Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 23,289 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
/-
Copyright (c) 2018 Mitchell Rowett. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mitchell Rowett, Scott Morrison
-/

import algebra.quotient
import group_theory.group_action.basic
import tactic.group

/-!
# Cosets

This file develops the basic theory of left and right cosets.

## Main definitions

* `left_coset a s`: the left coset `a * s` for an element `a : α` and a subset `s ⊆ α`, for an
  `add_group` this is `left_add_coset a s`.
* `right_coset s a`: the right coset `s * a` for an element `a : α` and a subset `s ⊆ α`, for an
  `add_group` this is `right_add_coset s a`.
* `quotient_group.quotient s`: the quotient type representing the left cosets with respect to a
  subgroup `s`, for an `add_group` this is `quotient_add_group.quotient s`.
* `quotient_group.mk`: the canonical map from `α` to `α/s` for a subgroup `s` of `α`, for an
  `add_group` this is `quotient_add_group.mk`.
* `subgroup.left_coset_equiv_subgroup`: the natural bijection between a left coset and the subgroup,
  for an `add_group` this is `add_subgroup.left_coset_equiv_add_subgroup`.

## Notation

* `a *l s`: for `left_coset a s`.
* `a +l s`: for `left_add_coset a s`.
* `s *r a`: for `right_coset s a`.
* `s +r a`: for `right_add_coset s a`.

* `G ⧸ H` is the quotient of the (additive) group `G` by the (additive) subgroup `H`

## TODO

Add `to_additive` to `preimage_mk_equiv_subgroup_times_set`.
-/

open set function

variable {α : Type*}

/-- The left coset `a * s` for an element `a : α` and a subset `s : set α` -/
@[to_additive left_add_coset "The left coset `a+s` for an element `a : α`
and a subset `s : set α`"]
def left_coset [has_mul α] (a : α) (s : set α) : set α := (λ x, a * x) '' s

/-- The right coset `s * a` for an element `a : α` and a subset `s : set α` -/
@[to_additive right_add_coset "The right coset `s+a` for an element `a : α`
and a subset `s : set α`"]
def right_coset [has_mul α] (s : set α) (a : α) : set α := (λ x, x * a) '' s

localized "infix ` *l `:70 := left_coset" in coset
localized "infix ` +l `:70 := left_add_coset" in coset
localized "infix ` *r `:70 := right_coset" in coset
localized "infix ` +r `:70 := right_add_coset" in coset

section coset_mul
variable [has_mul α]

@[to_additive mem_left_add_coset]
lemma mem_left_coset {s : set α} {x : α} (a : α) (hxS : x ∈ s) : a * x ∈ a *l s :=
mem_image_of_mem (λ b : α, a * b) hxS

@[to_additive mem_right_add_coset]
lemma mem_right_coset {s : set α} {x : α} (a : α) (hxS : x ∈ s) : x * a ∈ s *r a :=
mem_image_of_mem (λ b : α, b * a) hxS

/-- Equality of two left cosets `a * s` and `b * s`. -/
@[to_additive left_add_coset_equivalence "Equality of two left cosets `a + s` and `b + s`."]
def left_coset_equivalence (s : set α) (a b : α) := a *l s = b *l s

@[to_additive left_add_coset_equivalence_rel]
lemma left_coset_equivalence_rel (s : set α) : equivalence (left_coset_equivalence s) :=
mk_equivalence (left_coset_equivalence s) (λ a, rfl) (λ a b, eq.symm) (λ a b c, eq.trans)

/-- Equality of two right cosets `s * a` and `s * b`. -/
@[to_additive right_add_coset_equivalence "Equality of two right cosets `s + a` and `s + b`."]
def right_coset_equivalence (s : set α) (a b : α) := s *r a = s *r b

@[to_additive right_add_coset_equivalence_rel]
lemma right_coset_equivalence_rel (s : set α) : equivalence (right_coset_equivalence s) :=
mk_equivalence (right_coset_equivalence s) (λ a, rfl) (λ a b, eq.symm) (λ a b c, eq.trans)

end coset_mul

section coset_semigroup
variable [semigroup α]

@[simp, to_additive left_add_coset_assoc] lemma left_coset_assoc (s : set α) (a b : α) :
  a *l (b *l s) = (a * b) *l s :=
by simp [left_coset, right_coset, (image_comp _ _ _).symm, function.comp, mul_assoc]

@[simp, to_additive right_add_coset_assoc] lemma right_coset_assoc (s : set α) (a b : α) :
  s *r a *r b = s *r (a * b) :=
by simp [left_coset, right_coset, (image_comp _ _ _).symm, function.comp, mul_assoc]

@[to_additive left_add_coset_right_add_coset]
lemma left_coset_right_coset (s : set α) (a b : α) : a *l s *r b = a *l (s *r b) :=
by simp [left_coset, right_coset, (image_comp _ _ _).symm, function.comp, mul_assoc]

end coset_semigroup

section coset_monoid
variables [monoid α] (s : set α)

@[simp, to_additive zero_left_add_coset] lemma one_left_coset : 1 *l s = s :=
set.ext $ by simp [left_coset]

@[simp, to_additive right_add_coset_zero] lemma right_coset_one : s *r 1 = s :=
set.ext $ by simp [right_coset]

end coset_monoid

section coset_submonoid
open submonoid
variables [monoid α] (s : submonoid α)

@[to_additive mem_own_left_add_coset]
lemma mem_own_left_coset (a : α) : a ∈ a *l s :=
suffices a * 1 ∈ a *l s, by simpa,
mem_left_coset a (one_mem s : 1 ∈ s)

@[to_additive mem_own_right_add_coset]
lemma mem_own_right_coset (a : α) : a ∈ (s : set α) *r a :=
suffices 1 * a ∈ (s : set α) *r a, by simpa,
mem_right_coset a (one_mem s : 1 ∈ s)

@[to_additive mem_left_add_coset_left_add_coset]
lemma mem_left_coset_left_coset {a : α} (ha : a *l s = s) : a ∈ s :=
by rw [←set_like.mem_coe, ←ha]; exact mem_own_left_coset s a

@[to_additive mem_right_add_coset_right_add_coset]
lemma mem_right_coset_right_coset {a : α} (ha : (s : set α) *r a = s) : a ∈ s :=
by rw [←set_like.mem_coe, ←ha]; exact mem_own_right_coset s a

end coset_submonoid

section coset_group
variables [group α] {s : set α} {x : α}

@[to_additive mem_left_add_coset_iff]
lemma mem_left_coset_iff (a : α) : x ∈ a *l s ↔ a⁻¹ * x ∈ s :=
iff.intro
  (assume ⟨b, hb, eq⟩, by simp [eq.symm, hb])
  (assume h, ⟨a⁻¹ * x, h, by simp⟩)

@[to_additive mem_right_add_coset_iff]
lemma mem_right_coset_iff (a : α) : x ∈ s *r a ↔ x * a⁻¹ ∈ s :=
iff.intro
  (assume ⟨b, hb, eq⟩, by simp [eq.symm, hb])
  (assume h, ⟨x * a⁻¹, h, by simp⟩)

end coset_group

section coset_subgroup
open subgroup

variables [group α] (s : subgroup α)

@[to_additive left_add_coset_mem_left_add_coset]
lemma left_coset_mem_left_coset {a : α} (ha : a ∈ s) : a *l s = s :=
set.ext $ by simp [mem_left_coset_iff, mul_mem_cancel_left (s.inv_mem ha)]

@[to_additive right_add_coset_mem_right_add_coset]
lemma right_coset_mem_right_coset {a : α} (ha : a ∈ s) : (s : set α) *r a = s :=
set.ext $ assume b, by simp [mem_right_coset_iff, mul_mem_cancel_right (s.inv_mem ha)]

@[to_additive eq_add_cosets_of_normal]
theorem eq_cosets_of_normal (N : s.normal) (g : α) : g *l s = s *r g :=
set.ext $ assume a, by simp [mem_left_coset_iff, mem_right_coset_iff]; rw [N.mem_comm_iff]

@[to_additive normal_of_eq_add_cosets]
theorem normal_of_eq_cosets (h : ∀ g : α, g *l s = s *r g) : s.normal :=
⟨assume a ha g, show g * a * g⁻¹ ∈ (s : set α),
  by rw [← mem_right_coset_iff, ← h]; exact mem_left_coset g ha⟩

@[to_additive normal_iff_eq_add_cosets]
theorem normal_iff_eq_cosets : s.normal ↔ ∀ g : α, g *l s = s *r g :=
⟨@eq_cosets_of_normal _ _ s, normal_of_eq_cosets s⟩

@[to_additive left_add_coset_eq_iff]
lemma left_coset_eq_iff {x y : α} : left_coset x s = left_coset y s ↔ x⁻¹ * y ∈ s :=
begin
  rw set.ext_iff,
  simp_rw [mem_left_coset_iff, set_like.mem_coe],
  split,
  { intro h, apply (h y).mpr, rw mul_left_inv, exact s.one_mem },
  { intros h z, rw ←mul_inv_cancel_right x⁻¹ y, rw mul_assoc, exact s.mul_mem_cancel_left h },
end

@[to_additive right_add_coset_eq_iff]
lemma right_coset_eq_iff {x y : α} : right_coset ↑s x = right_coset s y ↔ y * x⁻¹ ∈ s :=
begin
  rw set.ext_iff,
  simp_rw [mem_right_coset_iff, set_like.mem_coe],
  split,
  { intro h, apply (h y).mpr, rw mul_right_inv, exact s.one_mem },
  { intros h z, rw ←inv_mul_cancel_left y x⁻¹, rw ←mul_assoc, exact s.mul_mem_cancel_right h },
end

end coset_subgroup

run_cmd to_additive.map_namespace `quotient_group `quotient_add_group

namespace quotient_group

variables [group α] (s : subgroup α)

/-- The equivalence relation corresponding to the partition of a group by left cosets
of a subgroup.-/
@[to_additive "The equivalence relation corresponding to the partition of a group by left cosets
of a subgroup."]
def left_rel : setoid α := mul_action.orbit_rel s.opposite α

variables {s}

@[to_additive]
lemma left_rel_apply {x y : α} : @setoid.r _ (left_rel s) x y ↔ (x⁻¹ * y ∈ s) :=
calc (∃ a : s.opposite, y * mul_opposite.unop a = x)
    ↔ ∃ a : s, y * a = x : s.opposite_equiv.symm.exists_congr_left
... ↔ ∃ a : s, x⁻¹ * y = a⁻¹ : by simp only [inv_mul_eq_iff_eq_mul, eq_mul_inv_iff_mul_eq]
... ↔ x⁻¹ * y ∈ s : by simp [set_like.exists]

variables (s)

@[to_additive]
lemma left_rel_eq : @setoid.r _ (left_rel s) = λ x y, x⁻¹ * y ∈ s :=
funext₂ $ by { simp only [eq_iff_iff], apply left_rel_apply }

lemma left_rel_r_eq_left_coset_equivalence :
  @setoid.r _ (quotient_group.left_rel s) = left_coset_equivalence s :=
by { ext, rw left_rel_eq, exact (left_coset_eq_iff s).symm }

@[to_additive]
instance left_rel_decidable [decidable_pred (∈ s)] :
  decidable_rel (left_rel s).r :=
λ x y, by { rw left_rel_eq, exact ‹decidable_pred (∈ s)› _ }

/-- `α ⧸ s` is the quotient type representing the left cosets of `s`.
  If `s` is a normal subgroup, `α ⧸ s` is a group -/
@[to_additive "`α ⧸ s` is the quotient type representing the left cosets of `s`.  If `s` is a
normal subgroup, `α ⧸ s` is a group"]
instance : has_quotient α (subgroup α) := ⟨λ s, quotient (left_rel s)⟩

/-- The equivalence relation corresponding to the partition of a group by right cosets of a
subgroup. -/
@[to_additive "The equivalence relation corresponding to the partition of a group by right cosets of
a subgroup."]
def right_rel : setoid α := mul_action.orbit_rel s α

variables {s}

@[to_additive]
lemma right_rel_apply {x y : α} : @setoid.r _ (right_rel s) x y ↔ (y * x⁻¹ ∈ s) :=
calc (∃ a : s, (a:α) * y = x)
    ↔ ∃ a : s, y * x⁻¹ = a⁻¹ : by simp only [mul_inv_eq_iff_eq_mul, eq_inv_mul_iff_mul_eq]
... ↔ y * x⁻¹ ∈ s : by simp [set_like.exists]

variables (s)

@[to_additive]
lemma right_rel_eq : @setoid.r _ (right_rel s) = λ x y, y * x⁻¹ ∈ s :=
funext₂ $ by { simp only [eq_iff_iff], apply right_rel_apply }

lemma right_rel_r_eq_right_coset_equivalence :
  @setoid.r _ (quotient_group.right_rel s) = right_coset_equivalence s :=
by { ext, rw right_rel_eq, exact (right_coset_eq_iff s).symm }

@[to_additive]
instance right_rel_decidable [decidable_pred (∈ s)] :
  decidable_rel (right_rel s).r :=
λ x y, by { rw right_rel_eq, exact ‹decidable_pred (∈ s)› _ }

/-- Right cosets are in bijection with left cosets. -/
@[to_additive "Right cosets are in bijection with left cosets."]
def quotient_right_rel_equiv_quotient_left_rel : quotient (quotient_group.right_rel s) ≃ α ⧸ s :=
{ to_fun := quotient.map' (λ g, g⁻¹) (λ a b, by { rw [left_rel_apply, right_rel_apply],
      exact λ h, (congr_arg (∈ s) (by group)).mp (s.inv_mem h) }),
  inv_fun := quotient.map' (λ g, g⁻¹) (λ a b, by { rw [left_rel_apply, right_rel_apply],
      exact λ h, (congr_arg (∈ s) (by group)).mp (s.inv_mem h) }),
  left_inv := λ g, quotient.induction_on' g (λ g, quotient.sound' (by
  { simp only [inv_inv],
    exact quotient.exact' rfl })),
  right_inv := λ g, quotient.induction_on' g (λ g, quotient.sound' (by
  { simp only [inv_inv],
    exact quotient.exact' rfl })) }

@[to_additive] instance fintype_quotient_right_rel [fintype (α ⧸ s)] :
  fintype (quotient (quotient_group.right_rel s)) :=
fintype.of_equiv (α ⧸ s) (quotient_group.quotient_right_rel_equiv_quotient_left_rel s).symm

@[to_additive] lemma card_quotient_right_rel [fintype (α ⧸ s)] :
  fintype.card (quotient (quotient_group.right_rel s)) = fintype.card (α ⧸ s) :=
fintype.of_equiv_card (quotient_group.quotient_right_rel_equiv_quotient_left_rel s).symm

end quotient_group

namespace quotient_group

variables [group α] {s : subgroup α}

@[to_additive]
instance fintype [fintype α] (s : subgroup α) [decidable_rel (left_rel s).r] :
  fintype (α ⧸ s) :=
quotient.fintype (left_rel s)

/-- The canonical map from a group `α` to the quotient `α ⧸ s`. -/
@[to_additive "The canonical map from an `add_group` `α` to the quotient `α ⧸ s`."]
abbreviation mk (a : α) : α ⧸ s :=
quotient.mk' a

@[to_additive]
lemma mk_surjective : function.surjective $ @mk _ _ s := quotient.surjective_quotient_mk'

@[elab_as_eliminator, to_additive]
lemma induction_on {C : α ⧸ s → Prop} (x : α ⧸ s)
  (H : ∀ z, C (quotient_group.mk z)) : C x :=
quotient.induction_on' x H

@[to_additive]
instance : has_coe_t α (α ⧸ s) := ⟨mk⟩ -- note [use has_coe_t]

@[elab_as_eliminator, to_additive]
lemma induction_on' {C : α ⧸ s → Prop} (x : α ⧸ s)
  (H : ∀ z : α, C z) : C x :=
quotient.induction_on' x H

@[simp, to_additive]
lemma quotient_lift_on_coe {β} (f : α → β) (h) (x : α) :
  quotient.lift_on' (x : α ⧸ s) f h = f x := rfl

@[to_additive]
lemma forall_coe {C : α ⧸ s → Prop} :
  (∀ x : α ⧸ s, C x) ↔ ∀ x : α, C x :=
⟨λ hx x, hx _, quot.ind⟩

@[to_additive]
instance (s : subgroup α) : inhabited (α ⧸ s) :=
⟨((1 : α) : α ⧸ s)⟩

@[to_additive quotient_add_group.eq]
protected lemma eq {a b : α} : (a : α ⧸ s) = b ↔ a⁻¹ * b ∈ s :=
calc _ ↔ @setoid.r _ (left_rel s) a b : quotient.eq'
... ↔ _ : by rw left_rel_apply

@[to_additive quotient_add_group.eq']
lemma eq' {a b : α} : (mk a : α ⧸ s) = mk b ↔ a⁻¹ * b ∈ s :=
quotient_group.eq

@[to_additive quotient_add_group.out_eq']
lemma out_eq' (a : α ⧸ s) : mk a.out' = a :=
quotient.out_eq' a

variables (s)

/- It can be useful to write `obtain ⟨h, H⟩ := mk_out'_eq_mul ...`, and then `rw [H]` or
  `simp_rw [H]` or `simp only [H]`. In order for `simp_rw` and `simp only` to work, this lemma is
  stated in terms of an arbitrary `h : s`, rathern that the specific `h = g⁻¹ * (mk g).out'`. -/
@[to_additive quotient_add_group.mk_out'_eq_mul]
lemma mk_out'_eq_mul (g : α) : ∃ h : s, (mk g : α ⧸ s).out' = g * h :=
⟨⟨g⁻¹ * (mk g).out', eq'.mp (mk g).out_eq'.symm⟩, by rw [set_like.coe_mk, mul_inv_cancel_left]⟩

variables {s}

@[to_additive quotient_add_group.mk_mul_of_mem]
lemma mk_mul_of_mem (g₁ g₂ : α) (hg₂ : g₂ ∈ s) : (mk (g₁ * g₂) : α ⧸ s) = mk g₁ :=
by rwa [eq', mul_inv_rev, inv_mul_cancel_right, s.inv_mem_iff]

@[to_additive]
lemma eq_class_eq_left_coset (s : subgroup α) (g : α) :
  {x : α | (x : α ⧸ s) = g} = left_coset g s :=
set.ext $ λ z,
  by rw [mem_left_coset_iff, set.mem_set_of_eq, eq_comm, quotient_group.eq, set_like.mem_coe]

@[to_additive]
lemma preimage_image_coe (N : subgroup α) (s : set α) :
  coe ⁻¹' ((coe : α → α ⧸ N) '' s) = ⋃ x : N, (λ y : α, y * x) ⁻¹' s :=
begin
  ext x,
  simp only [quotient_group.eq, set_like.exists, exists_prop, set.mem_preimage, set.mem_Union,
    set.mem_image, set_like.coe_mk, ← eq_inv_mul_iff_mul_eq],
  exact ⟨λ ⟨y, hs, hN⟩, ⟨_, N.inv_mem hN, by simpa using hs⟩,
         λ ⟨z, hz, hxz⟩, ⟨x*z, hxz, by simpa using hz⟩⟩,
end

end quotient_group

namespace subgroup
open quotient_group
variables [group α] {s : subgroup α}

/-- The natural bijection between a left coset `g * s` and `s`. -/
@[to_additive "The natural bijection between the cosets `g + s` and `s`."]
def left_coset_equiv_subgroup (g : α) : left_coset g s ≃ s :=
⟨λ x, ⟨g⁻¹ * x.1, (mem_left_coset_iff _).1 x.2⟩,
 λ x, ⟨g * x.1, x.1, x.2, rfl⟩,
 λ ⟨x, hx⟩, subtype.eq $ by simp,
 λ ⟨g, hg⟩, subtype.eq $ by simp⟩

/-- The natural bijection between a right coset `s * g` and `s`. -/
@[to_additive "The natural bijection between the cosets `s + g` and `s`."]
def right_coset_equiv_subgroup (g : α) : right_coset ↑s g ≃ s :=
⟨λ x, ⟨x.1 * g⁻¹, (mem_right_coset_iff _).1 x.2⟩,
 λ x, ⟨x.1 * g, x.1, x.2, rfl⟩,
 λ ⟨x, hx⟩, subtype.eq $ by simp,
 λ ⟨g, hg⟩, subtype.eq $ by simp⟩

/-- A (non-canonical) bijection between a group `α` and the product `(α/s) × s` -/
@[to_additive "A (non-canonical) bijection between an add_group `α` and the product `(α/s) × s`"]
noncomputable def group_equiv_quotient_times_subgroup :
  α ≃ (α ⧸ s) × s :=
calc α ≃ Σ L : α ⧸ s, {x : α // (x : α ⧸ s) = L} :
  (equiv.sigma_fiber_equiv quotient_group.mk).symm
    ... ≃ Σ L : α ⧸ s, left_coset (quotient.out' L) s :
  equiv.sigma_congr_right (λ L,
    begin
      rw ← eq_class_eq_left_coset,
      show _root_.subtype (λ x : α, quotient.mk' x = L) ≃
        _root_.subtype (λ x : α, quotient.mk' x = quotient.mk' _),
      simp [-quotient.eq'],
    end)
    ... ≃ Σ L : α ⧸ s, s :
  equiv.sigma_congr_right (λ L, left_coset_equiv_subgroup _)
    ... ≃ (α ⧸ s) × s :
  equiv.sigma_equiv_prod _ _

variables {t : subgroup α}

/-- If `H ≤ K`, then `G/H ≃ G/K × K/H` constructively, using the provided right inverse
of the quotient map `G → G/K`. The classical version is `quotient_equiv_prod_of_le`. -/
@[to_additive "If `H ≤ K`, then `G/H ≃ G/K × K/H` constructively, using the provided right inverse
of the quotient map `G → G/K`. The classical version is `quotient_equiv_prod_of_le`.", simps]
def quotient_equiv_prod_of_le' (h_le : s ≤ t)
  (f : α ⧸ t → α) (hf : function.right_inverse f quotient_group.mk) :
  α ⧸ s ≃ (α ⧸ t) × (t ⧸ s.subgroup_of t) :=
{ to_fun := λ a, ⟨a.map' id (λ b c h, left_rel_apply.mpr (h_le (left_rel_apply.mp h))),
    a.map' (λ g : α, ⟨(f (quotient.mk' g))⁻¹ * g, left_rel_apply.mp (quotient.exact' (hf g))⟩)
    (λ b c h, by
    { rw left_rel_apply,
      change ((f b)⁻¹ * b)⁻¹ * ((f c)⁻¹ * c) ∈ s,
      have key : f b = f c :=
        congr_arg f (quotient.sound' (left_rel_apply.mpr (h_le (left_rel_apply.mp h)))),
      rwa [key, mul_inv_rev, inv_inv, mul_assoc, mul_inv_cancel_left, ← left_rel_apply] })⟩,
  inv_fun := λ a, a.2.map' (λ b, f a.1 * b) (λ b c h, by
  { rw left_rel_apply at ⊢ h,
    change (f a.1 * b)⁻¹ * (f a.1 * c) ∈ s,
    rwa [mul_inv_rev, mul_assoc, inv_mul_cancel_left] }),
  left_inv := by
  { refine quotient.ind' (λ a, _),
    simp_rw [quotient.map'_mk', id.def, set_like.coe_mk, mul_inv_cancel_left] },
  right_inv := by
  { refine prod.rec _,
    refine quotient.ind' (λ a, _),
    refine quotient.ind' (λ b, _),
    have key : quotient.mk' (f (quotient.mk' a) * b) = quotient.mk' a :=
      (quotient_group.mk_mul_of_mem (f a) ↑b b.2).trans (hf a),
    simp_rw [quotient.map'_mk', id.def, key, inv_mul_cancel_left, subtype.coe_eta] } }

/-- If `H ≤ K`, then `G/H ≃ G/K × K/H` nonconstructively.
The constructive version is `quotient_equiv_prod_of_le'`. -/
@[to_additive "If `H ≤ K`, then `G/H ≃ G/K × K/H` nonconstructively.
The constructive version is `quotient_equiv_prod_of_le'`.", simps]
noncomputable def quotient_equiv_prod_of_le (h_le : s ≤ t) :
  α ⧸ s ≃ (α ⧸ t) × (t ⧸ s.subgroup_of t) :=
quotient_equiv_prod_of_le' h_le quotient.out' quotient.out_eq'

/-- If `K ≤ L`, then there is an embedding `K ⧸ (H.subgroup_of K) ↪ L ⧸ (H.subgroup_of L)`. -/
@[to_additive "If `K ≤ L`, then there is an embedding
  `K ⧸ (H.add_subgroup_of K) ↪ L ⧸ (H.add_subgroup_of L)`."]
def quotient_subgroup_of_embedding_of_le (H : subgroup α) {K L : subgroup α} (h : K ≤ L) :
  K ⧸ (H.subgroup_of K) ↪ L ⧸ (H.subgroup_of L) :=
{ to_fun := quotient.map' (set.inclusion h) (λ a b, by { simp [left_rel_apply], exact id }),
  inj' := begin
    refine quotient.ind₂' (λ a b, _),
    refine λ h, (quotient.eq'.mpr ∘ left_rel_apply.mpr) _,
    have := left_rel_apply.mp (quotient.eq'.mp h),
    exact this,
  end }

@[to_additive] lemma card_eq_card_quotient_mul_card_subgroup
  [fintype α] (s : subgroup α) [fintype s] [decidable_pred (λ a, a ∈ s)] :
  fintype.card α = fintype.card (α ⧸ s) * fintype.card s :=
by rw ← fintype.card_prod;
  exact fintype.card_congr (subgroup.group_equiv_quotient_times_subgroup)

/-- **Lagrange's Theorem**: The order of a subgroup divides the order of its ambient group. -/
@[to_additive] lemma card_subgroup_dvd_card [fintype α] (s : subgroup α) [fintype s] :
  fintype.card s ∣ fintype.card α :=
by classical; simp [card_eq_card_quotient_mul_card_subgroup s, @dvd_mul_left ℕ]

@[to_additive] lemma card_quotient_dvd_card [fintype α] (s : subgroup α)
  [decidable_pred (λ a, a ∈ s)] [fintype s] : fintype.card (α ⧸ s) ∣ fintype.card α :=
by simp [card_eq_card_quotient_mul_card_subgroup s, @dvd_mul_right ℕ]

open fintype

variables {H : Type*} [group H]

@[to_additive] lemma card_dvd_of_injective [fintype α] [fintype H] (f : α →* H)
  (hf : function.injective f) : card α ∣ card H :=
by classical;
calc card α = card (f.range : subgroup H) : card_congr (equiv.of_injective f hf)
...∣ card H : card_subgroup_dvd_card _

@[to_additive] lemma card_dvd_of_le {H K : subgroup α} [fintype H] [fintype K] (hHK : H ≤ K) :
  card H ∣ card K :=
card_dvd_of_injective (inclusion hHK) (inclusion_injective hHK)

@[to_additive] lemma card_comap_dvd_of_injective (K : subgroup H) [fintype K]
  (f : α →* H) [fintype (K.comap f)] (hf : function.injective f) :
  fintype.card (K.comap f) ∣ fintype.card K :=
by haveI : fintype ((K.comap f).map f) :=
  fintype.of_equiv _ (equiv_map_of_injective _ _ hf).to_equiv;
calc fintype.card (K.comap f) = fintype.card ((K.comap f).map f) :
       fintype.card_congr (equiv_map_of_injective _ _ hf).to_equiv
... ∣ fintype.card K : card_dvd_of_le (map_comap_le _ _)

end subgroup

namespace quotient_group

variables [group α]

-- FIXME -- why is there no `to_additive`?

/-- If `s` is a subgroup of the group `α`, and `t` is a subset of `α/s`, then
there is a (typically non-canonical) bijection between the preimage of `t` in
`α` and the product `s × t`. -/
noncomputable def preimage_mk_equiv_subgroup_times_set
  (s : subgroup α) (t : set (α ⧸ s)) : quotient_group.mk ⁻¹' t ≃ s × t :=
have h : ∀ {x : α ⧸ s} {a : α}, x ∈ t → a ∈ s →
  (quotient.mk' (quotient.out' x * a) : α ⧸ s) = quotient.mk' (quotient.out' x) :=
    λ x a hx ha, quotient.sound' $ by rwa [left_rel_apply, ← s.inv_mem_iff, mul_inv_rev, inv_inv,
        ← mul_assoc, inv_mul_self, one_mul],
{ to_fun := λ ⟨a, ha⟩, ⟨⟨(quotient.out' (quotient.mk' a))⁻¹ * a,
    left_rel_apply.mp (@quotient.exact' _ (left_rel s) _ _ $ (quotient.out_eq' _))⟩,
      ⟨quotient.mk' a, ha⟩⟩,
  inv_fun := λ ⟨⟨a, ha⟩, ⟨x, hx⟩⟩, ⟨quotient.out' x * a, show quotient.mk' _ ∈ t,
    by simp [h hx ha, hx]⟩,
  left_inv := λ ⟨a, ha⟩, subtype.eq $ show _ * _ = a, by simp,
  right_inv := λ ⟨⟨a, ha⟩, ⟨x, hx⟩⟩, show (_, _) = _, by simp [h hx ha] }

end quotient_group

/--
We use the class `has_coe_t` instead of `has_coe` if the first argument is a variable,
or if the second argument is a variable not occurring in the first.
Using `has_coe` would cause looping of type-class inference. See
<https://leanprover.zulipchat.com/#narrow/stream/113488-general/topic/remove.20all.20instances.20with.20variable.20domain>
-/
library_note "use has_coe_t"