Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 8,896 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
/-
Copyright (c) 2021 Jordan Brown, Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jordan Brown, Thomas Browning, Patrick Lutz
-/

import data.bracket
import group_theory.subgroup.basic
import tactic.group

/-!
# Commutators of Subgroups

If `G` is a group and `H₁ Hβ‚‚ : subgroup G` then the commutator `⁅H₁, H₂⁆ : subgroup G`
is the subgroup of `G` generated by the commutators `h₁ * hβ‚‚ * h₁⁻¹ * h₂⁻¹`.

## Main definitions

* `⁅g₁, g₂⁆` : the commutator of the elements `g₁` and `gβ‚‚`
    (defined by `commutator_element` elsewhere).
* `⁅H₁, H₂⁆` : the commutator of the subgroups `H₁` and `Hβ‚‚`.
-/

variables {G G' F : Type*} [group G] [group G'] [monoid_hom_class F G G'] (f : F) {g₁ gβ‚‚ g₃ g : G}

lemma commutator_element_eq_one_iff_mul_comm : ⁅g₁, g₂⁆ = 1 ↔ g₁ * gβ‚‚ = gβ‚‚ * g₁ :=
by rw [commutator_element_def, mul_inv_eq_one, mul_inv_eq_iff_eq_mul]

lemma commutator_element_eq_one_iff_commute : ⁅g₁, g₂⁆ = 1 ↔ commute g₁ gβ‚‚ :=
commutator_element_eq_one_iff_mul_comm

lemma commute.commutator_eq (h : commute g₁ gβ‚‚) : ⁅g₁, g₂⁆ = 1 :=
commutator_element_eq_one_iff_commute.mpr h

variables (g₁ gβ‚‚ g₃ g)

@[simp] lemma commutator_element_one_right : ⁅g, (1 : G)⁆ = 1 :=
(commute.one_right g).commutator_eq

@[simp] lemma commutator_element_one_left : ⁅(1 : G), g⁆ = 1 :=
(commute.one_left g).commutator_eq

@[simp] lemma commutator_element_inv : ⁅g₁, g₂⁆⁻¹ = ⁅gβ‚‚, g₁⁆ :=
by simp_rw [commutator_element_def, mul_inv_rev, inv_inv, mul_assoc]

lemma map_commutator_element : (f ⁅g₁, g₂⁆ : G') = ⁅f g₁, f g₂⁆ :=
by simp_rw [commutator_element_def, map_mul f, map_inv f]

lemma conjugate_commutator_element : g₃ * ⁅g₁, g₂⁆ * g₃⁻¹ = ⁅g₃ * g₁ * g₃⁻¹, g₃ * gβ‚‚ * g₃⁻¹⁆ :=
map_commutator_element (mul_aut.conj g₃).to_monoid_hom g₁ gβ‚‚

namespace subgroup

/-- The commutator of two subgroups `H₁` and `Hβ‚‚`. -/
instance commutator : has_bracket (subgroup G) (subgroup G) :=
⟨λ H₁ Hβ‚‚, closure {g | βˆƒ (g₁ ∈ H₁) (gβ‚‚ ∈ Hβ‚‚), ⁅g₁, g₂⁆ = g}⟩

lemma commutator_def (H₁ Hβ‚‚ : subgroup G) :
  ⁅H₁, H₂⁆ = closure {g | βˆƒ (g₁ ∈ H₁) (gβ‚‚ ∈ Hβ‚‚), ⁅g₁, g₂⁆ = g} := rfl

variables {g₁ gβ‚‚ g₃} {H₁ Hβ‚‚ H₃ K₁ Kβ‚‚ : subgroup G}

lemma commutator_mem_commutator (h₁ : g₁ ∈ H₁) (hβ‚‚ : gβ‚‚ ∈ Hβ‚‚) : ⁅g₁, g₂⁆ ∈ ⁅H₁, H₂⁆ :=
subset_closure ⟨g₁, h₁, gβ‚‚, hβ‚‚, rfl⟩

lemma commutator_le : ⁅H₁, H₂⁆ ≀ H₃ ↔ βˆ€ (g₁ ∈ H₁) (gβ‚‚ ∈ Hβ‚‚), ⁅g₁, g₂⁆ ∈ H₃ :=
H₃.closure_le.trans ⟨λ h a b c d, h ⟨a, b, c, d, rfl⟩, Ξ» h g ⟨a, b, c, d, h_eq⟩, h_eq β–Έ h a b c d⟩

lemma commutator_mono (h₁ : H₁ ≀ K₁) (hβ‚‚ : Hβ‚‚ ≀ Kβ‚‚) : ⁅H₁, H₂⁆ ≀ ⁅K₁, K₂⁆ :=
commutator_le.mpr (Ξ» g₁ hg₁ gβ‚‚ hgβ‚‚, commutator_mem_commutator (h₁ hg₁) (hβ‚‚ hgβ‚‚))

lemma commutator_eq_bot_iff_le_centralizer : ⁅H₁, H₂⁆ = βŠ₯ ↔ H₁ ≀ Hβ‚‚.centralizer :=
begin
  rw [eq_bot_iff, commutator_le],
  refine forall_congr (Ξ» p, forall_congr (Ξ» hp, forall_congr (Ξ» q, forall_congr (Ξ» hq, _)))),
  rw [mem_bot, commutator_element_eq_one_iff_mul_comm, eq_comm],
end

/-- **The Three Subgroups Lemma** (via the Hall-Witt identity) -/
lemma commutator_commutator_eq_bot_of_rotate
  (h1 : ⁅⁅Hβ‚‚, H₃⁆, H₁⁆ = βŠ₯) (h2 : ⁅⁅H₃, H₁⁆, H₂⁆ = βŠ₯) : ⁅⁅H₁, H₂⁆, H₃⁆ = βŠ₯ :=
begin
  simp_rw [commutator_eq_bot_iff_le_centralizer, commutator_le,
    mem_centralizer_iff_commutator_eq_one, ←commutator_element_def] at h1 h2 ⊒,
  intros x hx y hy z hz,
  transitivity x * z * ⁅y, ⁅z⁻¹, x⁻¹⁆⁆⁻¹ * z⁻¹ * y * ⁅x⁻¹, ⁅y⁻¹, z⁆⁆⁻¹ * y⁻¹ * x⁻¹,
  { group },
  { rw [h1 _ (Hβ‚‚.inv_mem hy) _ hz _ (H₁.inv_mem hx), h2 _ (H₃.inv_mem hz) _ (H₁.inv_mem hx) _ hy],
    group },
end

variables (H₁ Hβ‚‚)

lemma commutator_comm_le : ⁅H₁, H₂⁆ ≀ ⁅Hβ‚‚, H₁⁆ :=
commutator_le.mpr (Ξ» g₁ h₁ gβ‚‚ hβ‚‚,
  commutator_element_inv gβ‚‚ g₁ β–Έ ⁅Hβ‚‚, H₁⁆.inv_mem_iff.mpr (commutator_mem_commutator hβ‚‚ h₁))

lemma commutator_comm : ⁅H₁, H₂⁆ = ⁅Hβ‚‚, H₁⁆ :=
le_antisymm (commutator_comm_le H₁ Hβ‚‚) (commutator_comm_le Hβ‚‚ H₁)

section normal

instance commutator_normal [h₁ : H₁.normal] [hβ‚‚ : Hβ‚‚.normal] : normal ⁅H₁, H₂⁆ :=
begin
  let base : set G := {x | βˆƒ (g₁ ∈ H₁) (gβ‚‚ ∈ Hβ‚‚), ⁅g₁, g₂⁆ = x},
  change (closure base).normal,
  suffices h_base : base = group.conjugates_of_set base,
  { rw h_base,
    exact subgroup.normal_closure_normal },
  refine set.subset.antisymm group.subset_conjugates_of_set (Ξ» a h, _),
  simp_rw [group.mem_conjugates_of_set_iff, is_conj_iff] at h,
  rcases h with ⟨b, ⟨c, hc, e, he, rfl⟩, d, rfl⟩,
  exact ⟨_, h₁.conj_mem c hc d, _, hβ‚‚.conj_mem e he d, (conjugate_commutator_element c e d).symm⟩,
end

lemma commutator_def' [H₁.normal] [Hβ‚‚.normal] :
  ⁅H₁, H₂⁆ = normal_closure {g | βˆƒ (g₁ ∈ H₁) (gβ‚‚ ∈ Hβ‚‚), ⁅g₁, g₂⁆ = g} :=
le_antisymm closure_le_normal_closure (normal_closure_le_normal subset_closure)

lemma commutator_le_right [h : Hβ‚‚.normal] : ⁅H₁, H₂⁆ ≀ Hβ‚‚ :=
commutator_le.mpr (Ξ» g₁ h₁ gβ‚‚ hβ‚‚, Hβ‚‚.mul_mem (h.conj_mem gβ‚‚ hβ‚‚ g₁) (Hβ‚‚.inv_mem hβ‚‚))

lemma commutator_le_left [H₁.normal] : ⁅H₁, H₂⁆ ≀ H₁ :=
commutator_comm Hβ‚‚ H₁ β–Έ commutator_le_right Hβ‚‚ H₁

@[simp] lemma commutator_bot_left : ⁅(βŠ₯ : subgroup G), H₁⁆ = βŠ₯ :=
le_bot_iff.mp (commutator_le_left βŠ₯ H₁)

@[simp] lemma commutator_bot_right : ⁅H₁, βŠ₯⁆ = (βŠ₯ : subgroup G) :=
le_bot_iff.mp (commutator_le_right H₁ βŠ₯)

lemma commutator_le_inf [normal H₁] [normal Hβ‚‚] : ⁅H₁, H₂⁆ ≀ H₁ βŠ“ Hβ‚‚ :=
le_inf (commutator_le_left H₁ Hβ‚‚) (commutator_le_right H₁ Hβ‚‚)

end normal

lemma map_commutator (f : G β†’* G') : map f ⁅H₁, H₂⁆ = ⁅map f H₁, map f H₂⁆ :=
begin
  simp_rw [le_antisymm_iff, map_le_iff_le_comap, commutator_le, mem_comap, map_commutator_element],
  split,
  { intros p hp q hq,
    exact commutator_mem_commutator (mem_map_of_mem _ hp) (mem_map_of_mem _ hq), },
  { rintros _ ⟨p, hp, rfl⟩ _ ⟨q, hq, rfl⟩,
    rw ← map_commutator_element,
    exact mem_map_of_mem _ (commutator_mem_commutator hp hq) }
end

variables {H₁ Hβ‚‚}

lemma commutator_le_map_commutator {f : G β†’* G'} {K₁ Kβ‚‚ : subgroup G'}
  (h₁ : K₁ ≀ H₁.map f) (hβ‚‚ : Kβ‚‚ ≀ Hβ‚‚.map f) : ⁅K₁, K₂⁆ ≀ ⁅H₁, H₂⁆.map f :=
(commutator_mono h₁ hβ‚‚).trans (ge_of_eq (map_commutator H₁ Hβ‚‚ f))

variables (H₁ Hβ‚‚)

instance commutator_characteristic [h₁ : characteristic H₁] [hβ‚‚ : characteristic Hβ‚‚] :
  characteristic ⁅H₁, H₂⁆ :=
characteristic_iff_le_map.mpr (Ξ» Ο•, commutator_le_map_commutator
  (characteristic_iff_le_map.mp h₁ Ο•) (characteristic_iff_le_map.mp hβ‚‚ Ο•))

lemma commutator_prod_prod (K₁ Kβ‚‚ : subgroup G') :
  ⁅H₁.prod K₁, Hβ‚‚.prod K₂⁆ = ⁅H₁, H₂⁆.prod ⁅K₁, K₂⁆ :=
begin
  apply le_antisymm,
  { rw commutator_le,
    rintros ⟨p₁, pβ‚‚βŸ© ⟨hp₁, hpβ‚‚βŸ© ⟨q₁, qβ‚‚βŸ© ⟨hq₁, hqβ‚‚βŸ©,
    exact ⟨commutator_mem_commutator hp₁ hq₁, commutator_mem_commutator hpβ‚‚ hqβ‚‚βŸ© },
  { rw prod_le_iff, split;
    { rw map_commutator,
      apply commutator_mono;
      simp [le_prod_iff, map_map, monoid_hom.fst_comp_inl, monoid_hom.snd_comp_inl,
        monoid_hom.fst_comp_inr, monoid_hom.snd_comp_inr ], }, }
end

/-- The commutator of direct product is contained in the direct product of the commutators.

See `commutator_pi_pi_of_fintype` for equality given `fintype Ξ·`.
-/
lemma commutator_pi_pi_le {Ξ· : Type*} {Gs : Ξ· β†’ Type*} [βˆ€ i, group (Gs i)]
  (H K : Ξ  i, subgroup (Gs i)) :
  ⁅subgroup.pi set.univ H, subgroup.pi set.univ K⁆ ≀ subgroup.pi set.univ (Ξ» i, ⁅H i, K i⁆) :=
commutator_le.mpr $ Ξ» p hp q hq i hi, commutator_mem_commutator (hp i hi) (hq i hi)

/-- The commutator of a finite direct product is contained in the direct product of the commutators.
-/
lemma commutator_pi_pi_of_fintype {Ξ· : Type*} [fintype Ξ·] {Gs : Ξ· β†’ Type*}
  [βˆ€ i, group (Gs i)] (H K : Ξ  i, subgroup (Gs i)) :
  ⁅subgroup.pi set.univ H, subgroup.pi set.univ K⁆ = subgroup.pi set.univ (Ξ» i, ⁅H i, K i⁆) :=
begin
  classical,
  apply le_antisymm (commutator_pi_pi_le H K),
  { rw pi_le_iff, intros i hi,
    rw map_commutator,
    apply commutator_mono;
    { rw le_pi_iff,
      intros j hj,
      rintros _ ⟨_, ⟨x, hx, rfl⟩, rfl⟩,
      by_cases h : j = i,
      { subst h, simpa using hx, },
      { simp [h, one_mem] }, }, },
end

end subgroup