Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 12,664 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
/-
Copyright (c) 2021 Shing Tak Lam. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Shing Tak Lam
-/
import category_theory.category.Groupoid
import category_theory.groupoid
import topology.category.Top.basic
import topology.homotopy.path
/-!
# Fundamental groupoid of a space
Given a topological space `X`, we can define the fundamental groupoid of `X` to be the category with
objects being points of `X`, and morphisms `x ⟶ y` being paths from `x` to `y`, quotiented by
homotopy equivalence. With this, the fundamental group of `X` based at `x` is just the automorphism
group of `x`.
-/
universes u v
variables {X : Type u} {Y : Type v} [topological_space X] [topological_space Y]
variables {x₀ x₁ : X}
noncomputable theory
open_locale unit_interval
namespace path
namespace homotopy
section
/-- Auxilliary function for `refl_trans_symm` -/
def refl_trans_symm_aux (x : I × I) : ℝ :=
if (x.2 : ℝ) ≤ 1/2 then
x.1 * 2 * x.2
else
x.1 * (2 - 2 * x.2)
@[continuity]
lemma continuous_refl_trans_symm_aux : continuous refl_trans_symm_aux :=
begin
refine continuous_if_le _ _ (continuous.continuous_on _) (continuous.continuous_on _) _,
{ continuity },
{ continuity },
{ continuity },
{ continuity },
intros x hx,
norm_num [hx, mul_assoc],
end
lemma refl_trans_symm_aux_mem_I (x : I × I) : refl_trans_symm_aux x ∈ I :=
begin
dsimp only [refl_trans_symm_aux],
split_ifs,
{ split,
{ apply mul_nonneg,
{ apply mul_nonneg,
{ unit_interval },
{ norm_num } },
{ unit_interval } },
{ rw [mul_assoc],
apply mul_le_one,
{ unit_interval },
{ apply mul_nonneg,
{ norm_num },
{ unit_interval } },
{ linarith } } },
{ split,
{ apply mul_nonneg,
{ unit_interval },
linarith [unit_interval.nonneg x.2, unit_interval.le_one x.2] },
{ apply mul_le_one,
{ unit_interval },
{ linarith [unit_interval.nonneg x.2, unit_interval.le_one x.2] },
{ linarith [unit_interval.nonneg x.2, unit_interval.le_one x.2] } } }
end
/-- For any path `p` from `x₀` to `x₁`, we have a homotopy from the constant path based at `x₀` to
`p.trans p.symm`. -/
def refl_trans_symm (p : path x₀ x₁) : homotopy (path.refl x₀) (p.trans p.symm) :=
{ to_fun := λ x, p ⟨refl_trans_symm_aux x, refl_trans_symm_aux_mem_I x⟩,
continuous_to_fun := by continuity,
map_zero_left' := by norm_num [refl_trans_symm_aux],
map_one_left' := λ x, begin
dsimp only [refl_trans_symm_aux, path.coe_to_continuous_map, path.trans],
change _ = ite _ _ _,
split_ifs,
{ rw [path.extend, set.Icc_extend_of_mem],
{ norm_num },
{ rw unit_interval.mul_pos_mem_iff zero_lt_two,
exact ⟨unit_interval.nonneg x, h⟩ } },
{ rw [path.symm, path.extend, set.Icc_extend_of_mem],
{ congr' 1,
ext,
norm_num [sub_sub_eq_add_sub] },
{ rw unit_interval.two_mul_sub_one_mem_iff,
exact ⟨(not_le.1 h).le, unit_interval.le_one x⟩ } }
end,
prop' := λ t x hx, begin
cases hx,
{ rw hx, simp [refl_trans_symm_aux] },
{ rw set.mem_singleton_iff at hx,
rw hx,
norm_num [refl_trans_symm_aux] }
end }
/-- For any path `p` from `x₀` to `x₁`, we have a homotopy from the constant path based at `x₁` to
`p.symm.trans p`. -/
def refl_symm_trans (p : path x₀ x₁) : homotopy (path.refl x₁) (p.symm.trans p) :=
(refl_trans_symm p.symm).cast rfl $ congr_arg _ path.symm_symm
end
section trans_refl
/-- Auxilliary function for `trans_refl_reparam` -/
def trans_refl_reparam_aux (t : I) : ℝ :=
if (t : ℝ) ≤ 1/2 then
2 * t
else
1
@[continuity]
lemma continuous_trans_refl_reparam_aux : continuous trans_refl_reparam_aux :=
begin
refine continuous_if_le _ _ (continuous.continuous_on _) (continuous.continuous_on _) _;
[continuity, continuity, continuity, continuity, skip],
intros x hx,
norm_num [hx]
end
lemma trans_refl_reparam_aux_mem_I (t : I) : trans_refl_reparam_aux t ∈ I :=
begin
unfold trans_refl_reparam_aux,
split_ifs; split; linarith [unit_interval.le_one t, unit_interval.nonneg t]
end
lemma trans_refl_reparam_aux_zero : trans_refl_reparam_aux 0 = 0 :=
by norm_num [trans_refl_reparam_aux]
lemma trans_refl_reparam_aux_one : trans_refl_reparam_aux 1 = 1 :=
by norm_num [trans_refl_reparam_aux]
lemma trans_refl_reparam (p : path x₀ x₁) : p.trans (path.refl x₁) =
p.reparam (λ t, ⟨trans_refl_reparam_aux t, trans_refl_reparam_aux_mem_I t⟩) (by continuity)
(subtype.ext trans_refl_reparam_aux_zero) (subtype.ext trans_refl_reparam_aux_one) :=
begin
ext,
unfold trans_refl_reparam_aux,
simp only [path.trans_apply, not_le, coe_to_fun, function.comp_app],
split_ifs,
{ refl },
{ simp }
end
/--
For any path `p` from `x₀` to `x₁`, we have a homotopy from `p.trans (path.refl x₁)` to `p`.
-/
def trans_refl (p : path x₀ x₁) : homotopy (p.trans (path.refl x₁)) p :=
((homotopy.reparam p (λ t, ⟨trans_refl_reparam_aux t, trans_refl_reparam_aux_mem_I t⟩)
(by continuity) (subtype.ext trans_refl_reparam_aux_zero)
(subtype.ext trans_refl_reparam_aux_one)).cast rfl (trans_refl_reparam p).symm).symm
/--
For any path `p` from `x₀` to `x₁`, we have a homotopy from `(path.refl x₀).trans p` to `p`.
-/
def refl_trans (p : path x₀ x₁) : homotopy ((path.refl x₀).trans p) p :=
(trans_refl p.symm).symm₂.cast (by simp) (by simp)
end trans_refl
section assoc
/-- Auxilliary function for `trans_assoc_reparam`. -/
def trans_assoc_reparam_aux (t : I) : ℝ :=
if (t : ℝ) ≤ 1/4 then
2 * t
else if (t : ℝ) ≤ 1/2 then
t + 1/4
else
1/2 * (t + 1)
@[continuity]
lemma continuous_trans_assoc_reparam_aux : continuous trans_assoc_reparam_aux :=
begin
refine continuous_if_le _ _ (continuous.continuous_on _)
(continuous_if_le _ _ (continuous.continuous_on _)
(continuous.continuous_on _) _).continuous_on _;
[continuity, continuity, continuity, continuity, continuity, continuity, continuity,
skip, skip];
{ intros x hx,
norm_num [hx], }
end
lemma trans_assoc_reparam_aux_mem_I (t : I) : trans_assoc_reparam_aux t ∈ I :=
begin
unfold trans_assoc_reparam_aux,
split_ifs; split; linarith [unit_interval.le_one t, unit_interval.nonneg t]
end
lemma trans_assoc_reparam_aux_zero : trans_assoc_reparam_aux 0 = 0 :=
by norm_num [trans_assoc_reparam_aux]
lemma trans_assoc_reparam_aux_one : trans_assoc_reparam_aux 1 = 1 :=
by norm_num [trans_assoc_reparam_aux]
lemma trans_assoc_reparam {x₀ x₁ x₂ x₃ : X} (p : path x₀ x₁) (q : path x₁ x₂) (r : path x₂ x₃) :
(p.trans q).trans r = (p.trans (q.trans r)).reparam
(λ t, ⟨trans_assoc_reparam_aux t, trans_assoc_reparam_aux_mem_I t⟩)
(by continuity) (subtype.ext trans_assoc_reparam_aux_zero)
(subtype.ext trans_assoc_reparam_aux_one) :=
begin
ext,
simp only [trans_assoc_reparam_aux, path.trans_apply, mul_inv_cancel_left₀, not_le,
function.comp_app, ne.def, not_false_iff, bit0_eq_zero, one_ne_zero, mul_ite,
subtype.coe_mk, path.coe_to_fun],
-- TODO: why does split_ifs not reduce the ifs??????
split_ifs with h₁ h₂ h₃ h₄ h₅,
{ simp [h₂, h₃, -one_div] },
{ exfalso, linarith },
{ exfalso, linarith },
{ have h : ¬ (x : ℝ) + 1/4 ≤ 1/2, by linarith,
have h' : 2 * ((x : ℝ) + 1/4) - 1 ≤ 1/2, by linarith,
have h'' : 2 * (2 * (x : ℝ)) - 1 = 2 * (2 * (↑x + 1/4) - 1), by linarith,
simp only [h₄, h₁, h, h', h'',
dif_neg (show ¬ false, from id), dif_pos true.intro, if_false, if_true] },
{ exfalso,
linarith },
{ have h : ¬ (1 / 2 : ℝ) * (x + 1) ≤ 1/2, by linarith,
have h' : ¬ 2 * ((1 / 2 : ℝ) * (x + 1)) - 1 ≤ 1/2, by linarith,
simp only [h₁, h₅, h, h', if_false, dif_neg (show ¬ false, from id)],
congr, ring }
end
/--
For paths `p q r`, we have a homotopy from `(p.trans q).trans r` to `p.trans (q.trans r)`.
-/
def trans_assoc {x₀ x₁ x₂ x₃ : X} (p : path x₀ x₁) (q : path x₁ x₂) (r : path x₂ x₃) :
homotopy ((p.trans q).trans r) (p.trans (q.trans r)) :=
((homotopy.reparam (p.trans (q.trans r))
(λ t, ⟨trans_assoc_reparam_aux t, trans_assoc_reparam_aux_mem_I t⟩)
(by continuity) (subtype.ext trans_assoc_reparam_aux_zero)
(subtype.ext trans_assoc_reparam_aux_one)).cast rfl (trans_assoc_reparam p q r).symm).symm
end assoc
end homotopy
end path
/--
The fundamental groupoid of a space `X` is defined to be a type synonym for `X`, and we subsequently
put a `category_theory.groupoid` structure on it.
-/
def fundamental_groupoid (X : Type u) := X
namespace fundamental_groupoid
instance {X : Type u} [h : inhabited X] : inhabited (fundamental_groupoid X) := h
local attribute [reducible] fundamental_groupoid
local attribute [instance] path.homotopic.setoid
instance : category_theory.groupoid (fundamental_groupoid X) :=
{ hom := λ x y, path.homotopic.quotient x y,
id := λ x, ⟦path.refl x⟧,
comp := λ x y z, path.homotopic.quotient.comp,
id_comp' := λ x y f, quotient.induction_on f
(λ a, show ⟦(path.refl x).trans a⟧ = ⟦a⟧,
from quotient.sound ⟨path.homotopy.refl_trans a⟩ ),
comp_id' := λ x y f, quotient.induction_on f
(λ a, show ⟦a.trans (path.refl y)⟧ = ⟦a⟧,
from quotient.sound ⟨path.homotopy.trans_refl a⟩),
assoc' := λ w x y z f g h, quotient.induction_on₃ f g h
(λ p q r, show ⟦(p.trans q).trans r⟧ = ⟦p.trans (q.trans r)⟧,
from quotient.sound ⟨path.homotopy.trans_assoc p q r⟩),
inv := λ x y p, quotient.lift (λ l : path x y, ⟦l.symm⟧) begin
rintros a b ⟨h⟩,
rw quotient.eq,
exact ⟨h.symm₂⟩,
end p,
inv_comp' := λ x y f, quotient.induction_on f
(λ a, show ⟦a.symm.trans a⟧ = ⟦path.refl y⟧,
from quotient.sound ⟨(path.homotopy.refl_symm_trans a).symm⟩),
comp_inv' := λ x y f, quotient.induction_on f
(λ a, show ⟦a.trans a.symm⟧ = ⟦path.refl x⟧,
from quotient.sound ⟨(path.homotopy.refl_trans_symm a).symm⟩) }
lemma comp_eq (x y z : fundamental_groupoid X) (p : x ⟶ y) (q : y ⟶ z) : p ≫ q = p.comp q := rfl
lemma id_eq_path_refl (x : fundamental_groupoid X) : 𝟙 x = ⟦path.refl x⟧ := rfl
/--
The functor sending a topological space `X` to its fundamental groupoid.
-/
def fundamental_groupoid_functor : Top ⥤ category_theory.Groupoid :=
{ obj := λ X, { α := fundamental_groupoid X },
map := λ X Y f,
{ obj := f,
map := λ x y p, p.map_fn f,
map_id' := λ X, rfl,
map_comp' := λ x y z p q, quotient.induction_on₂ p q $ λ a b,
by simp [comp_eq, ← path.homotopic.map_lift, ← path.homotopic.comp_lift] },
map_id' := begin
intro X,
change _ = (⟨_, _, _, _⟩ : fundamental_groupoid X ⥤ fundamental_groupoid X),
congr',
ext x y p,
refine quotient.induction_on p (λ q, _),
rw [← path.homotopic.map_lift],
conv_rhs { rw [←q.map_id] },
refl,
end,
map_comp' := begin
intros X Y Z f g,
congr',
ext x y p,
refine quotient.induction_on p (λ q, _),
simp only [quotient.map_mk, path.map_map, quotient.eq],
refl,
end }
localized "notation `π` := fundamental_groupoid.fundamental_groupoid_functor"
in fundamental_groupoid
localized "notation `πₓ` := fundamental_groupoid.fundamental_groupoid_functor.obj"
in fundamental_groupoid
localized "notation `πₘ` := fundamental_groupoid.fundamental_groupoid_functor.map"
in fundamental_groupoid
lemma map_eq {X Y : Top} {x₀ x₁ : X} (f : C(X, Y)) (p : path.homotopic.quotient x₀ x₁) :
(πₘ f).map p = p.map_fn f := rfl
/-- Help the typechecker by converting a point in a groupoid back to a point in
the underlying topological space. -/
@[reducible]
def to_top {X : Top} (x : πₓ X) : X := x
/-- Help the typechecker by converting a point in a topological space to a
point in the fundamental groupoid of that space -/
@[reducible]
def from_top {X : Top} (x : X) : πₓ X := x
/-- Help the typechecker by converting an arrow in the fundamental groupoid of
a topological space back to a path in that space (i.e., `path.homotopic.quotient`). -/
@[reducible]
def to_path {X : Top} {x₀ x₁ : πₓ X} (p : x₀ ⟶ x₁) :
path.homotopic.quotient x₀ x₁ := p
/-- Help the typechecker by convering a path in a topological space to an arrow in the
fundamental groupoid of that space. -/
@[reducible]
def from_path {X : Top} {x₀ x₁ : X} (p : path.homotopic.quotient x₀ x₁) : (x₀ ⟶ x₁) := p
end fundamental_groupoid
|