Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 8,896 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
/-
Copyright (c) 2021 Jordan Brown, Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jordan Brown, Thomas Browning, Patrick Lutz
-/
import data.bracket
import group_theory.subgroup.basic
import tactic.group
/-!
# Commutators of Subgroups
If `G` is a group and `Hβ Hβ : subgroup G` then the commutator `β
Hβ, Hββ : subgroup G`
is the subgroup of `G` generated by the commutators `hβ * hβ * hββ»ΒΉ * hββ»ΒΉ`.
## Main definitions
* `β
gβ, gββ` : the commutator of the elements `gβ` and `gβ`
(defined by `commutator_element` elsewhere).
* `β
Hβ, Hββ` : the commutator of the subgroups `Hβ` and `Hβ`.
-/
variables {G G' F : Type*} [group G] [group G'] [monoid_hom_class F G G'] (f : F) {gβ gβ gβ g : G}
lemma commutator_element_eq_one_iff_mul_comm : β
gβ, gββ = 1 β gβ * gβ = gβ * gβ :=
by rw [commutator_element_def, mul_inv_eq_one, mul_inv_eq_iff_eq_mul]
lemma commutator_element_eq_one_iff_commute : β
gβ, gββ = 1 β commute gβ gβ :=
commutator_element_eq_one_iff_mul_comm
lemma commute.commutator_eq (h : commute gβ gβ) : β
gβ, gββ = 1 :=
commutator_element_eq_one_iff_commute.mpr h
variables (gβ gβ gβ g)
@[simp] lemma commutator_element_one_right : β
g, (1 : G)β = 1 :=
(commute.one_right g).commutator_eq
@[simp] lemma commutator_element_one_left : β
(1 : G), gβ = 1 :=
(commute.one_left g).commutator_eq
@[simp] lemma commutator_element_inv : β
gβ, gβββ»ΒΉ = β
gβ, gββ :=
by simp_rw [commutator_element_def, mul_inv_rev, inv_inv, mul_assoc]
lemma map_commutator_element : (f β
gβ, gββ : G') = β
f gβ, f gββ :=
by simp_rw [commutator_element_def, map_mul f, map_inv f]
lemma conjugate_commutator_element : gβ * β
gβ, gββ * gββ»ΒΉ = β
gβ * gβ * gββ»ΒΉ, gβ * gβ * gββ»ΒΉβ :=
map_commutator_element (mul_aut.conj gβ).to_monoid_hom gβ gβ
namespace subgroup
/-- The commutator of two subgroups `Hβ` and `Hβ`. -/
instance commutator : has_bracket (subgroup G) (subgroup G) :=
β¨Ξ» Hβ Hβ, closure {g | β (gβ β Hβ) (gβ β Hβ), β
gβ, gββ = g}β©
lemma commutator_def (Hβ Hβ : subgroup G) :
β
Hβ, Hββ = closure {g | β (gβ β Hβ) (gβ β Hβ), β
gβ, gββ = g} := rfl
variables {gβ gβ gβ} {Hβ Hβ Hβ Kβ Kβ : subgroup G}
lemma commutator_mem_commutator (hβ : gβ β Hβ) (hβ : gβ β Hβ) : β
gβ, gββ β β
Hβ, Hββ :=
subset_closure β¨gβ, hβ, gβ, hβ, rflβ©
lemma commutator_le : β
Hβ, Hββ β€ Hβ β β (gβ β Hβ) (gβ β Hβ), β
gβ, gββ β Hβ :=
Hβ.closure_le.trans β¨Ξ» h a b c d, h β¨a, b, c, d, rflβ©, Ξ» h g β¨a, b, c, d, h_eqβ©, h_eq βΈ h a b c dβ©
lemma commutator_mono (hβ : Hβ β€ Kβ) (hβ : Hβ β€ Kβ) : β
Hβ, Hββ β€ β
Kβ, Kββ :=
commutator_le.mpr (Ξ» gβ hgβ gβ hgβ, commutator_mem_commutator (hβ hgβ) (hβ hgβ))
lemma commutator_eq_bot_iff_le_centralizer : β
Hβ, Hββ = β₯ β Hβ β€ Hβ.centralizer :=
begin
rw [eq_bot_iff, commutator_le],
refine forall_congr (Ξ» p, forall_congr (Ξ» hp, forall_congr (Ξ» q, forall_congr (Ξ» hq, _)))),
rw [mem_bot, commutator_element_eq_one_iff_mul_comm, eq_comm],
end
/-- **The Three Subgroups Lemma** (via the Hall-Witt identity) -/
lemma commutator_commutator_eq_bot_of_rotate
(h1 : β
β
Hβ, Hββ, Hββ = β₯) (h2 : β
β
Hβ, Hββ, Hββ = β₯) : β
β
Hβ, Hββ, Hββ = β₯ :=
begin
simp_rw [commutator_eq_bot_iff_le_centralizer, commutator_le,
mem_centralizer_iff_commutator_eq_one, βcommutator_element_def] at h1 h2 β’,
intros x hx y hy z hz,
transitivity x * z * β
y, β
zβ»ΒΉ, xβ»ΒΉβββ»ΒΉ * zβ»ΒΉ * y * β
xβ»ΒΉ, β
yβ»ΒΉ, zβββ»ΒΉ * yβ»ΒΉ * xβ»ΒΉ,
{ group },
{ rw [h1 _ (Hβ.inv_mem hy) _ hz _ (Hβ.inv_mem hx), h2 _ (Hβ.inv_mem hz) _ (Hβ.inv_mem hx) _ hy],
group },
end
variables (Hβ Hβ)
lemma commutator_comm_le : β
Hβ, Hββ β€ β
Hβ, Hββ :=
commutator_le.mpr (Ξ» gβ hβ gβ hβ,
commutator_element_inv gβ gβ βΈ β
Hβ, Hββ.inv_mem_iff.mpr (commutator_mem_commutator hβ hβ))
lemma commutator_comm : β
Hβ, Hββ = β
Hβ, Hββ :=
le_antisymm (commutator_comm_le Hβ Hβ) (commutator_comm_le Hβ Hβ)
section normal
instance commutator_normal [hβ : Hβ.normal] [hβ : Hβ.normal] : normal β
Hβ, Hββ :=
begin
let base : set G := {x | β (gβ β Hβ) (gβ β Hβ), β
gβ, gββ = x},
change (closure base).normal,
suffices h_base : base = group.conjugates_of_set base,
{ rw h_base,
exact subgroup.normal_closure_normal },
refine set.subset.antisymm group.subset_conjugates_of_set (Ξ» a h, _),
simp_rw [group.mem_conjugates_of_set_iff, is_conj_iff] at h,
rcases h with β¨b, β¨c, hc, e, he, rflβ©, d, rflβ©,
exact β¨_, hβ.conj_mem c hc d, _, hβ.conj_mem e he d, (conjugate_commutator_element c e d).symmβ©,
end
lemma commutator_def' [Hβ.normal] [Hβ.normal] :
β
Hβ, Hββ = normal_closure {g | β (gβ β Hβ) (gβ β Hβ), β
gβ, gββ = g} :=
le_antisymm closure_le_normal_closure (normal_closure_le_normal subset_closure)
lemma commutator_le_right [h : Hβ.normal] : β
Hβ, Hββ β€ Hβ :=
commutator_le.mpr (Ξ» gβ hβ gβ hβ, Hβ.mul_mem (h.conj_mem gβ hβ gβ) (Hβ.inv_mem hβ))
lemma commutator_le_left [Hβ.normal] : β
Hβ, Hββ β€ Hβ :=
commutator_comm Hβ Hβ βΈ commutator_le_right Hβ Hβ
@[simp] lemma commutator_bot_left : β
(β₯ : subgroup G), Hββ = β₯ :=
le_bot_iff.mp (commutator_le_left β₯ Hβ)
@[simp] lemma commutator_bot_right : β
Hβ, β₯β = (β₯ : subgroup G) :=
le_bot_iff.mp (commutator_le_right Hβ β₯)
lemma commutator_le_inf [normal Hβ] [normal Hβ] : β
Hβ, Hββ β€ Hβ β Hβ :=
le_inf (commutator_le_left Hβ Hβ) (commutator_le_right Hβ Hβ)
end normal
lemma map_commutator (f : G β* G') : map f β
Hβ, Hββ = β
map f Hβ, map f Hββ :=
begin
simp_rw [le_antisymm_iff, map_le_iff_le_comap, commutator_le, mem_comap, map_commutator_element],
split,
{ intros p hp q hq,
exact commutator_mem_commutator (mem_map_of_mem _ hp) (mem_map_of_mem _ hq), },
{ rintros _ β¨p, hp, rflβ© _ β¨q, hq, rflβ©,
rw β map_commutator_element,
exact mem_map_of_mem _ (commutator_mem_commutator hp hq) }
end
variables {Hβ Hβ}
lemma commutator_le_map_commutator {f : G β* G'} {Kβ Kβ : subgroup G'}
(hβ : Kβ β€ Hβ.map f) (hβ : Kβ β€ Hβ.map f) : β
Kβ, Kββ β€ β
Hβ, Hββ.map f :=
(commutator_mono hβ hβ).trans (ge_of_eq (map_commutator Hβ Hβ f))
variables (Hβ Hβ)
instance commutator_characteristic [hβ : characteristic Hβ] [hβ : characteristic Hβ] :
characteristic β
Hβ, Hββ :=
characteristic_iff_le_map.mpr (Ξ» Ο, commutator_le_map_commutator
(characteristic_iff_le_map.mp hβ Ο) (characteristic_iff_le_map.mp hβ Ο))
lemma commutator_prod_prod (Kβ Kβ : subgroup G') :
β
Hβ.prod Kβ, Hβ.prod Kββ = β
Hβ, Hββ.prod β
Kβ, Kββ :=
begin
apply le_antisymm,
{ rw commutator_le,
rintros β¨pβ, pββ© β¨hpβ, hpββ© β¨qβ, qββ© β¨hqβ, hqββ©,
exact β¨commutator_mem_commutator hpβ hqβ, commutator_mem_commutator hpβ hqββ© },
{ rw prod_le_iff, split;
{ rw map_commutator,
apply commutator_mono;
simp [le_prod_iff, map_map, monoid_hom.fst_comp_inl, monoid_hom.snd_comp_inl,
monoid_hom.fst_comp_inr, monoid_hom.snd_comp_inr ], }, }
end
/-- The commutator of direct product is contained in the direct product of the commutators.
See `commutator_pi_pi_of_fintype` for equality given `fintype Ξ·`.
-/
lemma commutator_pi_pi_le {Ξ· : Type*} {Gs : Ξ· β Type*} [β i, group (Gs i)]
(H K : Ξ i, subgroup (Gs i)) :
β
subgroup.pi set.univ H, subgroup.pi set.univ Kβ β€ subgroup.pi set.univ (Ξ» i, β
H i, K iβ) :=
commutator_le.mpr $ Ξ» p hp q hq i hi, commutator_mem_commutator (hp i hi) (hq i hi)
/-- The commutator of a finite direct product is contained in the direct product of the commutators.
-/
lemma commutator_pi_pi_of_fintype {Ξ· : Type*} [fintype Ξ·] {Gs : Ξ· β Type*}
[β i, group (Gs i)] (H K : Ξ i, subgroup (Gs i)) :
β
subgroup.pi set.univ H, subgroup.pi set.univ Kβ = subgroup.pi set.univ (Ξ» i, β
H i, K iβ) :=
begin
classical,
apply le_antisymm (commutator_pi_pi_le H K),
{ rw pi_le_iff, intros i hi,
rw map_commutator,
apply commutator_mono;
{ rw le_pi_iff,
intros j hj,
rintros _ β¨_, β¨x, hx, rflβ©, rflβ©,
by_cases h : j = i,
{ subst h, simpa using hx, },
{ simp [h, one_mem] }, }, },
end
end subgroup
|