Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 5,169 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
/-
Copyright (c) 2021 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin, Scott Morrison, Adam Topaz
-/
import algebraic_topology.simplicial_object
import algebraic_topology.topological_simplex
import category_theory.limits.presheaf
import category_theory.limits.types
import category_theory.yoneda
import topology.category.Top.limits

/-!
A simplicial set is just a simplicial object in `Type`,
i.e. a `Type`-valued presheaf on the simplex category.

(One might be tempted to call these "simplicial types" when working in type-theoretic foundations,
but this would be unnecessarily confusing given the existing notion of a simplicial type in
homotopy type theory.)

We define the standard simplices `Δ[n]` as simplicial sets,
and their boundaries `∂Δ[n]` and horns `Λ[n, i]`.
(The notations are available via `open_locale simplicial`.)

## Future work

There isn't yet a complete API for simplices, boundaries, and horns.
As an example, we should have a function that constructs
from a non-surjective order preserving function `fin n → fin n`
a morphism `Δ[n] ⟶ ∂Δ[n]`.
-/

universes v u

open category_theory

open_locale simplicial

/-- The category of simplicial sets.
This is the category of contravariant functors from
`simplex_category` to `Type u`. -/
@[derive [large_category, limits.has_limits, limits.has_colimits]]
def sSet : Type (u+1) := simplicial_object (Type u)

namespace sSet

/-- The `n`-th standard simplex `Δ[n]` associated with a nonempty finite linear order `n`
is the Yoneda embedding of `n`. -/
def standard_simplex : simplex_category ⥤ sSet := yoneda

localized "notation `Δ[`n`]` := sSet.standard_simplex.obj (simplex_category.mk n)" in simplicial

instance : inhabited sSet := ⟨Δ[0]⟩

section

/-- The `m`-simplices of the `n`-th standard simplex are
the monotone maps from `fin (m+1)` to `fin (n+1)`. -/
def as_order_hom {n} {m} (α : Δ[n].obj m) :
  order_hom (fin (m.unop.len+1)) (fin (n+1)) := α.to_order_hom
end

/-- The boundary `∂Δ[n]` of the `n`-th standard simplex consists of
all `m`-simplices of `standard_simplex n` that are not surjective
(when viewed as monotone function `m → n`). -/
def boundary (n : ℕ) : sSet :=
{ obj := λ m, {α : Δ[n].obj m // ¬ function.surjective (as_order_hom α)},
  map := λ m₁ m₂ f α, ⟨f.unop ≫ (α : Δ[n].obj m₁),
  by { intro h, apply α.property, exact function.surjective.of_comp h }⟩ }

localized "notation `∂Δ[`n`]` := sSet.boundary n" in simplicial

/-- The inclusion of the boundary of the `n`-th standard simplex into that standard simplex. -/
def boundary_inclusion (n : ℕ) :
  ∂Δ[n] ⟶ Δ[n] :=
{ app := λ m (α : {α : Δ[n].obj m // _}), α }

/-- `horn n i` (or `Λ[n, i]`) is the `i`-th horn of the `n`-th standard simplex, where `i : n`.
It consists of all `m`-simplices `α` of `Δ[n]`
for which the union of `{i}` and the range of `α` is not all of `n`
(when viewing `α` as monotone function `m → n`). -/
def horn (n : ℕ) (i : fin (n+1)) : sSet :=
{ obj := λ m,
  { α : Δ[n].obj m // set.range (as_order_hom α) ∪ {i} ≠ set.univ },
  map := λ m₁ m₂ f α, ⟨f.unop ≫ (α : Δ[n].obj m₁),
  begin
    intro h, apply α.property,
    rw set.eq_univ_iff_forall at h ⊢, intro j,
    apply or.imp _ id (h j),
    intro hj,
    exact set.range_comp_subset_range _ _ hj,
  end⟩ }

localized "notation `Λ[`n`, `i`]` := sSet.horn (n : ℕ) i" in simplicial

/-- The inclusion of the `i`-th horn of the `n`-th standard simplex into that standard simplex. -/
def horn_inclusion (n : ℕ) (i : fin (n+1)) :
  Λ[n, i] ⟶ Δ[n] :=
{ app := λ m (α : {α : Δ[n].obj m // _}), α }

section examples

open_locale simplicial

/-- The simplicial circle. -/
noncomputable def S1 : sSet :=
limits.colimit $ limits.parallel_pair
  ((standard_simplex.map $ simplex_category.δ 0) : Δ[0] ⟶ Δ[1])
  (standard_simplex.map $ simplex_category.δ 1)

end examples

/-- Truncated simplicial sets. -/
@[derive [large_category, limits.has_limits, limits.has_colimits]]
def truncated (n : ℕ) := simplicial_object.truncated (Type u) n

/-- The skeleton functor on simplicial sets. -/
def sk (n : ℕ) : sSet ⥤ sSet.truncated n := simplicial_object.sk n

instance {n} : inhabited (sSet.truncated n) := ⟨(sk n).obj $ Δ[0]⟩

end sSet

/-- The functor associating the singular simplicial set to a topological space. -/
noncomputable def Top.to_sSet : Top ⥤ sSet :=
colimit_adj.restricted_yoneda simplex_category.to_Top

/-- The geometric realization functor. -/
noncomputable def sSet.to_Top : sSet ⥤ Top :=
colimit_adj.extend_along_yoneda simplex_category.to_Top

/-- Geometric realization is left adjoint to the singular simplicial set construction. -/
noncomputable def sSet_Top_adj : sSet.to_Top ⊣ Top.to_sSet :=
colimit_adj.yoneda_adjunction _

/-- The geometric realization of the representable simplicial sets agree
  with the usual topological simplices. -/
noncomputable def sSet.to_Top_simplex :
  (yoneda : simplex_category ⥤ _) ⋙ sSet.to_Top ≅ simplex_category.to_Top :=
colimit_adj.is_extension_along_yoneda _