Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 6,840 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
/-
Copyright (c) 2021 Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kevin Buzzard
-/
import algebra.module.basic
import linear_algebra.finsupp
import linear_algebra.free_module.basic
/-!
# Projective modules
This file contains a definition of a projective module, the proof that
our definition is equivalent to a lifting property, and the
proof that all free modules are projective.
## Main definitions
Let `R` be a ring (or a semiring) and let `M` be an `R`-module.
* `is_projective R M` : the proposition saying that `M` is a projective `R`-module.
## Main theorems
* `is_projective.lifting_property` : a map from a projective module can be lifted along
a surjection.
* `is_projective.of_lifting_property` : If for all R-module surjections `A ββ B`, all
maps `M ββ B` lift to `M ββ A`, then `M` is projective.
* `is_projective.of_free` : Free modules are projective
## Implementation notes
The actual definition of projective we use is that the natural R-module map
from the free R-module on the type M down to M splits. This is more convenient
than certain other definitions which involve quantifying over universes,
and also universe-polymorphic (the ring and module can be in different universes).
We require that the module sits in at least as high a universe as the ring:
without this, free modules don't even exist,
and it's unclear if projective modules are even a useful notion.
## References
https://en.wikipedia.org/wiki/Projective_module
## TODO
- Direct sum of two projective modules is projective.
- Arbitrary sum of projective modules is projective.
All of these should be relatively straightforward.
## Tags
projective module
-/
universes u v
/- The actual implementation we choose: `P` is projective if the natural surjection
from the free `R`-module on `P` to `P` splits. -/
/-- An R-module is projective if it is a direct summand of a free module, or equivalently
if maps from the module lift along surjections. There are several other equivalent
definitions. -/
class module.projective (R : Type u) [semiring R] (P : Type (max u v)) [add_comm_monoid P]
[module R P] : Prop :=
(out : β s : P ββ[R] (P ββ R), function.left_inverse (finsupp.total P P R id) s)
namespace module
lemma projective_def {R : Type u} [semiring R] {P : Type (max u v)} [add_comm_monoid P]
[module R P] : projective R P β
(β s : P ββ[R] (P ββ R), function.left_inverse (finsupp.total P P R id) s) :=
β¨Ξ» h, h.1, Ξ» h, β¨hβ©β©
section semiring
variables {R : Type u} [semiring R] {P : Type (max u v)} [add_comm_monoid P] [module R P]
{M : Type (max u v)} [add_comm_group M] [module R M] {N : Type*} [add_comm_group N] [module R N]
/-- A projective R-module has the property that maps from it lift along surjections. -/
theorem projective_lifting_property [h : projective R P] (f : M ββ[R] N) (g : P ββ[R] N)
(hf : function.surjective f) : β (h : P ββ[R] M), f.comp h = g :=
begin
/-
Here's the first step of the proof.
Recall that `X ββ R` is Lean's way of talking about the free `R`-module
on a type `X`. The universal property `finsupp.total` says that to a map
`X β N` from a type to an `R`-module, we get an associated R-module map
`(X ββ R) ββ N`. Apply this to a (noncomputable) map `P β M` coming from the map
`P ββ N` and a random splitting of the surjection `M ββ N`, and we get
a map `Ο : (P ββ R) ββ M`.
-/
let Ο : (P ββ R) ββ[R] M := finsupp.total _ _ _ (Ξ» p, function.surj_inv hf (g p)),
-- By projectivity we have a map `P ββ (P ββ R)`;
cases h.out with s hs,
-- Compose to get `P ββ M`. This works.
use Ο.comp s,
ext p,
conv_rhs {rw β hs p},
simp [Ο, finsupp.total_apply, function.surj_inv_eq hf],
end
/-- A module which satisfies the universal property is projective. Note that the universe variables
in `huniv` are somewhat restricted. -/
theorem projective_of_lifting_property'
-- If for all surjections of `R`-modules `M ββ N`, all maps `P ββ N` lift to `P ββ M`,
(huniv : β {M : Type (max v u)} {N : Type (max u v)} [add_comm_monoid M] [add_comm_monoid N],
by exactI
β [module R M] [module R N],
by exactI
β (f : M ββ[R] N) (g : P ββ[R] N),
function.surjective f β β (h : P ββ[R] M), f.comp h = g) :
-- then `P` is projective.
projective R P :=
begin
-- let `s` be the universal map `(P ββ R) ββ P` coming from the identity map `P ββ P`.
obtain β¨s, hsβ© : β (s : P ββ[R] P ββ R),
(finsupp.total P P R id).comp s = linear_map.id :=
huniv (finsupp.total P P R (id : P β P)) (linear_map.id : P ββ[R] P) _,
-- This `s` works.
{ use s,
rwa linear_map.ext_iff at hs },
{ intro p,
use finsupp.single p 1,
simp },
end
end semiring
section ring
variables {R : Type u} [ring R] {P : Type (max u v)} [add_comm_group P] [module R P]
/-- A variant of `of_lifting_property'` when we're working over a `[ring R]`,
which only requires quantifying over modules with an `add_comm_group` instance. -/
theorem projective_of_lifting_property
-- If for all surjections of `R`-modules `M ββ N`, all maps `P ββ N` lift to `P ββ M`,
(huniv : β {M : Type (max v u)} {N : Type (max u v)} [add_comm_group M] [add_comm_group N],
by exactI
β [module R M] [module R N],
by exactI
β (f : M ββ[R] N) (g : P ββ[R] N),
function.surjective f β β (h : P ββ[R] M), f.comp h = g) :
-- then `P` is projective.
projective R P :=
-- We could try and prove this *using* `of_lifting_property`,
-- but this quickly leads to typeclass hell,
-- so we just prove it over again.
begin
-- let `s` be the universal map `(P ββ R) ββ P` coming from the identity map `P ββ P`.
obtain β¨s, hsβ© : β (s : P ββ[R] P ββ R),
(finsupp.total P P R id).comp s = linear_map.id :=
huniv (finsupp.total P P R (id : P β P)) (linear_map.id : P ββ[R] P) _,
-- This `s` works.
{ use s,
rwa linear_map.ext_iff at hs },
{ intro p,
use finsupp.single p 1,
simp },
end
/-- Free modules are projective. -/
theorem projective_of_basis {ΞΉ : Type*} (b : basis ΞΉ R P) : projective R P :=
begin
-- need P ββ (P ββ R) for definition of projective.
-- get it from `ΞΉ β (P ββ R)` coming from `b`.
use b.constr β (Ξ» i, finsupp.single (b i) (1 : R)),
intro m,
simp only [b.constr_apply, mul_one, id.def, finsupp.smul_single', finsupp.total_single,
linear_map.map_finsupp_sum],
exact b.total_repr m,
end
@[priority 100]
instance projective_of_free [module.free R P] : module.projective R P :=
projective_of_basis $ module.free.choose_basis R P
end ring
end module
|