L₃) L₃,
    { exact step.cons_bnot_rev.to_red },
    rcases church_rosser h₁ h₂ with ⟨L', h₁, h₂⟩,
    rw [red_iff_irreducible H1] at h₁,
    rwa [h₁] at h₂ }
end

theorem step.sublist (H : red.step L₁ L₂) : L₂ <+ L₁ :=
by cases H; simp; constructor; constructor; refl

/-- If `w₁ w₂` are words such that `w₁` reduces to `w₂`, then `w₂` is a sublist of `w₁`. -/
theorem sublist : red L₁ L₂ → L₂ <+ L₁ :=
refl_trans_gen_of_transitive_reflexive
  (λl, list.sublist.refl l) (λa b c hab hbc, list.sublist.trans hbc hab) (λa b, red.step.sublist)

theorem sizeof_of_step : ∀ {L₁ L₂ : list (α × bool)}, step L₁ L₂ → L₂.sizeof < L₁.sizeof
| _ _ (@step.bnot _ L1 L2 x b) :=
  begin
    induction L1 with hd tl ih,
    case list.nil
    { dsimp [list.sizeof],
      have H : 1 + sizeof (x, b) + (1 + sizeof (x, bnot b) + list.sizeof L2)
        = (list.sizeof L2 + 1) + (sizeof (x, b) + sizeof (x, bnot b) + 1),
      { ac_refl },
      rw H,
      exact nat.le_add_right _ _ },
    case list.cons
    { dsimp [list.sizeof],
      exact nat.add_lt_add_left ih _ }
  end

theorem length (h : red L₁ L₂) : ∃ n, L₁.length = L₂.length + 2 * n :=
begin
  induction h with L₂ L₃ h₁₂ h₂₃ ih,
  { exact ⟨0, rfl⟩ },
  { rcases ih with ⟨n, eq⟩,
    existsi (1 + n),
    simp [mul_add, eq, (step.length h₂₃).symm, add_assoc] }
end

theorem antisymm (h₁₂ : red L₁ L₂) : red L₂ L₁ → L₁ = L₂ :=
match L₁, h₁₂.cases_head with
| _,  or.inl rfl            := assume h, rfl
| L₁, or.inr ⟨L₃, h₁₃, h₃₂⟩ := assume h₂₁,
  let ⟨n, eq⟩ := length (h₃₂.trans h₂₁) in
  have list.length L₃ + 0 = list.length L₃ + (2 * n + 2),
    by simpa [(step.length h₁₃).symm, add_comm, add_assoc] using eq,
  (nat.no_confusion $ nat.add_left_cancel this)
end

end red

theorem equivalence_join_red : equivalence (join (@red α)) :=
equivalence_join_refl_trans_gen $ assume a b c hab hac,
(match b, c, red.step.diamond hab hac rfl with
| b, _, or.inl rfl           := ⟨b, by refl, by refl⟩
| b, c, or.inr ⟨d, hbd, hcd⟩ := ⟨d, refl_gen.single hbd, refl_trans_gen.single hcd⟩
end)

theorem join_red_of_step (h : red.step L₁ L₂) : join red L₁ L₂ :=
join_of_single reflexive_refl_trans_gen h.to_red

theorem eqv_gen_step_iff_join_red : eqv_gen red.step L₁ L₂ ↔ join red L₁ L₂ :=
iff.intro
  (assume h,
    have eqv_gen (join red) L₁ L₂ := h.mono (assume a b, join_red_of_step),
    equivalence_join_red.eqv_gen_iff.1 this)
  (join_of_equivalence (eqv_gen.is_equivalence _) $ assume a b,
    refl_trans_gen_of_equivalence (eqv_gen.is_equivalence _) eqv_gen.rel)

end free_group

/-- The free group over a type, i.e. the words formed by the elements of the type and their formal
inverses, quotient by one step reduction. -/
def free_group (α : Type u) : Type u :=
quot $ @free_group.red.step α

namespace free_group

variables {α} {L L₁ L₂ L₃ L₄ : list (α × bool)}

/-- The canonical map from `list (α × bool)` to the free group on `α`. -/
def mk (L) : free_group α := quot.mk red.step L

@[simp] lemma quot_mk_eq_mk : quot.mk red.step L = mk L := rfl

@[simp] lemma quot_lift_mk (β : Type v) (f : list (α × bool) → β)
  (H : ∀ L₁ L₂, red.step L₁ L₂ → f L₁ = f L₂) :
quot.lift f H (mk L) = f L := rfl

@[simp] lemma quot_lift_on_mk (β : Type v) (f : list (α × bool) → β)
  (H : ∀ L₁ L₂, red.step L₁ L₂ → f L₁ = f L₂) :
quot.lift_on (mk L) f H = f L := rfl

@[simp] lemma quot_map_mk (β : Type v) (f : list (α × bool) → list (β × bool))
  (H : (red.step ⇒ red.step) f f) :
quot.map f H (mk L) = mk (f L) := rfl

instance : has_one (free_group α) := ⟨mk []⟩
lemma one_eq_mk : (1 : free_group α) = mk [] := rfl

instance : inhabited (free_group α) := ⟨1⟩

instance : has_mul (free_group α) :=
⟨λ x y, quot.lift_on x
    (λ L₁, quot.lift_on y (λ L₂, mk $ L₁ ++ L₂) (λ L₂ L₃ H, quot.sound $ red.step.append_left H))
    (λ L₁ L₂ H, quot.induction_on y $ λ L₃, quot.sound $ red.step.append_right H)⟩
@[simp] lemma mul_mk : mk L₁ * mk L₂ = mk (L₁ ++ L₂) := rfl

instance : has_inv (free_group α) :=
⟨λx, quot.lift_on x (λ L, mk (L.map $ λ x : α × bool, (x.1, bnot x.2)).reverse)
  (assume a b h, quot.sound $ by cases h; simp)⟩
@[simp] lemma inv_mk : (mk L)⁻¹ = mk (L.map $ λ x : α × bool, (x.1, bnot x.2)).reverse := rfl

instance : group (free_group α) :=
{ mul := (*),
  one := 1,
  inv := has_inv.inv,
  mul_assoc := by rintros ⟨L₁⟩ ⟨L₂⟩ ⟨L₃⟩; simp,
  one_mul := by rintros ⟨L⟩; refl,
  mul_one := by rintros ⟨L⟩; simp [one_eq_mk],
  mul_left_inv := by rintros ⟨L⟩; exact (list.rec_on L rfl $
    λ ⟨x, b⟩ tl ih, eq.trans (quot.sound $ by simp [one_eq_mk]) ih) }

/-- `of` is the canonical injection from the type to the free group over that type by sending each
element to the equivalence class of the letter that is the element. -/
def of (x : α) : free_group α :=
mk [(x, tt)]

theorem red.exact : mk L₁ = mk L₂ ↔ join red L₁ L₂ :=
calc (mk L₁ = mk L₂) ↔ eqv_gen red.step L₁ L₂ : iff.intro (quot.exact _) quot.eqv_gen_sound
  ... ↔ join red L₁ L₂ : eqv_gen_step_iff_join_red

/-- The canonical injection from the type to the free group is an injection. -/
theorem of_injective : function.injective (@of α) :=
λ _ _ H, let ⟨L₁, hx, hy⟩ := red.exact.1 H in
  by simp [red.singleton_iff] at hx hy; cc

section lift

variables {β : Type v} [group β] (f : α → β) {x y : free_group α}

/-- Given `f : α → β` with `β` a group, the canonical map `list (α × bool) → β` -/
def lift.aux : list (α × bool) → β :=
λ L, list.prod $ L.map $ λ x, cond x.2 (f x.1) (f x.1)⁻¹

theorem red.step.lift {f : α → β} (H : red.step L₁ L₂) :
  lift.aux f L₁ = lift.aux f L₂ :=
by cases H with _ _ _ b; cases b; simp [lift.aux]


/-- If `β` is a group, then any function from `α` to `β`
extends uniquely to a group homomorphism from
the free group over `α` to `β` -/
@[simps symm_apply]
def lift : (α → β) ≃ (free_group α →* β) :=
{ to_fun := λ f,
    monoid_hom.mk' (quot.lift (lift.aux f) $ λ L₁ L₂, red.step.lift) $ begin
      rintros ⟨L₁⟩ ⟨L₂⟩, simp [lift.aux],
    end,
  inv_fun := λ g, g ∘ of,
  left_inv := λ f, one_mul _,
  right_inv := λ g, monoid_hom.ext $ begin
    rintros ⟨L⟩,
    apply list.rec_on L,
    { exact g.map_one.symm, },
    { rintros ⟨x, _ | _⟩ t (ih : _ = g (mk t)),
      { show _ = g ((of x)⁻¹ * mk t),
        simpa [lift.aux] using ih },
      { show _ = g (of x * mk t),
        simpa [lift.aux] using ih }, },
  end }
variable {f}

@[simp] lemma lift.mk : lift f (mk L) =
  list.prod (L.map $ λ x, cond x.2 (f x.1) (f x.1)⁻¹) :=
rfl

@[simp] lemma lift.of {x} : lift f (of x) = f x :=
one_mul _

theorem lift.unique (g : free_group α →* β)
  (hg : ∀ x, g (of x) = f x) : ∀{x}, g x = lift f x :=
monoid_hom.congr_fun $ (lift.symm_apply_eq).mp (funext hg : g ∘ of = f)

/-- Two homomorphisms out of a free group are equal if they are equal on generators.

See note [partially-applied ext lemmas]. -/
@[ext]
lemma ext_hom {G : Type*} [group G] (f g : free_group α →* G) (h : ∀ a, f (of a) = g (of a)) :
  f = g :=
lift.symm.injective $ funext h

theorem lift.of_eq (x : free_group α) : lift of x = x :=
monoid_hom.congr_fun (lift.apply_symm_apply (monoid_hom.id _)) x

theorem lift.range_le {s : subgroup β} (H : set.range f ⊆ s) :
  (lift f).range ≤ s :=
by rintros _ ⟨⟨L⟩, rfl⟩; exact list.rec_on L s.one_mem
(λ ⟨x, b⟩ tl ih, bool.rec_on b
    (by simp at ih ⊢; from s.mul_mem
      (s.inv_mem $ H ⟨x, rfl⟩) ih)
    (by simp at ih ⊢; from s.mul_mem (H ⟨x, rfl⟩) ih))

theorem lift.range_eq_closure :
  (lift f).range = subgroup.closure (set.range f) :=
begin
  apply le_antisymm (lift.range_le subgroup.subset_closure),
  rw subgroup.closure_le,
  rintros _ ⟨a, rfl⟩,
  exact ⟨of a, by simp only [lift.of]⟩,
end

end lift

section map

variables {β : Type v} (f : α → β) {x y : free_group α}

/-- Any function from `α` to `β` extends uniquely
to a group homomorphism from the free group
ver `α` to the free group over `β`. -/
def map : free_group α →* free_group β :=
monoid_hom.mk'
  (quot.map (list.map $ λ x, (f x.1, x.2)) $ λ L₁ L₂ H, by cases H; simp)
  (by { rintros ⟨L₁⟩ ⟨L₂⟩, simp })

variable {f}

@[simp] lemma map.mk : map f (mk L) = mk (L.map (λ x, (f x.1, x.2))) :=
rfl

@[simp] lemma map.id (x : free_group α) : map id x = x :=
by rcases x with ⟨L⟩; simp [list.map_id']

@[simp] lemma map.id' (x : free_group α) : map (λ z, z) x = x := map.id x

theorem map.comp {γ : Type w} (f : α → β) (g : β → γ) (x) :
  map g (map f x) = map (g ∘ f) x :=
by rcases x with ⟨L⟩; simp

@[simp] lemma map.of {x} : map f (of x) = of (f x) := rfl

theorem map.unique (g : free_group α →* free_group β)
  (hg : ∀ x, g (of x) = of (f x)) : ∀{x}, g x = map f x :=
by rintros ⟨L⟩; exact list.rec_on L g.map_one
(λ ⟨x, b⟩ t (ih : g (mk t) = map f (mk t)), bool.rec_on b
  (show g ((of x)⁻¹ * mk t) = map f ((of x)⁻¹ * mk t),
     by simp [g.map_mul, g.map_inv, hg, ih])
  (show g (of x * mk t) = map f (of x * mk t),
     by simp [g.map_mul, hg, ih]))

theorem map_eq_lift : map f x = lift (of ∘ f) x :=
eq.symm $ map.unique _ $ λ x, by simp

/-- Equivalent types give rise to multiplicatively equivalent free groups.

The converse can be found in `group_theory.free_abelian_group_finsupp`,
as `equiv.of_free_group_equiv`
 -/
@[simps apply]
def free_group_congr {α β} (e : α ≃ β) : free_group α ≃* free_group β :=
{ to_fun := map e, inv_fun := map e.symm,
  left_inv := λ x, by simp [function.comp, map.comp],
  right_inv := λ x, by simp [function.comp, map.comp],
  map_mul' := monoid_hom.map_mul _ }

@[simp] lemma free_group_congr_refl : free_group_congr (equiv.refl α) = mul_equiv.refl _ :=
mul_equiv.ext map.id

@[simp] lemma free_group_congr_symm {α β} (e : α ≃ β) :
  (free_group_congr e).symm = free_group_congr e.symm :=
rfl

lemma free_group_congr_trans {α β γ} (e : α ≃ β) (f : β ≃ γ) :
  (free_group_congr e).trans (free_group_congr f) = free_group_congr (e.trans f) :=
mul_equiv.ext $ map.comp _ _

end map

section prod

variables [group α] (x y : free_group α)

/-- If `α` is a group, then any function from `α` to `α`
extends uniquely to a homomorphism from the
free group over `α` to `α`. This is the multiplicative
version of `sum`. -/
def prod : free_group α →* α := lift id

variables {x y}

@[simp] lemma prod_mk :
  prod (mk L) = list.prod (L.map $ λ x, cond x.2 x.1 x.1⁻¹) :=
rfl

@[simp] lemma prod.of {x : α} : prod (of x) = x :=
lift.of

lemma prod.unique (g : free_group α →* α)
  (hg : ∀ x, g (of x) = x) {x} :
  g x = prod x :=
lift.unique g hg

end prod

theorem lift_eq_prod_map {β : Type v} [group β] {f : α → β} {x} :
  lift f x = prod (map f x) :=
begin
  rw ←lift.unique (prod.comp (map f)),
  { refl },
  { simp }
end

section sum

variables [add_group α] (x y : free_group α)

/-- If `α` is a group, then any function from `α` to `α`
extends uniquely to a homomorphism from the
free group over `α` to `α`. This is the additive
version of `prod`. -/
def sum : α :=
@prod (multiplicative _) _ x

variables {x y}

@[simp] lemma sum_mk :
  sum (mk L) = list.sum (L.map $ λ x, cond x.2 x.1 (-x.1)) :=
rfl

@[simp] lemma sum.of {x : α} : sum (of x) = x :=
prod.of

-- note: there are no bundled homs with different notation in the domain and codomain, so we copy
-- these manually
@[simp] lemma sum.map_mul : sum (x * y) = sum x + sum y :=
(@prod (multiplicative _) _).map_mul _ _

@[simp] lemma sum.map_one : sum (1:free_group α) = 0 :=
(@prod (multiplicative _) _).map_one

@[simp] lemma sum.map_inv : sum x⁻¹ = -sum x :=
(prod : free_group (multiplicative α) →* multiplicative α).map_inv _

end sum

/-- The bijection between the free group on the empty type, and a type with one element. -/
def free_group_empty_equiv_unit : free_group empty ≃ unit :=
{ to_fun    := λ _, (),
  inv_fun   := λ _, 1,
  left_inv  := by rintros ⟨_ | ⟨⟨⟨⟩, _⟩, _⟩⟩; refl,
  right_inv := λ ⟨⟩, rfl }

/-- The bijection between the free group on a singleton, and the integers. -/
def free_group_unit_equiv_int : free_group unit ≃ ℤ :=
{ to_fun    := λ x,
   sum begin revert x, apply monoid_hom.to_fun,
    apply map (λ _, (1 : ℤ)),
  end,
  inv_fun   := λ x, of () ^ x,
  left_inv  :=
  begin
    rintros ⟨L⟩,
    refine list.rec_on L rfl _,
    exact (λ ⟨⟨⟩, b⟩ tl ih, by cases b; simp [zpow_add] at ih ⊢; rw ih; refl),
  end,
  right_inv :=
    λ x, int.induction_on x (by simp)
    (λ i ih, by simp at ih; simp [zpow_add, ih])
    (λ i ih, by simp at ih; simp [zpow_add, ih, sub_eq_add_neg, -int.add_neg_one]) }

section category

variables {β : Type u}

instance : monad free_group.{u} :=
{ pure := λ α, of,
  map := λ α β f, (map f),
  bind := λ α β x f, lift f x }

@[elab_as_eliminator]
protected theorem induction_on
  {C : free_group α → Prop}
  (z : free_group α)
  (C1 : C 1)
  (Cp : ∀ x, C $ pure x)
  (Ci : ∀ x, C (pure x) → C (pure x)⁻¹)
  (Cm : ∀ x y, C x → C y → C (x * y)) : C z :=
quot.induction_on z $ λ L, list.rec_on L C1 $ λ ⟨x, b⟩ tl ih,
bool.rec_on b (Cm _ _ (Ci _ $ Cp x) ih) (Cm _ _ (Cp x) ih)

@[simp] lemma map_pure (f : α → β) (x : α) : f <$> (pure x : free_group α) = pure (f x) :=
map.of

@[simp] lemma map_one (f : α → β) : f <$> (1 : free_group α) = 1 :=
(map f).map_one

@[simp] lemma map_mul (f : α → β) (x y : free_group α) : f <$> (x * y) = f <$> x * f <$> y :=
(map f).map_mul x y

@[simp] lemma map_inv (f : α → β) (x : free_group α) : f <$> (x⁻¹) = (f <$> x)⁻¹ :=
(map f).map_inv x

@[simp] lemma pure_bind (f : α → free_group β) (x) : pure x >>= f = f x :=
lift.of

@[simp] lemma one_bind (f : α → free_group β) : 1 >>= f = 1 :=
(lift f).map_one

@[simp] lemma mul_bind (f : α → free_group β) (x y : free_group α) :
  x * y >>= f = (x >>= f) * (y >>= f) :=
(lift f).map_mul _ _

@[simp] lemma inv_bind (f : α → free_group β) (x : free_group α) : x⁻¹ >>= f = (x >>= f)⁻¹ :=
(lift f).map_inv _

instance : is_lawful_monad free_group.{u} :=
{ id_map := λ α x, free_group.induction_on x (map_one id) (λ x, map_pure id x)
    (λ x ih, by rw [map_inv, ih]) (λ x y ihx ihy, by rw [map_mul, ihx, ihy]),
  pure_bind := λ α β x f, pure_bind f x,
  bind_assoc := λ α β γ x f g, free_group.induction_on x
    (by iterate 3 { rw one_bind }) (λ x, by iterate 2 { rw pure_bind })
    (λ x ih, by iterate 3 { rw inv_bind }; rw ih)
    (λ x y ihx ihy, by iterate 3 { rw mul_bind }; rw [ihx, ihy]),
  bind_pure_comp_eq_map := λ α β f x, free_group.induction_on x
    (by rw [one_bind, map_one]) (λ x, by rw [pure_bind, map_pure])
    (λ x ih, by rw [inv_bind, map_inv, ih]) (λ x y ihx ihy, by rw [mul_bind, map_mul, ihx, ihy]) }

end category

section reduce

variable [decidable_eq α]

/-- The maximal reduction of a word. It is computable
iff `α` has decidable equality. -/
def reduce (L : list (α × bool)) : list (α × bool) :=
list.rec_on L [] $ λ hd1 tl1 ih,
list.cases_on ih [hd1] $ λ hd2 tl2,
if hd1.1 = hd2.1 ∧ hd1.2 = bnot hd2.2 then tl2
else hd1 :: hd2 :: tl2

@[simp] lemma reduce.cons (x) : reduce (x :: L) =
  list.cases_on (reduce L) [x] (λ hd tl,
  if x.1 = hd.1 ∧ x.2 = bnot hd.2 then tl
  else x :: hd :: tl) := rfl

/-- The first theorem that characterises the function
`reduce`: a word reduces to its maximal reduction. -/
theorem reduce.red : red L (reduce L) :=
begin
  induction L with hd1 tl1 ih,
  case list.nil
  { constructor },
  case list.cons
  { dsimp,
    revert ih,
    generalize htl : reduce tl1 = TL,
    intro ih,
    cases TL with hd2 tl2,
    case list.nil
    { exact red.cons_cons ih },
    case list.cons
    { dsimp,
      by_cases h : hd1.fst = hd2.fst ∧ hd1.snd = bnot (hd2.snd),
      { rw [if_pos h],
        transitivity,
        { exact red.cons_cons ih },
        { cases hd1, cases hd2, cases h,
          dsimp at *, subst_vars,
          exact red.step.cons_bnot_rev.to_red } },
      { rw [if_neg h],
        exact red.cons_cons ih } } }
end

theorem reduce.not {p : Prop} :
  ∀ {L₁ L₂ L₃ : list (α × bool)} {x b}, reduce L₁ = L₂ ++ (x, b) :: (x, bnot b) :: L₃ → p
| [] L2 L3 _ _ := λ h, by cases L2; injections
| ((x,b)::L1) L2 L3 x' b' := begin
  dsimp,
  cases r : reduce L1,
  { dsimp, intro h,
    have := congr_arg list.length h,
    simp [-add_comm] at this,
    exact absurd this dec_trivial },
  cases hd with y c,
  by_cases x = y ∧ b = bnot c; simp [h]; intro H,
  { rw H at r,
    exact @reduce.not L1 ((y,c)::L2) L3 x' b' r },
  rcases L2 with _|⟨a, L2⟩,
  { injections, subst_vars,
    simp at h, cc },
  { refine @reduce.not L1 L2 L3 x' b' _,
    injection H with _ H,
    rw [r, H], refl }
end

/-- The second theorem that characterises the
function `reduce`: the maximal reduction of a word
only reduces to itself. -/
theorem reduce.min (H : red (reduce L₁) L₂) : reduce L₁ = L₂ :=
begin
  induction H with L1 L' L2 H1 H2 ih,
  { refl },
  { cases H1 with L4 L5 x b,
    exact reduce.not H2 }
end

/-- `reduce` is idempotent, i.e. the maximal reduction
of the maximal reduction of a word is the maximal
reduction of the word. -/
theorem reduce.idem : reduce (reduce L) = reduce L :=
eq.symm $ reduce.min reduce.red

theorem reduce.step.eq (H : red.step L₁ L₂) : reduce L₁ = reduce L₂ :=
let ⟨L₃, HR13, HR23⟩ := red.church_rosser reduce.red (reduce.red.head H) in
(reduce.min HR13).trans (reduce.min HR23).symm

/-- If a word reduces to another word, then they have
a common maximal reduction. -/
theorem reduce.eq_of_red (H : red L₁ L₂) : reduce L₁ = reduce L₂ :=
let ⟨L₃, HR13, HR23⟩ := red.church_rosser reduce.red (red.trans H reduce.red) in
(reduce.min HR13).trans (reduce.min HR23).symm

/-- If two words correspond to the same element in
the free group, then they have a common maximal
reduction. This is the proof that the function that
sends an element of the free group to its maximal
reduction is well-defined. -/
theorem reduce.sound (H : mk L₁ = mk L₂) : reduce L₁ = reduce L₂ :=
let ⟨L₃, H13, H23⟩ := red.exact.1 H in
(reduce.eq_of_red H13).trans (reduce.eq_of_red H23).symm

/-- If two words have a common maximal reduction,
then they correspond to the same element in the free group. -/
theorem reduce.exact (H : reduce L₁ = reduce L₂) : mk L₁ = mk L₂ :=
red.exact.2 ⟨reduce L₂, H ▸ reduce.red, reduce.red⟩

/-- A word and its maximal reduction correspond to
the same element of the free group. -/
theorem reduce.self : mk (reduce L) = mk L :=
reduce.exact reduce.idem

/-- If words `w₁ w₂` are such that `w₁` reduces to `w₂`,
then `w₂` reduces to the maximal reduction of `w₁`. -/
theorem reduce.rev (H : red L₁ L₂) : red L₂ (reduce L₁) :=
(reduce.eq_of_red H).symm ▸ reduce.red

/-- The function that sends an element of the free
group to its maximal reduction. -/
def to_word : free_group α → list (α × bool) :=
quot.lift reduce $ λ L₁ L₂ H, reduce.step.eq H

lemma to_word.mk : ∀{x : free_group α}, mk (to_word x) = x :=
by rintros ⟨L⟩; exact reduce.self

lemma to_word.inj : ∀(x y : free_group α), to_word x = to_word y → x = y :=
by rintros ⟨L₁⟩ ⟨L₂⟩; exact reduce.exact

/-- Constructive Church-Rosser theorem (compare `church_rosser`). -/
def reduce.church_rosser (H12 : red L₁ L₂) (H13 : red L₁ L₃) :
  { L₄ // red L₂ L₄ ∧ red L₃ L₄ } :=
⟨reduce L₁, reduce.rev H12, reduce.rev H13⟩

instance : decidable_eq (free_group α) :=
function.injective.decidable_eq to_word.inj

instance red.decidable_rel : decidable_rel (@red α)
| [] []          := is_true red.refl
| [] (hd2::tl2)  := is_false $ λ H, list.no_confusion (red.nil_iff.1 H)
| ((x,b)::tl) [] := match red.decidable_rel tl [(x, bnot b)] with
  | is_true H  := is_true $ red.trans (red.cons_cons H) $
    (@red.step.bnot _ [] [] _ _).to_red
  | is_false H := is_false $ λ H2, H $ red.cons_nil_iff_singleton.1 H2
  end
| ((x1,b1)::tl1) ((x2,b2)::tl2) := if h : (x1, b1) = (x2, b2)
  then match red.decidable_rel tl1 tl2 with
    | is_true H  := is_true $ h ▸ red.cons_cons H
    | is_false H := is_false $ λ H2, H $ h ▸ (red.cons_cons_iff _).1 $ H2
    end
  else match red.decidable_rel tl1 ((x1,bnot b1)::(x2,b2)::tl2) with
    | is_true H  := is_true $ (red.cons_cons H).tail red.step.cons_bnot
    | is_false H := is_false $ λ H2, H $ red.inv_of_red_of_ne h H2
    end

/-- A list containing every word that `w₁` reduces to. -/
def red.enum (L₁ : list (α × bool)) : list (list (α × bool)) :=
list.filter (λ L₂, red L₁ L₂) (list.sublists L₁)

theorem red.enum.sound (H : L₂ ∈ red.enum L₁) : red L₁ L₂ :=
list.of_mem_filter H

theorem red.enum.complete (H : red L₁ L₂) : L₂ ∈ red.enum L₁ :=
list.mem_filter_of_mem (list.mem_sublists.2 $ red.sublist H) H

instance : fintype { L₂ // red L₁ L₂ } :=
fintype.subtype (list.to_finset $ red.enum L₁) $
λ L₂, ⟨λ H, red.enum.sound $ list.mem_to_finset.1 H,
  λ H, list.mem_to_finset.2 $ red.enum.complete H⟩

end reduce

end free_group