Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 23,289 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 |
/-
Copyright (c) 2018 Mitchell Rowett. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mitchell Rowett, Scott Morrison
-/
import algebra.quotient
import group_theory.group_action.basic
import tactic.group
/-!
# Cosets
This file develops the basic theory of left and right cosets.
## Main definitions
* `left_coset a s`: the left coset `a * s` for an element `a : α` and a subset `s ⊆ α`, for an
`add_group` this is `left_add_coset a s`.
* `right_coset s a`: the right coset `s * a` for an element `a : α` and a subset `s ⊆ α`, for an
`add_group` this is `right_add_coset s a`.
* `quotient_group.quotient s`: the quotient type representing the left cosets with respect to a
subgroup `s`, for an `add_group` this is `quotient_add_group.quotient s`.
* `quotient_group.mk`: the canonical map from `α` to `α/s` for a subgroup `s` of `α`, for an
`add_group` this is `quotient_add_group.mk`.
* `subgroup.left_coset_equiv_subgroup`: the natural bijection between a left coset and the subgroup,
for an `add_group` this is `add_subgroup.left_coset_equiv_add_subgroup`.
## Notation
* `a *l s`: for `left_coset a s`.
* `a +l s`: for `left_add_coset a s`.
* `s *r a`: for `right_coset s a`.
* `s +r a`: for `right_add_coset s a`.
* `G ⧸ H` is the quotient of the (additive) group `G` by the (additive) subgroup `H`
## TODO
Add `to_additive` to `preimage_mk_equiv_subgroup_times_set`.
-/
open set function
variable {α : Type*}
/-- The left coset `a * s` for an element `a : α` and a subset `s : set α` -/
@[to_additive left_add_coset "The left coset `a+s` for an element `a : α`
and a subset `s : set α`"]
def left_coset [has_mul α] (a : α) (s : set α) : set α := (λ x, a * x) '' s
/-- The right coset `s * a` for an element `a : α` and a subset `s : set α` -/
@[to_additive right_add_coset "The right coset `s+a` for an element `a : α`
and a subset `s : set α`"]
def right_coset [has_mul α] (s : set α) (a : α) : set α := (λ x, x * a) '' s
localized "infix ` *l `:70 := left_coset" in coset
localized "infix ` +l `:70 := left_add_coset" in coset
localized "infix ` *r `:70 := right_coset" in coset
localized "infix ` +r `:70 := right_add_coset" in coset
section coset_mul
variable [has_mul α]
@[to_additive mem_left_add_coset]
lemma mem_left_coset {s : set α} {x : α} (a : α) (hxS : x ∈ s) : a * x ∈ a *l s :=
mem_image_of_mem (λ b : α, a * b) hxS
@[to_additive mem_right_add_coset]
lemma mem_right_coset {s : set α} {x : α} (a : α) (hxS : x ∈ s) : x * a ∈ s *r a :=
mem_image_of_mem (λ b : α, b * a) hxS
/-- Equality of two left cosets `a * s` and `b * s`. -/
@[to_additive left_add_coset_equivalence "Equality of two left cosets `a + s` and `b + s`."]
def left_coset_equivalence (s : set α) (a b : α) := a *l s = b *l s
@[to_additive left_add_coset_equivalence_rel]
lemma left_coset_equivalence_rel (s : set α) : equivalence (left_coset_equivalence s) :=
mk_equivalence (left_coset_equivalence s) (λ a, rfl) (λ a b, eq.symm) (λ a b c, eq.trans)
/-- Equality of two right cosets `s * a` and `s * b`. -/
@[to_additive right_add_coset_equivalence "Equality of two right cosets `s + a` and `s + b`."]
def right_coset_equivalence (s : set α) (a b : α) := s *r a = s *r b
@[to_additive right_add_coset_equivalence_rel]
lemma right_coset_equivalence_rel (s : set α) : equivalence (right_coset_equivalence s) :=
mk_equivalence (right_coset_equivalence s) (λ a, rfl) (λ a b, eq.symm) (λ a b c, eq.trans)
end coset_mul
section coset_semigroup
variable [semigroup α]
@[simp, to_additive left_add_coset_assoc] lemma left_coset_assoc (s : set α) (a b : α) :
a *l (b *l s) = (a * b) *l s :=
by simp [left_coset, right_coset, (image_comp _ _ _).symm, function.comp, mul_assoc]
@[simp, to_additive right_add_coset_assoc] lemma right_coset_assoc (s : set α) (a b : α) :
s *r a *r b = s *r (a * b) :=
by simp [left_coset, right_coset, (image_comp _ _ _).symm, function.comp, mul_assoc]
@[to_additive left_add_coset_right_add_coset]
lemma left_coset_right_coset (s : set α) (a b : α) : a *l s *r b = a *l (s *r b) :=
by simp [left_coset, right_coset, (image_comp _ _ _).symm, function.comp, mul_assoc]
end coset_semigroup
section coset_monoid
variables [monoid α] (s : set α)
@[simp, to_additive zero_left_add_coset] lemma one_left_coset : 1 *l s = s :=
set.ext $ by simp [left_coset]
@[simp, to_additive right_add_coset_zero] lemma right_coset_one : s *r 1 = s :=
set.ext $ by simp [right_coset]
end coset_monoid
section coset_submonoid
open submonoid
variables [monoid α] (s : submonoid α)
@[to_additive mem_own_left_add_coset]
lemma mem_own_left_coset (a : α) : a ∈ a *l s :=
suffices a * 1 ∈ a *l s, by simpa,
mem_left_coset a (one_mem s : 1 ∈ s)
@[to_additive mem_own_right_add_coset]
lemma mem_own_right_coset (a : α) : a ∈ (s : set α) *r a :=
suffices 1 * a ∈ (s : set α) *r a, by simpa,
mem_right_coset a (one_mem s : 1 ∈ s)
@[to_additive mem_left_add_coset_left_add_coset]
lemma mem_left_coset_left_coset {a : α} (ha : a *l s = s) : a ∈ s :=
by rw [←set_like.mem_coe, ←ha]; exact mem_own_left_coset s a
@[to_additive mem_right_add_coset_right_add_coset]
lemma mem_right_coset_right_coset {a : α} (ha : (s : set α) *r a = s) : a ∈ s :=
by rw [←set_like.mem_coe, ←ha]; exact mem_own_right_coset s a
end coset_submonoid
section coset_group
variables [group α] {s : set α} {x : α}
@[to_additive mem_left_add_coset_iff]
lemma mem_left_coset_iff (a : α) : x ∈ a *l s ↔ a⁻¹ * x ∈ s :=
iff.intro
(assume ⟨b, hb, eq⟩, by simp [eq.symm, hb])
(assume h, ⟨a⁻¹ * x, h, by simp⟩)
@[to_additive mem_right_add_coset_iff]
lemma mem_right_coset_iff (a : α) : x ∈ s *r a ↔ x * a⁻¹ ∈ s :=
iff.intro
(assume ⟨b, hb, eq⟩, by simp [eq.symm, hb])
(assume h, ⟨x * a⁻¹, h, by simp⟩)
end coset_group
section coset_subgroup
open subgroup
variables [group α] (s : subgroup α)
@[to_additive left_add_coset_mem_left_add_coset]
lemma left_coset_mem_left_coset {a : α} (ha : a ∈ s) : a *l s = s :=
set.ext $ by simp [mem_left_coset_iff, mul_mem_cancel_left (s.inv_mem ha)]
@[to_additive right_add_coset_mem_right_add_coset]
lemma right_coset_mem_right_coset {a : α} (ha : a ∈ s) : (s : set α) *r a = s :=
set.ext $ assume b, by simp [mem_right_coset_iff, mul_mem_cancel_right (s.inv_mem ha)]
@[to_additive eq_add_cosets_of_normal]
theorem eq_cosets_of_normal (N : s.normal) (g : α) : g *l s = s *r g :=
set.ext $ assume a, by simp [mem_left_coset_iff, mem_right_coset_iff]; rw [N.mem_comm_iff]
@[to_additive normal_of_eq_add_cosets]
theorem normal_of_eq_cosets (h : ∀ g : α, g *l s = s *r g) : s.normal :=
⟨assume a ha g, show g * a * g⁻¹ ∈ (s : set α),
by rw [← mem_right_coset_iff, ← h]; exact mem_left_coset g ha⟩
@[to_additive normal_iff_eq_add_cosets]
theorem normal_iff_eq_cosets : s.normal ↔ ∀ g : α, g *l s = s *r g :=
⟨@eq_cosets_of_normal _ _ s, normal_of_eq_cosets s⟩
@[to_additive left_add_coset_eq_iff]
lemma left_coset_eq_iff {x y : α} : left_coset x s = left_coset y s ↔ x⁻¹ * y ∈ s :=
begin
rw set.ext_iff,
simp_rw [mem_left_coset_iff, set_like.mem_coe],
split,
{ intro h, apply (h y).mpr, rw mul_left_inv, exact s.one_mem },
{ intros h z, rw ←mul_inv_cancel_right x⁻¹ y, rw mul_assoc, exact s.mul_mem_cancel_left h },
end
@[to_additive right_add_coset_eq_iff]
lemma right_coset_eq_iff {x y : α} : right_coset ↑s x = right_coset s y ↔ y * x⁻¹ ∈ s :=
begin
rw set.ext_iff,
simp_rw [mem_right_coset_iff, set_like.mem_coe],
split,
{ intro h, apply (h y).mpr, rw mul_right_inv, exact s.one_mem },
{ intros h z, rw ←inv_mul_cancel_left y x⁻¹, rw ←mul_assoc, exact s.mul_mem_cancel_right h },
end
end coset_subgroup
run_cmd to_additive.map_namespace `quotient_group `quotient_add_group
namespace quotient_group
variables [group α] (s : subgroup α)
/-- The equivalence relation corresponding to the partition of a group by left cosets
of a subgroup.-/
@[to_additive "The equivalence relation corresponding to the partition of a group by left cosets
of a subgroup."]
def left_rel : setoid α := mul_action.orbit_rel s.opposite α
variables {s}
@[to_additive]
lemma left_rel_apply {x y : α} : @setoid.r _ (left_rel s) x y ↔ (x⁻¹ * y ∈ s) :=
calc (∃ a : s.opposite, y * mul_opposite.unop a = x)
↔ ∃ a : s, y * a = x : s.opposite_equiv.symm.exists_congr_left
... ↔ ∃ a : s, x⁻¹ * y = a⁻¹ : by simp only [inv_mul_eq_iff_eq_mul, eq_mul_inv_iff_mul_eq]
... ↔ x⁻¹ * y ∈ s : by simp [set_like.exists]
variables (s)
@[to_additive]
lemma left_rel_eq : @setoid.r _ (left_rel s) = λ x y, x⁻¹ * y ∈ s :=
funext₂ $ by { simp only [eq_iff_iff], apply left_rel_apply }
lemma left_rel_r_eq_left_coset_equivalence :
@setoid.r _ (quotient_group.left_rel s) = left_coset_equivalence s :=
by { ext, rw left_rel_eq, exact (left_coset_eq_iff s).symm }
@[to_additive]
instance left_rel_decidable [decidable_pred (∈ s)] :
decidable_rel (left_rel s).r :=
λ x y, by { rw left_rel_eq, exact ‹decidable_pred (∈ s)› _ }
/-- `α ⧸ s` is the quotient type representing the left cosets of `s`.
If `s` is a normal subgroup, `α ⧸ s` is a group -/
@[to_additive "`α ⧸ s` is the quotient type representing the left cosets of `s`. If `s` is a
normal subgroup, `α ⧸ s` is a group"]
instance : has_quotient α (subgroup α) := ⟨λ s, quotient (left_rel s)⟩
/-- The equivalence relation corresponding to the partition of a group by right cosets of a
subgroup. -/
@[to_additive "The equivalence relation corresponding to the partition of a group by right cosets of
a subgroup."]
def right_rel : setoid α := mul_action.orbit_rel s α
variables {s}
@[to_additive]
lemma right_rel_apply {x y : α} : @setoid.r _ (right_rel s) x y ↔ (y * x⁻¹ ∈ s) :=
calc (∃ a : s, (a:α) * y = x)
↔ ∃ a : s, y * x⁻¹ = a⁻¹ : by simp only [mul_inv_eq_iff_eq_mul, eq_inv_mul_iff_mul_eq]
... ↔ y * x⁻¹ ∈ s : by simp [set_like.exists]
variables (s)
@[to_additive]
lemma right_rel_eq : @setoid.r _ (right_rel s) = λ x y, y * x⁻¹ ∈ s :=
funext₂ $ by { simp only [eq_iff_iff], apply right_rel_apply }
lemma right_rel_r_eq_right_coset_equivalence :
@setoid.r _ (quotient_group.right_rel s) = right_coset_equivalence s :=
by { ext, rw right_rel_eq, exact (right_coset_eq_iff s).symm }
@[to_additive]
instance right_rel_decidable [decidable_pred (∈ s)] :
decidable_rel (right_rel s).r :=
λ x y, by { rw right_rel_eq, exact ‹decidable_pred (∈ s)› _ }
/-- Right cosets are in bijection with left cosets. -/
@[to_additive "Right cosets are in bijection with left cosets."]
def quotient_right_rel_equiv_quotient_left_rel : quotient (quotient_group.right_rel s) ≃ α ⧸ s :=
{ to_fun := quotient.map' (λ g, g⁻¹) (λ a b, by { rw [left_rel_apply, right_rel_apply],
exact λ h, (congr_arg (∈ s) (by group)).mp (s.inv_mem h) }),
inv_fun := quotient.map' (λ g, g⁻¹) (λ a b, by { rw [left_rel_apply, right_rel_apply],
exact λ h, (congr_arg (∈ s) (by group)).mp (s.inv_mem h) }),
left_inv := λ g, quotient.induction_on' g (λ g, quotient.sound' (by
{ simp only [inv_inv],
exact quotient.exact' rfl })),
right_inv := λ g, quotient.induction_on' g (λ g, quotient.sound' (by
{ simp only [inv_inv],
exact quotient.exact' rfl })) }
@[to_additive] instance fintype_quotient_right_rel [fintype (α ⧸ s)] :
fintype (quotient (quotient_group.right_rel s)) :=
fintype.of_equiv (α ⧸ s) (quotient_group.quotient_right_rel_equiv_quotient_left_rel s).symm
@[to_additive] lemma card_quotient_right_rel [fintype (α ⧸ s)] :
fintype.card (quotient (quotient_group.right_rel s)) = fintype.card (α ⧸ s) :=
fintype.of_equiv_card (quotient_group.quotient_right_rel_equiv_quotient_left_rel s).symm
end quotient_group
namespace quotient_group
variables [group α] {s : subgroup α}
@[to_additive]
instance fintype [fintype α] (s : subgroup α) [decidable_rel (left_rel s).r] :
fintype (α ⧸ s) :=
quotient.fintype (left_rel s)
/-- The canonical map from a group `α` to the quotient `α ⧸ s`. -/
@[to_additive "The canonical map from an `add_group` `α` to the quotient `α ⧸ s`."]
abbreviation mk (a : α) : α ⧸ s :=
quotient.mk' a
@[to_additive]
lemma mk_surjective : function.surjective $ @mk _ _ s := quotient.surjective_quotient_mk'
@[elab_as_eliminator, to_additive]
lemma induction_on {C : α ⧸ s → Prop} (x : α ⧸ s)
(H : ∀ z, C (quotient_group.mk z)) : C x :=
quotient.induction_on' x H
@[to_additive]
instance : has_coe_t α (α ⧸ s) := ⟨mk⟩ -- note [use has_coe_t]
@[elab_as_eliminator, to_additive]
lemma induction_on' {C : α ⧸ s → Prop} (x : α ⧸ s)
(H : ∀ z : α, C z) : C x :=
quotient.induction_on' x H
@[simp, to_additive]
lemma quotient_lift_on_coe {β} (f : α → β) (h) (x : α) :
quotient.lift_on' (x : α ⧸ s) f h = f x := rfl
@[to_additive]
lemma forall_coe {C : α ⧸ s → Prop} :
(∀ x : α ⧸ s, C x) ↔ ∀ x : α, C x :=
⟨λ hx x, hx _, quot.ind⟩
@[to_additive]
instance (s : subgroup α) : inhabited (α ⧸ s) :=
⟨((1 : α) : α ⧸ s)⟩
@[to_additive quotient_add_group.eq]
protected lemma eq {a b : α} : (a : α ⧸ s) = b ↔ a⁻¹ * b ∈ s :=
calc _ ↔ @setoid.r _ (left_rel s) a b : quotient.eq'
... ↔ _ : by rw left_rel_apply
@[to_additive quotient_add_group.eq']
lemma eq' {a b : α} : (mk a : α ⧸ s) = mk b ↔ a⁻¹ * b ∈ s :=
quotient_group.eq
@[to_additive quotient_add_group.out_eq']
lemma out_eq' (a : α ⧸ s) : mk a.out' = a :=
quotient.out_eq' a
variables (s)
/- It can be useful to write `obtain ⟨h, H⟩ := mk_out'_eq_mul ...`, and then `rw [H]` or
`simp_rw [H]` or `simp only [H]`. In order for `simp_rw` and `simp only` to work, this lemma is
stated in terms of an arbitrary `h : s`, rathern that the specific `h = g⁻¹ * (mk g).out'`. -/
@[to_additive quotient_add_group.mk_out'_eq_mul]
lemma mk_out'_eq_mul (g : α) : ∃ h : s, (mk g : α ⧸ s).out' = g * h :=
⟨⟨g⁻¹ * (mk g).out', eq'.mp (mk g).out_eq'.symm⟩, by rw [set_like.coe_mk, mul_inv_cancel_left]⟩
variables {s}
@[to_additive quotient_add_group.mk_mul_of_mem]
lemma mk_mul_of_mem (g₁ g₂ : α) (hg₂ : g₂ ∈ s) : (mk (g₁ * g₂) : α ⧸ s) = mk g₁ :=
by rwa [eq', mul_inv_rev, inv_mul_cancel_right, s.inv_mem_iff]
@[to_additive]
lemma eq_class_eq_left_coset (s : subgroup α) (g : α) :
{x : α | (x : α ⧸ s) = g} = left_coset g s :=
set.ext $ λ z,
by rw [mem_left_coset_iff, set.mem_set_of_eq, eq_comm, quotient_group.eq, set_like.mem_coe]
@[to_additive]
lemma preimage_image_coe (N : subgroup α) (s : set α) :
coe ⁻¹' ((coe : α → α ⧸ N) '' s) = ⋃ x : N, (λ y : α, y * x) ⁻¹' s :=
begin
ext x,
simp only [quotient_group.eq, set_like.exists, exists_prop, set.mem_preimage, set.mem_Union,
set.mem_image, set_like.coe_mk, ← eq_inv_mul_iff_mul_eq],
exact ⟨λ ⟨y, hs, hN⟩, ⟨_, N.inv_mem hN, by simpa using hs⟩,
λ ⟨z, hz, hxz⟩, ⟨x*z, hxz, by simpa using hz⟩⟩,
end
end quotient_group
namespace subgroup
open quotient_group
variables [group α] {s : subgroup α}
/-- The natural bijection between a left coset `g * s` and `s`. -/
@[to_additive "The natural bijection between the cosets `g + s` and `s`."]
def left_coset_equiv_subgroup (g : α) : left_coset g s ≃ s :=
⟨λ x, ⟨g⁻¹ * x.1, (mem_left_coset_iff _).1 x.2⟩,
λ x, ⟨g * x.1, x.1, x.2, rfl⟩,
λ ⟨x, hx⟩, subtype.eq $ by simp,
λ ⟨g, hg⟩, subtype.eq $ by simp⟩
/-- The natural bijection between a right coset `s * g` and `s`. -/
@[to_additive "The natural bijection between the cosets `s + g` and `s`."]
def right_coset_equiv_subgroup (g : α) : right_coset ↑s g ≃ s :=
⟨λ x, ⟨x.1 * g⁻¹, (mem_right_coset_iff _).1 x.2⟩,
λ x, ⟨x.1 * g, x.1, x.2, rfl⟩,
λ ⟨x, hx⟩, subtype.eq $ by simp,
λ ⟨g, hg⟩, subtype.eq $ by simp⟩
/-- A (non-canonical) bijection between a group `α` and the product `(α/s) × s` -/
@[to_additive "A (non-canonical) bijection between an add_group `α` and the product `(α/s) × s`"]
noncomputable def group_equiv_quotient_times_subgroup :
α ≃ (α ⧸ s) × s :=
calc α ≃ Σ L : α ⧸ s, {x : α // (x : α ⧸ s) = L} :
(equiv.sigma_fiber_equiv quotient_group.mk).symm
... ≃ Σ L : α ⧸ s, left_coset (quotient.out' L) s :
equiv.sigma_congr_right (λ L,
begin
rw ← eq_class_eq_left_coset,
show _root_.subtype (λ x : α, quotient.mk' x = L) ≃
_root_.subtype (λ x : α, quotient.mk' x = quotient.mk' _),
simp [-quotient.eq'],
end)
... ≃ Σ L : α ⧸ s, s :
equiv.sigma_congr_right (λ L, left_coset_equiv_subgroup _)
... ≃ (α ⧸ s) × s :
equiv.sigma_equiv_prod _ _
variables {t : subgroup α}
/-- If `H ≤ K`, then `G/H ≃ G/K × K/H` constructively, using the provided right inverse
of the quotient map `G → G/K`. The classical version is `quotient_equiv_prod_of_le`. -/
@[to_additive "If `H ≤ K`, then `G/H ≃ G/K × K/H` constructively, using the provided right inverse
of the quotient map `G → G/K`. The classical version is `quotient_equiv_prod_of_le`.", simps]
def quotient_equiv_prod_of_le' (h_le : s ≤ t)
(f : α ⧸ t → α) (hf : function.right_inverse f quotient_group.mk) :
α ⧸ s ≃ (α ⧸ t) × (t ⧸ s.subgroup_of t) :=
{ to_fun := λ a, ⟨a.map' id (λ b c h, left_rel_apply.mpr (h_le (left_rel_apply.mp h))),
a.map' (λ g : α, ⟨(f (quotient.mk' g))⁻¹ * g, left_rel_apply.mp (quotient.exact' (hf g))⟩)
(λ b c h, by
{ rw left_rel_apply,
change ((f b)⁻¹ * b)⁻¹ * ((f c)⁻¹ * c) ∈ s,
have key : f b = f c :=
congr_arg f (quotient.sound' (left_rel_apply.mpr (h_le (left_rel_apply.mp h)))),
rwa [key, mul_inv_rev, inv_inv, mul_assoc, mul_inv_cancel_left, ← left_rel_apply] })⟩,
inv_fun := λ a, a.2.map' (λ b, f a.1 * b) (λ b c h, by
{ rw left_rel_apply at ⊢ h,
change (f a.1 * b)⁻¹ * (f a.1 * c) ∈ s,
rwa [mul_inv_rev, mul_assoc, inv_mul_cancel_left] }),
left_inv := by
{ refine quotient.ind' (λ a, _),
simp_rw [quotient.map'_mk', id.def, set_like.coe_mk, mul_inv_cancel_left] },
right_inv := by
{ refine prod.rec _,
refine quotient.ind' (λ a, _),
refine quotient.ind' (λ b, _),
have key : quotient.mk' (f (quotient.mk' a) * b) = quotient.mk' a :=
(quotient_group.mk_mul_of_mem (f a) ↑b b.2).trans (hf a),
simp_rw [quotient.map'_mk', id.def, key, inv_mul_cancel_left, subtype.coe_eta] } }
/-- If `H ≤ K`, then `G/H ≃ G/K × K/H` nonconstructively.
The constructive version is `quotient_equiv_prod_of_le'`. -/
@[to_additive "If `H ≤ K`, then `G/H ≃ G/K × K/H` nonconstructively.
The constructive version is `quotient_equiv_prod_of_le'`.", simps]
noncomputable def quotient_equiv_prod_of_le (h_le : s ≤ t) :
α ⧸ s ≃ (α ⧸ t) × (t ⧸ s.subgroup_of t) :=
quotient_equiv_prod_of_le' h_le quotient.out' quotient.out_eq'
/-- If `K ≤ L`, then there is an embedding `K ⧸ (H.subgroup_of K) ↪ L ⧸ (H.subgroup_of L)`. -/
@[to_additive "If `K ≤ L`, then there is an embedding
`K ⧸ (H.add_subgroup_of K) ↪ L ⧸ (H.add_subgroup_of L)`."]
def quotient_subgroup_of_embedding_of_le (H : subgroup α) {K L : subgroup α} (h : K ≤ L) :
K ⧸ (H.subgroup_of K) ↪ L ⧸ (H.subgroup_of L) :=
{ to_fun := quotient.map' (set.inclusion h) (λ a b, by { simp [left_rel_apply], exact id }),
inj' := begin
refine quotient.ind₂' (λ a b, _),
refine λ h, (quotient.eq'.mpr ∘ left_rel_apply.mpr) _,
have := left_rel_apply.mp (quotient.eq'.mp h),
exact this,
end }
@[to_additive] lemma card_eq_card_quotient_mul_card_subgroup
[fintype α] (s : subgroup α) [fintype s] [decidable_pred (λ a, a ∈ s)] :
fintype.card α = fintype.card (α ⧸ s) * fintype.card s :=
by rw ← fintype.card_prod;
exact fintype.card_congr (subgroup.group_equiv_quotient_times_subgroup)
/-- **Lagrange's Theorem**: The order of a subgroup divides the order of its ambient group. -/
@[to_additive] lemma card_subgroup_dvd_card [fintype α] (s : subgroup α) [fintype s] :
fintype.card s ∣ fintype.card α :=
by classical; simp [card_eq_card_quotient_mul_card_subgroup s, @dvd_mul_left ℕ]
@[to_additive] lemma card_quotient_dvd_card [fintype α] (s : subgroup α)
[decidable_pred (λ a, a ∈ s)] [fintype s] : fintype.card (α ⧸ s) ∣ fintype.card α :=
by simp [card_eq_card_quotient_mul_card_subgroup s, @dvd_mul_right ℕ]
open fintype
variables {H : Type*} [group H]
@[to_additive] lemma card_dvd_of_injective [fintype α] [fintype H] (f : α →* H)
(hf : function.injective f) : card α ∣ card H :=
by classical;
calc card α = card (f.range : subgroup H) : card_congr (equiv.of_injective f hf)
...∣ card H : card_subgroup_dvd_card _
@[to_additive] lemma card_dvd_of_le {H K : subgroup α} [fintype H] [fintype K] (hHK : H ≤ K) :
card H ∣ card K :=
card_dvd_of_injective (inclusion hHK) (inclusion_injective hHK)
@[to_additive] lemma card_comap_dvd_of_injective (K : subgroup H) [fintype K]
(f : α →* H) [fintype (K.comap f)] (hf : function.injective f) :
fintype.card (K.comap f) ∣ fintype.card K :=
by haveI : fintype ((K.comap f).map f) :=
fintype.of_equiv _ (equiv_map_of_injective _ _ hf).to_equiv;
calc fintype.card (K.comap f) = fintype.card ((K.comap f).map f) :
fintype.card_congr (equiv_map_of_injective _ _ hf).to_equiv
... ∣ fintype.card K : card_dvd_of_le (map_comap_le _ _)
end subgroup
namespace quotient_group
variables [group α]
-- FIXME -- why is there no `to_additive`?
/-- If `s` is a subgroup of the group `α`, and `t` is a subset of `α/s`, then
there is a (typically non-canonical) bijection between the preimage of `t` in
`α` and the product `s × t`. -/
noncomputable def preimage_mk_equiv_subgroup_times_set
(s : subgroup α) (t : set (α ⧸ s)) : quotient_group.mk ⁻¹' t ≃ s × t :=
have h : ∀ {x : α ⧸ s} {a : α}, x ∈ t → a ∈ s →
(quotient.mk' (quotient.out' x * a) : α ⧸ s) = quotient.mk' (quotient.out' x) :=
λ x a hx ha, quotient.sound' $ by rwa [left_rel_apply, ← s.inv_mem_iff, mul_inv_rev, inv_inv,
← mul_assoc, inv_mul_self, one_mul],
{ to_fun := λ ⟨a, ha⟩, ⟨⟨(quotient.out' (quotient.mk' a))⁻¹ * a,
left_rel_apply.mp (@quotient.exact' _ (left_rel s) _ _ $ (quotient.out_eq' _))⟩,
⟨quotient.mk' a, ha⟩⟩,
inv_fun := λ ⟨⟨a, ha⟩, ⟨x, hx⟩⟩, ⟨quotient.out' x * a, show quotient.mk' _ ∈ t,
by simp [h hx ha, hx]⟩,
left_inv := λ ⟨a, ha⟩, subtype.eq $ show _ * _ = a, by simp,
right_inv := λ ⟨⟨a, ha⟩, ⟨x, hx⟩⟩, show (_, _) = _, by simp [h hx ha] }
end quotient_group
/--
We use the class `has_coe_t` instead of `has_coe` if the first argument is a variable,
or if the second argument is a variable not occurring in the first.
Using `has_coe` would cause looping of type-class inference. See
<https://leanprover.zulipchat.com/#narrow/stream/113488-general/topic/remove.20all.20instances.20with.20variable.20domain>
-/
library_note "use has_coe_t"
|