Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 32,645 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 |
/-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import data.fintype.basic
import group_theory.subgroup.basic
/-!
# Free groups
This file defines free groups over a type. Furthermore, it is shown that the free group construction
is an instance of a monad. For the result that `free_group` is the left adjoint to the forgetful
functor from groups to types, see `algebra/category/Group/adjunctions`.
## Main definitions
* `free_group`: the free group associated to a type `α` defined as the words over `a : α × bool`
modulo the relation `a * x * x⁻¹ * b = a * b`.
* `free_group.mk`: the canonical quotient map `list (α × bool) → free_group α`.
* `free_group.of`: the canoical injection `α → free_group α`.
* `free_group.lift f`: the canonical group homomorphism `free_group α →* G`
given a group `G` and a function `f : α → G`.
## Main statements
* `free_group.church_rosser`: The Church-Rosser theorem for word reduction
(also known as Newman's diamond lemma).
* `free_group.free_group_unit_equiv_int`: The free group over the one-point type
is isomorphic to the integers.
* The free group construction is an instance of a monad.
## Implementation details
First we introduce the one step reduction relation `free_group.red.step`:
`w * x * x⁻¹ * v ~> w * v`, its reflexive transitive closure `free_group.red.trans`
and prove that its join is an equivalence relation. Then we introduce `free_group α` as a quotient
over `free_group.red.step`.
## Tags
free group, Newman's diamond lemma, Church-Rosser theorem
-/
open relation
universes u v w
variables {α : Type u}
local attribute [simp] list.append_eq_has_append
namespace free_group
variables {L L₁ L₂ L₃ L₄ : list (α × bool)}
/-- Reduction step: `w * x * x⁻¹ * v ~> w * v` -/
inductive red.step : list (α × bool) → list (α × bool) → Prop
| bnot {L₁ L₂ x b} : red.step (L₁ ++ (x, b) :: (x, bnot b) :: L₂) (L₁ ++ L₂)
attribute [simp] red.step.bnot
/-- Reflexive-transitive closure of red.step -/
def red : list (α × bool) → list (α × bool) → Prop := refl_trans_gen red.step
@[refl] lemma red.refl : red L L := refl_trans_gen.refl
@[trans] lemma red.trans : red L₁ L₂ → red L₂ L₃ → red L₁ L₃ := refl_trans_gen.trans
namespace red
/-- Predicate asserting that word `w₁` can be reduced to `w₂` in one step, i.e. there are words
`w₃ w₄` and letter `x` such that `w₁ = w₃xx⁻¹w₄` and `w₂ = w₃w₄` -/
theorem step.length : ∀ {L₁ L₂ : list (α × bool)}, step L₁ L₂ → L₂.length + 2 = L₁.length
| _ _ (@red.step.bnot _ L1 L2 x b) := by rw [list.length_append, list.length_append]; refl
@[simp] lemma step.bnot_rev {x b} : step (L₁ ++ (x, bnot b) :: (x, b) :: L₂) (L₁ ++ L₂) :=
by cases b; from step.bnot
@[simp] lemma step.cons_bnot {x b} : red.step ((x, b) :: (x, bnot b) :: L) L :=
@step.bnot _ [] _ _ _
@[simp] lemma step.cons_bnot_rev {x b} : red.step ((x, bnot b) :: (x, b) :: L) L :=
@red.step.bnot_rev _ [] _ _ _
theorem step.append_left : ∀ {L₁ L₂ L₃ : list (α × bool)}, step L₂ L₃ → step (L₁ ++ L₂) (L₁ ++ L₃)
| _ _ _ red.step.bnot := by rw [← list.append_assoc, ← list.append_assoc]; constructor
theorem step.cons {x} (H : red.step L₁ L₂) : red.step (x :: L₁) (x :: L₂) :=
@step.append_left _ [x] _ _ H
theorem step.append_right : ∀ {L₁ L₂ L₃ : list (α × bool)}, step L₁ L₂ → step (L₁ ++ L₃) (L₂ ++ L₃)
| _ _ _ red.step.bnot := by simp
lemma not_step_nil : ¬ step [] L :=
begin
generalize h' : [] = L',
assume h,
cases h with L₁ L₂,
simp [list.nil_eq_append_iff] at h',
contradiction
end
lemma step.cons_left_iff {a : α} {b : bool} :
step ((a, b) :: L₁) L₂ ↔ (∃L, step L₁ L ∧ L₂ = (a, b) :: L) ∨ (L₁ = (a, bnot b)::L₂) :=
begin
split,
{ generalize hL : ((a, b) :: L₁ : list _) = L,
assume h,
rcases h with ⟨_ | ⟨p, s'⟩, e, a', b'⟩,
{ simp at hL, simp [*] },
{ simp at hL,
rcases hL with ⟨rfl, rfl⟩,
refine or.inl ⟨s' ++ e, step.bnot, _⟩,
simp } },
{ assume h,
rcases h with ⟨L, h, rfl⟩ | rfl,
{ exact step.cons h },
{ exact step.cons_bnot } }
end
lemma not_step_singleton : ∀ {p : α × bool}, ¬ step [p] L
| (a, b) := by simp [step.cons_left_iff, not_step_nil]
lemma step.cons_cons_iff : ∀{p : α × bool}, step (p :: L₁) (p :: L₂) ↔ step L₁ L₂ :=
by simp [step.cons_left_iff, iff_def, or_imp_distrib] {contextual := tt}
lemma step.append_left_iff : ∀L, step (L ++ L₁) (L ++ L₂) ↔ step L₁ L₂
| [] := by simp
| (p :: l) := by simp [step.append_left_iff l, step.cons_cons_iff]
private theorem step.diamond_aux : ∀ {L₁ L₂ L₃ L₄ : list (α × bool)} {x1 b1 x2 b2},
L₁ ++ (x1, b1) :: (x1, bnot b1) :: L₂ = L₃ ++ (x2, b2) :: (x2, bnot b2) :: L₄ →
L₁ ++ L₂ = L₃ ++ L₄ ∨ ∃ L₅, red.step (L₁ ++ L₂) L₅ ∧ red.step (L₃ ++ L₄) L₅
| [] _ [] _ _ _ _ _ H := by injections; subst_vars; simp
| [] _ [(x3,b3)] _ _ _ _ _ H := by injections; subst_vars; simp
| [(x3,b3)] _ [] _ _ _ _ _ H := by injections; subst_vars; simp
| [] _ ((x3,b3)::(x4,b4)::tl) _ _ _ _ _ H :=
by injections; subst_vars; simp; right; exact ⟨_, red.step.bnot, red.step.cons_bnot⟩
| ((x3,b3)::(x4,b4)::tl) _ [] _ _ _ _ _ H :=
by injections; subst_vars; simp; right; exact ⟨_, red.step.cons_bnot, red.step.bnot⟩
| ((x3,b3)::tl) _ ((x4,b4)::tl2) _ _ _ _ _ H :=
let ⟨H1, H2⟩ := list.cons.inj H in
match step.diamond_aux H2 with
| or.inl H3 := or.inl $ by simp [H1, H3]
| or.inr ⟨L₅, H3, H4⟩ := or.inr
⟨_, step.cons H3, by simpa [H1] using step.cons H4⟩
end
theorem step.diamond : ∀ {L₁ L₂ L₃ L₄ : list (α × bool)},
red.step L₁ L₃ → red.step L₂ L₄ → L₁ = L₂ →
L₃ = L₄ ∨ ∃ L₅, red.step L₃ L₅ ∧ red.step L₄ L₅
| _ _ _ _ red.step.bnot red.step.bnot H := step.diamond_aux H
lemma step.to_red : step L₁ L₂ → red L₁ L₂ :=
refl_trans_gen.single
/-- **Church-Rosser theorem** for word reduction: If `w1 w2 w3` are words such that `w1` reduces
to `w2` and `w3` respectively, then there is a word `w4` such that `w2` and `w3` reduce to `w4`
respectively. This is also known as Newman's diamond lemma. -/
theorem church_rosser : red L₁ L₂ → red L₁ L₃ → join red L₂ L₃ :=
relation.church_rosser (assume a b c hab hac,
match b, c, red.step.diamond hab hac rfl with
| b, _, or.inl rfl := ⟨b, by refl, by refl⟩
| b, c, or.inr ⟨d, hbd, hcd⟩ := ⟨d, refl_gen.single hbd, hcd.to_red⟩
end)
lemma cons_cons {p} : red L₁ L₂ → red (p :: L₁) (p :: L₂) :=
refl_trans_gen.lift (list.cons p) (assume a b, step.cons)
lemma cons_cons_iff (p) : red (p :: L₁) (p :: L₂) ↔ red L₁ L₂ :=
iff.intro
begin
generalize eq₁ : (p :: L₁ : list _) = LL₁,
generalize eq₂ : (p :: L₂ : list _) = LL₂,
assume h,
induction h using relation.refl_trans_gen.head_induction_on
with L₁ L₂ h₁₂ h ih
generalizing L₁ L₂,
{ subst_vars, cases eq₂, constructor },
{ subst_vars,
cases p with a b,
rw [step.cons_left_iff] at h₁₂,
rcases h₁₂ with ⟨L, h₁₂, rfl⟩ | rfl,
{ exact (ih rfl rfl).head h₁₂ },
{ exact (cons_cons h).tail step.cons_bnot_rev } }
end
cons_cons
lemma append_append_left_iff : ∀L, red (L ++ L₁) (L ++ L₂) ↔ red L₁ L₂
| [] := iff.rfl
| (p :: L) := by simp [append_append_left_iff L, cons_cons_iff]
lemma append_append (h₁ : red L₁ L₃) (h₂ : red L₂ L₄) : red (L₁ ++ L₂) (L₃ ++ L₄) :=
(h₁.lift (λL, L ++ L₂) (assume a b, step.append_right)).trans ((append_append_left_iff _).2 h₂)
lemma to_append_iff : red L (L₁ ++ L₂) ↔ (∃L₃ L₄, L = L₃ ++ L₄ ∧ red L₃ L₁ ∧ red L₄ L₂) :=
iff.intro
begin
generalize eq : L₁ ++ L₂ = L₁₂,
assume h,
induction h with L' L₁₂ hLL' h ih generalizing L₁ L₂,
{ exact ⟨_, _, eq.symm, by refl, by refl⟩ },
{ cases h with s e a b,
rcases list.append_eq_append_iff.1 eq with ⟨s', rfl, rfl⟩ | ⟨e', rfl, rfl⟩,
{ have : L₁ ++ (s' ++ ((a, b) :: (a, bnot b) :: e)) =
(L₁ ++ s') ++ ((a, b) :: (a, bnot b) :: e),
{ simp },
rcases ih this with ⟨w₁, w₂, rfl, h₁, h₂⟩,
exact ⟨w₁, w₂, rfl, h₁, h₂.tail step.bnot⟩ },
{ have : (s ++ ((a, b) :: (a, bnot b) :: e')) ++ L₂ =
s ++ ((a, b) :: (a, bnot b) :: (e' ++ L₂)),
{ simp },
rcases ih this with ⟨w₁, w₂, rfl, h₁, h₂⟩,
exact ⟨w₁, w₂, rfl, h₁.tail step.bnot, h₂⟩ }, }
end
(assume ⟨L₃, L₄, eq, h₃, h₄⟩, eq.symm ▸ append_append h₃ h₄)
/-- The empty word `[]` only reduces to itself. -/
theorem nil_iff : red [] L ↔ L = [] :=
refl_trans_gen_iff_eq (assume l, red.not_step_nil)
/-- A letter only reduces to itself. -/
theorem singleton_iff {x} : red [x] L₁ ↔ L₁ = [x] :=
refl_trans_gen_iff_eq (assume l, not_step_singleton)
/-- If `x` is a letter and `w` is a word such that `xw` reduces to the empty word, then `w` reduces
to `x⁻¹` -/
theorem cons_nil_iff_singleton {x b} : red ((x, b) :: L) [] ↔ red L [(x, bnot b)] :=
iff.intro
(assume h,
have h₁ : red ((x, bnot b) :: (x, b) :: L) [(x, bnot b)], from cons_cons h,
have h₂ : red ((x, bnot b) :: (x, b) :: L) L, from refl_trans_gen.single step.cons_bnot_rev,
let ⟨L', h₁, h₂⟩ := church_rosser h₁ h₂ in
by rw [singleton_iff] at h₁; subst L'; assumption)
(assume h, (cons_cons h).tail step.cons_bnot)
theorem red_iff_irreducible {x1 b1 x2 b2} (h : (x1, b1) ≠ (x2, b2)) :
red [(x1, bnot b1), (x2, b2)] L ↔ L = [(x1, bnot b1), (x2, b2)] :=
begin
apply refl_trans_gen_iff_eq,
generalize eq : [(x1, bnot b1), (x2, b2)] = L',
assume L h',
cases h',
simp [list.cons_eq_append_iff, list.nil_eq_append_iff] at eq,
rcases eq with ⟨rfl, ⟨rfl, rfl⟩, ⟨rfl, rfl⟩, rfl⟩, subst_vars,
simp at h,
contradiction
end
/-- If `x` and `y` are distinct letters and `w₁ w₂` are words such that `xw₁` reduces to `yw₂`, then
`w₁` reduces to `x⁻¹yw₂`. -/
theorem inv_of_red_of_ne {x1 b1 x2 b2}
(H1 : (x1, b1) ≠ (x2, b2))
(H2 : red ((x1, b1) :: L₁) ((x2, b2) :: L₂)) :
red L₁ ((x1, bnot b1) :: (x2, b2) :: L₂) :=
begin
have : red ((x1, b1) :: L₁) ([(x2, b2)] ++ L₂), from H2,
rcases to_append_iff.1 this with ⟨_ | ⟨p, L₃⟩, L₄, eq, h₁, h₂⟩,
{ simp [nil_iff] at h₁, contradiction },
{ cases eq,
show red (L₃ ++ L₄) ([(x1, bnot b1), (x2, b2)] ++ L₂),
apply append_append _ h₂,
have h₁ : red ((x1, bnot b1) :: (x1, b1) :: L₃) [(x1, bnot b1), (x2, b2)],
{ exact cons_cons h₁ },
have h₂ : red ((x1, bnot b1) :: (x1, b1) :: L₃) L₃,
{ exact step.cons_bnot_rev.to_red },
rcases church_rosser h₁ h₂ with ⟨L', h₁, h₂⟩,
rw [red_iff_irreducible H1] at h₁,
rwa [h₁] at h₂ }
end
theorem step.sublist (H : red.step L₁ L₂) : L₂ <+ L₁ :=
by cases H; simp; constructor; constructor; refl
/-- If `w₁ w₂` are words such that `w₁` reduces to `w₂`, then `w₂` is a sublist of `w₁`. -/
theorem sublist : red L₁ L₂ → L₂ <+ L₁ :=
refl_trans_gen_of_transitive_reflexive
(λl, list.sublist.refl l) (λa b c hab hbc, list.sublist.trans hbc hab) (λa b, red.step.sublist)
theorem sizeof_of_step : ∀ {L₁ L₂ : list (α × bool)}, step L₁ L₂ → L₂.sizeof < L₁.sizeof
| _ _ (@step.bnot _ L1 L2 x b) :=
begin
induction L1 with hd tl ih,
case list.nil
{ dsimp [list.sizeof],
have H : 1 + sizeof (x, b) + (1 + sizeof (x, bnot b) + list.sizeof L2)
= (list.sizeof L2 + 1) + (sizeof (x, b) + sizeof (x, bnot b) + 1),
{ ac_refl },
rw H,
exact nat.le_add_right _ _ },
case list.cons
{ dsimp [list.sizeof],
exact nat.add_lt_add_left ih _ }
end
theorem length (h : red L₁ L₂) : ∃ n, L₁.length = L₂.length + 2 * n :=
begin
induction h with L₂ L₃ h₁₂ h₂₃ ih,
{ exact ⟨0, rfl⟩ },
{ rcases ih with ⟨n, eq⟩,
existsi (1 + n),
simp [mul_add, eq, (step.length h₂₃).symm, add_assoc] }
end
theorem antisymm (h₁₂ : red L₁ L₂) : red L₂ L₁ → L₁ = L₂ :=
match L₁, h₁₂.cases_head with
| _, or.inl rfl := assume h, rfl
| L₁, or.inr ⟨L₃, h₁₃, h₃₂⟩ := assume h₂₁,
let ⟨n, eq⟩ := length (h₃₂.trans h₂₁) in
have list.length L₃ + 0 = list.length L₃ + (2 * n + 2),
by simpa [(step.length h₁₃).symm, add_comm, add_assoc] using eq,
(nat.no_confusion $ nat.add_left_cancel this)
end
end red
theorem equivalence_join_red : equivalence (join (@red α)) :=
equivalence_join_refl_trans_gen $ assume a b c hab hac,
(match b, c, red.step.diamond hab hac rfl with
| b, _, or.inl rfl := ⟨b, by refl, by refl⟩
| b, c, or.inr ⟨d, hbd, hcd⟩ := ⟨d, refl_gen.single hbd, refl_trans_gen.single hcd⟩
end)
theorem join_red_of_step (h : red.step L₁ L₂) : join red L₁ L₂ :=
join_of_single reflexive_refl_trans_gen h.to_red
theorem eqv_gen_step_iff_join_red : eqv_gen red.step L₁ L₂ ↔ join red L₁ L₂ :=
iff.intro
(assume h,
have eqv_gen (join red) L₁ L₂ := h.mono (assume a b, join_red_of_step),
equivalence_join_red.eqv_gen_iff.1 this)
(join_of_equivalence (eqv_gen.is_equivalence _) $ assume a b,
refl_trans_gen_of_equivalence (eqv_gen.is_equivalence _) eqv_gen.rel)
end free_group
/-- The free group over a type, i.e. the words formed by the elements of the type and their formal
inverses, quotient by one step reduction. -/
def free_group (α : Type u) : Type u :=
quot $ @free_group.red.step α
namespace free_group
variables {α} {L L₁ L₂ L₃ L₄ : list (α × bool)}
/-- The canonical map from `list (α × bool)` to the free group on `α`. -/
def mk (L) : free_group α := quot.mk red.step L
@[simp] lemma quot_mk_eq_mk : quot.mk red.step L = mk L := rfl
@[simp] lemma quot_lift_mk (β : Type v) (f : list (α × bool) → β)
(H : ∀ L₁ L₂, red.step L₁ L₂ → f L₁ = f L₂) :
quot.lift f H (mk L) = f L := rfl
@[simp] lemma quot_lift_on_mk (β : Type v) (f : list (α × bool) → β)
(H : ∀ L₁ L₂, red.step L₁ L₂ → f L₁ = f L₂) :
quot.lift_on (mk L) f H = f L := rfl
@[simp] lemma quot_map_mk (β : Type v) (f : list (α × bool) → list (β × bool))
(H : (red.step ⇒ red.step) f f) :
quot.map f H (mk L) = mk (f L) := rfl
instance : has_one (free_group α) := ⟨mk []⟩
lemma one_eq_mk : (1 : free_group α) = mk [] := rfl
instance : inhabited (free_group α) := ⟨1⟩
instance : has_mul (free_group α) :=
⟨λ x y, quot.lift_on x
(λ L₁, quot.lift_on y (λ L₂, mk $ L₁ ++ L₂) (λ L₂ L₃ H, quot.sound $ red.step.append_left H))
(λ L₁ L₂ H, quot.induction_on y $ λ L₃, quot.sound $ red.step.append_right H)⟩
@[simp] lemma mul_mk : mk L₁ * mk L₂ = mk (L₁ ++ L₂) := rfl
instance : has_inv (free_group α) :=
⟨λx, quot.lift_on x (λ L, mk (L.map $ λ x : α × bool, (x.1, bnot x.2)).reverse)
(assume a b h, quot.sound $ by cases h; simp)⟩
@[simp] lemma inv_mk : (mk L)⁻¹ = mk (L.map $ λ x : α × bool, (x.1, bnot x.2)).reverse := rfl
instance : group (free_group α) :=
{ mul := (*),
one := 1,
inv := has_inv.inv,
mul_assoc := by rintros ⟨L₁⟩ ⟨L₂⟩ ⟨L₃⟩; simp,
one_mul := by rintros ⟨L⟩; refl,
mul_one := by rintros ⟨L⟩; simp [one_eq_mk],
mul_left_inv := by rintros ⟨L⟩; exact (list.rec_on L rfl $
λ ⟨x, b⟩ tl ih, eq.trans (quot.sound $ by simp [one_eq_mk]) ih) }
/-- `of` is the canonical injection from the type to the free group over that type by sending each
element to the equivalence class of the letter that is the element. -/
def of (x : α) : free_group α :=
mk [(x, tt)]
theorem red.exact : mk L₁ = mk L₂ ↔ join red L₁ L₂ :=
calc (mk L₁ = mk L₂) ↔ eqv_gen red.step L₁ L₂ : iff.intro (quot.exact _) quot.eqv_gen_sound
... ↔ join red L₁ L₂ : eqv_gen_step_iff_join_red
/-- The canonical injection from the type to the free group is an injection. -/
theorem of_injective : function.injective (@of α) :=
λ _ _ H, let ⟨L₁, hx, hy⟩ := red.exact.1 H in
by simp [red.singleton_iff] at hx hy; cc
section lift
variables {β : Type v} [group β] (f : α → β) {x y : free_group α}
/-- Given `f : α → β` with `β` a group, the canonical map `list (α × bool) → β` -/
def lift.aux : list (α × bool) → β :=
λ L, list.prod $ L.map $ λ x, cond x.2 (f x.1) (f x.1)⁻¹
theorem red.step.lift {f : α → β} (H : red.step L₁ L₂) :
lift.aux f L₁ = lift.aux f L₂ :=
by cases H with _ _ _ b; cases b; simp [lift.aux]
/-- If `β` is a group, then any function from `α` to `β`
extends uniquely to a group homomorphism from
the free group over `α` to `β` -/
@[simps symm_apply]
def lift : (α → β) ≃ (free_group α →* β) :=
{ to_fun := λ f,
monoid_hom.mk' (quot.lift (lift.aux f) $ λ L₁ L₂, red.step.lift) $ begin
rintros ⟨L₁⟩ ⟨L₂⟩, simp [lift.aux],
end,
inv_fun := λ g, g ∘ of,
left_inv := λ f, one_mul _,
right_inv := λ g, monoid_hom.ext $ begin
rintros ⟨L⟩,
apply list.rec_on L,
{ exact g.map_one.symm, },
{ rintros ⟨x, _ | _⟩ t (ih : _ = g (mk t)),
{ show _ = g ((of x)⁻¹ * mk t),
simpa [lift.aux] using ih },
{ show _ = g (of x * mk t),
simpa [lift.aux] using ih }, },
end }
variable {f}
@[simp] lemma lift.mk : lift f (mk L) =
list.prod (L.map $ λ x, cond x.2 (f x.1) (f x.1)⁻¹) :=
rfl
@[simp] lemma lift.of {x} : lift f (of x) = f x :=
one_mul _
theorem lift.unique (g : free_group α →* β)
(hg : ∀ x, g (of x) = f x) : ∀{x}, g x = lift f x :=
monoid_hom.congr_fun $ (lift.symm_apply_eq).mp (funext hg : g ∘ of = f)
/-- Two homomorphisms out of a free group are equal if they are equal on generators.
See note [partially-applied ext lemmas]. -/
@[ext]
lemma ext_hom {G : Type*} [group G] (f g : free_group α →* G) (h : ∀ a, f (of a) = g (of a)) :
f = g :=
lift.symm.injective $ funext h
theorem lift.of_eq (x : free_group α) : lift of x = x :=
monoid_hom.congr_fun (lift.apply_symm_apply (monoid_hom.id _)) x
theorem lift.range_le {s : subgroup β} (H : set.range f ⊆ s) :
(lift f).range ≤ s :=
by rintros _ ⟨⟨L⟩, rfl⟩; exact list.rec_on L s.one_mem
(λ ⟨x, b⟩ tl ih, bool.rec_on b
(by simp at ih ⊢; from s.mul_mem
(s.inv_mem $ H ⟨x, rfl⟩) ih)
(by simp at ih ⊢; from s.mul_mem (H ⟨x, rfl⟩) ih))
theorem lift.range_eq_closure :
(lift f).range = subgroup.closure (set.range f) :=
begin
apply le_antisymm (lift.range_le subgroup.subset_closure),
rw subgroup.closure_le,
rintros _ ⟨a, rfl⟩,
exact ⟨of a, by simp only [lift.of]⟩,
end
end lift
section map
variables {β : Type v} (f : α → β) {x y : free_group α}
/-- Any function from `α` to `β` extends uniquely
to a group homomorphism from the free group
ver `α` to the free group over `β`. -/
def map : free_group α →* free_group β :=
monoid_hom.mk'
(quot.map (list.map $ λ x, (f x.1, x.2)) $ λ L₁ L₂ H, by cases H; simp)
(by { rintros ⟨L₁⟩ ⟨L₂⟩, simp })
variable {f}
@[simp] lemma map.mk : map f (mk L) = mk (L.map (λ x, (f x.1, x.2))) :=
rfl
@[simp] lemma map.id (x : free_group α) : map id x = x :=
by rcases x with ⟨L⟩; simp [list.map_id']
@[simp] lemma map.id' (x : free_group α) : map (λ z, z) x = x := map.id x
theorem map.comp {γ : Type w} (f : α → β) (g : β → γ) (x) :
map g (map f x) = map (g ∘ f) x :=
by rcases x with ⟨L⟩; simp
@[simp] lemma map.of {x} : map f (of x) = of (f x) := rfl
theorem map.unique (g : free_group α →* free_group β)
(hg : ∀ x, g (of x) = of (f x)) : ∀{x}, g x = map f x :=
by rintros ⟨L⟩; exact list.rec_on L g.map_one
(λ ⟨x, b⟩ t (ih : g (mk t) = map f (mk t)), bool.rec_on b
(show g ((of x)⁻¹ * mk t) = map f ((of x)⁻¹ * mk t),
by simp [g.map_mul, g.map_inv, hg, ih])
(show g (of x * mk t) = map f (of x * mk t),
by simp [g.map_mul, hg, ih]))
theorem map_eq_lift : map f x = lift (of ∘ f) x :=
eq.symm $ map.unique _ $ λ x, by simp
/-- Equivalent types give rise to multiplicatively equivalent free groups.
The converse can be found in `group_theory.free_abelian_group_finsupp`,
as `equiv.of_free_group_equiv`
-/
@[simps apply]
def free_group_congr {α β} (e : α ≃ β) : free_group α ≃* free_group β :=
{ to_fun := map e, inv_fun := map e.symm,
left_inv := λ x, by simp [function.comp, map.comp],
right_inv := λ x, by simp [function.comp, map.comp],
map_mul' := monoid_hom.map_mul _ }
@[simp] lemma free_group_congr_refl : free_group_congr (equiv.refl α) = mul_equiv.refl _ :=
mul_equiv.ext map.id
@[simp] lemma free_group_congr_symm {α β} (e : α ≃ β) :
(free_group_congr e).symm = free_group_congr e.symm :=
rfl
lemma free_group_congr_trans {α β γ} (e : α ≃ β) (f : β ≃ γ) :
(free_group_congr e).trans (free_group_congr f) = free_group_congr (e.trans f) :=
mul_equiv.ext $ map.comp _ _
end map
section prod
variables [group α] (x y : free_group α)
/-- If `α` is a group, then any function from `α` to `α`
extends uniquely to a homomorphism from the
free group over `α` to `α`. This is the multiplicative
version of `sum`. -/
def prod : free_group α →* α := lift id
variables {x y}
@[simp] lemma prod_mk :
prod (mk L) = list.prod (L.map $ λ x, cond x.2 x.1 x.1⁻¹) :=
rfl
@[simp] lemma prod.of {x : α} : prod (of x) = x :=
lift.of
lemma prod.unique (g : free_group α →* α)
(hg : ∀ x, g (of x) = x) {x} :
g x = prod x :=
lift.unique g hg
end prod
theorem lift_eq_prod_map {β : Type v} [group β] {f : α → β} {x} :
lift f x = prod (map f x) :=
begin
rw ←lift.unique (prod.comp (map f)),
{ refl },
{ simp }
end
section sum
variables [add_group α] (x y : free_group α)
/-- If `α` is a group, then any function from `α` to `α`
extends uniquely to a homomorphism from the
free group over `α` to `α`. This is the additive
version of `prod`. -/
def sum : α :=
@prod (multiplicative _) _ x
variables {x y}
@[simp] lemma sum_mk :
sum (mk L) = list.sum (L.map $ λ x, cond x.2 x.1 (-x.1)) :=
rfl
@[simp] lemma sum.of {x : α} : sum (of x) = x :=
prod.of
-- note: there are no bundled homs with different notation in the domain and codomain, so we copy
-- these manually
@[simp] lemma sum.map_mul : sum (x * y) = sum x + sum y :=
(@prod (multiplicative _) _).map_mul _ _
@[simp] lemma sum.map_one : sum (1:free_group α) = 0 :=
(@prod (multiplicative _) _).map_one
@[simp] lemma sum.map_inv : sum x⁻¹ = -sum x :=
(prod : free_group (multiplicative α) →* multiplicative α).map_inv _
end sum
/-- The bijection between the free group on the empty type, and a type with one element. -/
def free_group_empty_equiv_unit : free_group empty ≃ unit :=
{ to_fun := λ _, (),
inv_fun := λ _, 1,
left_inv := by rintros ⟨_ | ⟨⟨⟨⟩, _⟩, _⟩⟩; refl,
right_inv := λ ⟨⟩, rfl }
/-- The bijection between the free group on a singleton, and the integers. -/
def free_group_unit_equiv_int : free_group unit ≃ ℤ :=
{ to_fun := λ x,
sum begin revert x, apply monoid_hom.to_fun,
apply map (λ _, (1 : ℤ)),
end,
inv_fun := λ x, of () ^ x,
left_inv :=
begin
rintros ⟨L⟩,
refine list.rec_on L rfl _,
exact (λ ⟨⟨⟩, b⟩ tl ih, by cases b; simp [zpow_add] at ih ⊢; rw ih; refl),
end,
right_inv :=
λ x, int.induction_on x (by simp)
(λ i ih, by simp at ih; simp [zpow_add, ih])
(λ i ih, by simp at ih; simp [zpow_add, ih, sub_eq_add_neg, -int.add_neg_one]) }
section category
variables {β : Type u}
instance : monad free_group.{u} :=
{ pure := λ α, of,
map := λ α β f, (map f),
bind := λ α β x f, lift f x }
@[elab_as_eliminator]
protected theorem induction_on
{C : free_group α → Prop}
(z : free_group α)
(C1 : C 1)
(Cp : ∀ x, C $ pure x)
(Ci : ∀ x, C (pure x) → C (pure x)⁻¹)
(Cm : ∀ x y, C x → C y → C (x * y)) : C z :=
quot.induction_on z $ λ L, list.rec_on L C1 $ λ ⟨x, b⟩ tl ih,
bool.rec_on b (Cm _ _ (Ci _ $ Cp x) ih) (Cm _ _ (Cp x) ih)
@[simp] lemma map_pure (f : α → β) (x : α) : f <$> (pure x : free_group α) = pure (f x) :=
map.of
@[simp] lemma map_one (f : α → β) : f <$> (1 : free_group α) = 1 :=
(map f).map_one
@[simp] lemma map_mul (f : α → β) (x y : free_group α) : f <$> (x * y) = f <$> x * f <$> y :=
(map f).map_mul x y
@[simp] lemma map_inv (f : α → β) (x : free_group α) : f <$> (x⁻¹) = (f <$> x)⁻¹ :=
(map f).map_inv x
@[simp] lemma pure_bind (f : α → free_group β) (x) : pure x >>= f = f x :=
lift.of
@[simp] lemma one_bind (f : α → free_group β) : 1 >>= f = 1 :=
(lift f).map_one
@[simp] lemma mul_bind (f : α → free_group β) (x y : free_group α) :
x * y >>= f = (x >>= f) * (y >>= f) :=
(lift f).map_mul _ _
@[simp] lemma inv_bind (f : α → free_group β) (x : free_group α) : x⁻¹ >>= f = (x >>= f)⁻¹ :=
(lift f).map_inv _
instance : is_lawful_monad free_group.{u} :=
{ id_map := λ α x, free_group.induction_on x (map_one id) (λ x, map_pure id x)
(λ x ih, by rw [map_inv, ih]) (λ x y ihx ihy, by rw [map_mul, ihx, ihy]),
pure_bind := λ α β x f, pure_bind f x,
bind_assoc := λ α β γ x f g, free_group.induction_on x
(by iterate 3 { rw one_bind }) (λ x, by iterate 2 { rw pure_bind })
(λ x ih, by iterate 3 { rw inv_bind }; rw ih)
(λ x y ihx ihy, by iterate 3 { rw mul_bind }; rw [ihx, ihy]),
bind_pure_comp_eq_map := λ α β f x, free_group.induction_on x
(by rw [one_bind, map_one]) (λ x, by rw [pure_bind, map_pure])
(λ x ih, by rw [inv_bind, map_inv, ih]) (λ x y ihx ihy, by rw [mul_bind, map_mul, ihx, ihy]) }
end category
section reduce
variable [decidable_eq α]
/-- The maximal reduction of a word. It is computable
iff `α` has decidable equality. -/
def reduce (L : list (α × bool)) : list (α × bool) :=
list.rec_on L [] $ λ hd1 tl1 ih,
list.cases_on ih [hd1] $ λ hd2 tl2,
if hd1.1 = hd2.1 ∧ hd1.2 = bnot hd2.2 then tl2
else hd1 :: hd2 :: tl2
@[simp] lemma reduce.cons (x) : reduce (x :: L) =
list.cases_on (reduce L) [x] (λ hd tl,
if x.1 = hd.1 ∧ x.2 = bnot hd.2 then tl
else x :: hd :: tl) := rfl
/-- The first theorem that characterises the function
`reduce`: a word reduces to its maximal reduction. -/
theorem reduce.red : red L (reduce L) :=
begin
induction L with hd1 tl1 ih,
case list.nil
{ constructor },
case list.cons
{ dsimp,
revert ih,
generalize htl : reduce tl1 = TL,
intro ih,
cases TL with hd2 tl2,
case list.nil
{ exact red.cons_cons ih },
case list.cons
{ dsimp,
by_cases h : hd1.fst = hd2.fst ∧ hd1.snd = bnot (hd2.snd),
{ rw [if_pos h],
transitivity,
{ exact red.cons_cons ih },
{ cases hd1, cases hd2, cases h,
dsimp at *, subst_vars,
exact red.step.cons_bnot_rev.to_red } },
{ rw [if_neg h],
exact red.cons_cons ih } } }
end
theorem reduce.not {p : Prop} :
∀ {L₁ L₂ L₃ : list (α × bool)} {x b}, reduce L₁ = L₂ ++ (x, b) :: (x, bnot b) :: L₃ → p
| [] L2 L3 _ _ := λ h, by cases L2; injections
| ((x,b)::L1) L2 L3 x' b' := begin
dsimp,
cases r : reduce L1,
{ dsimp, intro h,
have := congr_arg list.length h,
simp [-add_comm] at this,
exact absurd this dec_trivial },
cases hd with y c,
by_cases x = y ∧ b = bnot c; simp [h]; intro H,
{ rw H at r,
exact @reduce.not L1 ((y,c)::L2) L3 x' b' r },
rcases L2 with _|⟨a, L2⟩,
{ injections, subst_vars,
simp at h, cc },
{ refine @reduce.not L1 L2 L3 x' b' _,
injection H with _ H,
rw [r, H], refl }
end
/-- The second theorem that characterises the
function `reduce`: the maximal reduction of a word
only reduces to itself. -/
theorem reduce.min (H : red (reduce L₁) L₂) : reduce L₁ = L₂ :=
begin
induction H with L1 L' L2 H1 H2 ih,
{ refl },
{ cases H1 with L4 L5 x b,
exact reduce.not H2 }
end
/-- `reduce` is idempotent, i.e. the maximal reduction
of the maximal reduction of a word is the maximal
reduction of the word. -/
theorem reduce.idem : reduce (reduce L) = reduce L :=
eq.symm $ reduce.min reduce.red
theorem reduce.step.eq (H : red.step L₁ L₂) : reduce L₁ = reduce L₂ :=
let ⟨L₃, HR13, HR23⟩ := red.church_rosser reduce.red (reduce.red.head H) in
(reduce.min HR13).trans (reduce.min HR23).symm
/-- If a word reduces to another word, then they have
a common maximal reduction. -/
theorem reduce.eq_of_red (H : red L₁ L₂) : reduce L₁ = reduce L₂ :=
let ⟨L₃, HR13, HR23⟩ := red.church_rosser reduce.red (red.trans H reduce.red) in
(reduce.min HR13).trans (reduce.min HR23).symm
/-- If two words correspond to the same element in
the free group, then they have a common maximal
reduction. This is the proof that the function that
sends an element of the free group to its maximal
reduction is well-defined. -/
theorem reduce.sound (H : mk L₁ = mk L₂) : reduce L₁ = reduce L₂ :=
let ⟨L₃, H13, H23⟩ := red.exact.1 H in
(reduce.eq_of_red H13).trans (reduce.eq_of_red H23).symm
/-- If two words have a common maximal reduction,
then they correspond to the same element in the free group. -/
theorem reduce.exact (H : reduce L₁ = reduce L₂) : mk L₁ = mk L₂ :=
red.exact.2 ⟨reduce L₂, H ▸ reduce.red, reduce.red⟩
/-- A word and its maximal reduction correspond to
the same element of the free group. -/
theorem reduce.self : mk (reduce L) = mk L :=
reduce.exact reduce.idem
/-- If words `w₁ w₂` are such that `w₁` reduces to `w₂`,
then `w₂` reduces to the maximal reduction of `w₁`. -/
theorem reduce.rev (H : red L₁ L₂) : red L₂ (reduce L₁) :=
(reduce.eq_of_red H).symm ▸ reduce.red
/-- The function that sends an element of the free
group to its maximal reduction. -/
def to_word : free_group α → list (α × bool) :=
quot.lift reduce $ λ L₁ L₂ H, reduce.step.eq H
lemma to_word.mk : ∀{x : free_group α}, mk (to_word x) = x :=
by rintros ⟨L⟩; exact reduce.self
lemma to_word.inj : ∀(x y : free_group α), to_word x = to_word y → x = y :=
by rintros ⟨L₁⟩ ⟨L₂⟩; exact reduce.exact
/-- Constructive Church-Rosser theorem (compare `church_rosser`). -/
def reduce.church_rosser (H12 : red L₁ L₂) (H13 : red L₁ L₃) :
{ L₄ // red L₂ L₄ ∧ red L₃ L₄ } :=
⟨reduce L₁, reduce.rev H12, reduce.rev H13⟩
instance : decidable_eq (free_group α) :=
function.injective.decidable_eq to_word.inj
instance red.decidable_rel : decidable_rel (@red α)
| [] [] := is_true red.refl
| [] (hd2::tl2) := is_false $ λ H, list.no_confusion (red.nil_iff.1 H)
| ((x,b)::tl) [] := match red.decidable_rel tl [(x, bnot b)] with
| is_true H := is_true $ red.trans (red.cons_cons H) $
(@red.step.bnot _ [] [] _ _).to_red
| is_false H := is_false $ λ H2, H $ red.cons_nil_iff_singleton.1 H2
end
| ((x1,b1)::tl1) ((x2,b2)::tl2) := if h : (x1, b1) = (x2, b2)
then match red.decidable_rel tl1 tl2 with
| is_true H := is_true $ h ▸ red.cons_cons H
| is_false H := is_false $ λ H2, H $ h ▸ (red.cons_cons_iff _).1 $ H2
end
else match red.decidable_rel tl1 ((x1,bnot b1)::(x2,b2)::tl2) with
| is_true H := is_true $ (red.cons_cons H).tail red.step.cons_bnot
| is_false H := is_false $ λ H2, H $ red.inv_of_red_of_ne h H2
end
/-- A list containing every word that `w₁` reduces to. -/
def red.enum (L₁ : list (α × bool)) : list (list (α × bool)) :=
list.filter (λ L₂, red L₁ L₂) (list.sublists L₁)
theorem red.enum.sound (H : L₂ ∈ red.enum L₁) : red L₁ L₂ :=
list.of_mem_filter H
theorem red.enum.complete (H : red L₁ L₂) : L₂ ∈ red.enum L₁ :=
list.mem_filter_of_mem (list.mem_sublists.2 $ red.sublist H) H
instance : fintype { L₂ // red L₁ L₂ } :=
fintype.subtype (list.to_finset $ red.enum L₁) $
λ L₂, ⟨λ H, red.enum.sound $ list.mem_to_finset.1 H,
λ H, list.mem_to_finset.2 $ red.enum.complete H⟩
end reduce
end free_group
|