Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 13,100 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
/-
Copyright (c) 2022 Pierre-Alexandre Bazin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Pierre-Alexandre Bazin
-/
import algebra.module.dedekind_domain
import linear_algebra.free_module.pid
import algebra.module.projective
import algebra.category.Module.biproducts

/-!
# Structure of finitely generated modules over a PID

## Main statements

* `module.equiv_direct_sum_of_is_torsion` : A finitely generated torsion module over a PID is
  isomorphic to a direct sum of some `R ⧸ R ∙ (p i ^ e i)` where the `p i ^ e i` are prime powers.
* `module.equiv_free_prod_direct_sum` : A finitely generated module over a PID is isomorphic to the
  product of a free module (its torsion free part) and a direct sum of the form above (its torsion
  submodule).

## Notation

* `R` is a PID and `M` is a (finitely generated for main statements) `R`-module, with additional
  torsion hypotheses in the intermediate lemmas.
* `N` is a `R`-module lying over a higher type universe than `R`. This assumption is needed on the
  final statement for technical reasons.
* `p` is an irreducible element of `R` or a tuple of these.

## Implementation details

We first prove (`submodule.is_internal_prime_power_torsion_of_pid`) that a finitely generated
torsion module is the internal direct sum of its `p i ^ e i`-torsion submodules for some
(finitely many) prime powers `p i ^ e i`. This is proved in more generality for a Dedekind domain
at `submodule.is_internal_prime_power_torsion`.

Then we treat the case of a `p ^ ∞`-torsion module (that is, a module where all elements are
cancelled by scalar multiplication by some power of `p`) and apply it to the `p i ^ e i`-torsion
submodules (that are `p i ^ ∞`-torsion) to get the result for torsion modules.

Then we get the general result using that a torsion free module is free (which has been proved at
`module.free_of_finite_type_torsion_free'` at `linear_algebra/free_module/pid.lean`.)

## Tags

Finitely generated module, principal ideal domain, classification, structure theorem
-/

universes u v
open_locale big_operators

variables {R : Type u} [comm_ring R] [is_domain R] [is_principal_ideal_ring R]
variables {M : Type v} [add_comm_group M] [module R M]
variables {N : Type (max u v)} [add_comm_group N] [module R N]

open_locale direct_sum
open submodule

/--A finitely generated torsion module over a PID is an internal direct sum of its
`p i ^ e i`-torsion submodules for some primes `p i` and numbers `e i`.-/
theorem submodule.is_internal_prime_power_torsion_of_pid
  [module.finite R M] (hM : module.is_torsion R M) :
  ∃ (ι : Type u) [fintype ι] [decidable_eq ι] (p : ι → R) (h : ∀ i, irreducible $ p i) (e : ι → ℕ),
  by exactI direct_sum.is_internal (λ i, torsion_by R M $ p i ^ e i) :=
begin
  obtain ⟨P, dec, hP, e, this⟩ := is_internal_prime_power_torsion hM,
  refine ⟨P, infer_instance, dec, λ p, is_principal.generator (p : ideal R), _, e, _⟩,
  { rintro ⟨p, hp⟩,
    haveI := ideal.is_prime_of_prime (hP p hp),
    exact (is_principal.prime_generator_of_is_prime p (hP p hp).ne_zero).irreducible },
  { convert this, ext p : 1,
    rw [← torsion_by_span_singleton_eq, ideal.submodule_span_eq, ← ideal.span_singleton_pow,
      ideal.span_singleton_generator] }
end

namespace module
section p_torsion
variables {p : R} (hp : irreducible p) (hM : module.is_torsion' M (submonoid.powers p))
variables [dec : Π x : M, decidable (x = 0)]

open ideal submodule.is_principal
include dec

include hp hM
lemma _root_.ideal.torsion_of_eq_span_pow_p_order (x : M) :
  torsion_of R M x = span {p ^ p_order hM x} :=
begin
  dunfold p_order,
  rw [← (torsion_of R M x).span_singleton_generator, ideal.span_singleton_eq_span_singleton,
    ← associates.mk_eq_mk_iff_associated, associates.mk_pow],
  have prop : (λ n : ℕ, p ^ n • x = 0) =
    λ n : ℕ, (associates.mk $ generator $ torsion_of R M x) ∣ associates.mk p ^ n,
  { ext n, rw [← associates.mk_pow, associates.mk_dvd_mk, ← mem_iff_generator_dvd], refl },
  have := (is_torsion'_powers_iff p).mp hM x, rw prop at this,
  classical,
  convert associates.eq_pow_find_of_dvd_irreducible_pow ((associates.irreducible_mk p).mpr hp)
    this.some_spec,
end

lemma p_pow_smul_lift {x y : M} {k : ℕ} (hM' : module.is_torsion_by R M (p ^ p_order hM y))
  (h : p ^ k • x ∈ R ∙ y) : ∃ a : R, p ^ k • x = p ^ k • a • y :=
begin
  by_cases hk : k ≤ p_order hM y,
  { let f := ((R ∙ p ^ (p_order hM y - k) * p ^ k).quot_equiv_of_eq _ _).trans
      (quot_torsion_of_equiv_span_singleton R M y),
    have : f.symm ⟨p ^ k • x, h⟩ ∈
      R ∙ ideal.quotient.mk (R ∙ p ^ (p_order hM y - k) * p ^ k) (p ^ k),
    { rw [← quotient.torsion_by_eq_span_singleton, mem_torsion_by_iff, ← f.symm.map_smul],
      convert f.symm.map_zero, ext,
      rw [coe_smul_of_tower, coe_mk, coe_zero, smul_smul, ← pow_add, nat.sub_add_cancel hk, @hM' x],
      { exact mem_non_zero_divisors_of_ne_zero (pow_ne_zero _ hp.ne_zero) } },
    rw submodule.mem_span_singleton at this, obtain ⟨a, ha⟩ := this, use a,
    rw [f.eq_symm_apply, ← ideal.quotient.mk_eq_mk, ← quotient.mk_smul] at ha,
    dsimp only [smul_eq_mul, f, linear_equiv.trans_apply, submodule.quot_equiv_of_eq_mk,
      quot_torsion_of_equiv_span_singleton_apply_mk] at ha,
    rw [smul_smul, mul_comm], exact congr_arg coe ha.symm,
    { symmetry, convert ideal.torsion_of_eq_span_pow_p_order hp hM y,
      rw [← pow_add, nat.sub_add_cancel hk] } },
  { use 0, rw [zero_smul, smul_zero, ← nat.sub_add_cancel (le_of_not_le hk),
      pow_add, mul_smul, hM', smul_zero] }
end

open submodule.quotient

lemma exists_smul_eq_zero_and_mk_eq {z : M} (hz : module.is_torsion_by R M (p ^ p_order hM z))
  {k : ℕ} (f : (R ⧸ R ∙ p ^ k) →ₗ[R] M ⧸ R ∙ z) :
  ∃ x : M, p ^ k • x = 0 ∧ submodule.quotient.mk x = f 1 :=
begin
  have f1 := mk_surjective (R ∙ z) (f 1),
  have : p ^ k • f1.some ∈ R ∙ z,
  { rw [← quotient.mk_eq_zero, mk_smul, f1.some_spec, ← f.map_smul],
    convert f.map_zero, change _ • submodule.quotient.mk _ = _,
    rw [← mk_smul, quotient.mk_eq_zero, algebra.id.smul_eq_mul, mul_one],
    exact mem_span_singleton_self _ },
  obtain ⟨a, ha⟩ := p_pow_smul_lift hp hM hz this,
  refine ⟨f1.some - a • z, by rw [smul_sub, sub_eq_zero, ha], _⟩,
  rw [mk_sub, mk_smul, (quotient.mk_eq_zero _).mpr $ mem_span_singleton_self _,
    smul_zero, sub_zero, f1.some_spec]
end

open finset multiset
omit dec hM

/--A finitely generated `p ^ ∞`-torsion module over a PID is isomorphic to a direct sum of some
  `R ⧸ R ∙ (p ^ e i)` for some `e i`.-/
theorem torsion_by_prime_power_decomposition (hN : module.is_torsion' N (submonoid.powers p))
  [h' : module.finite R N] :
  ∃ (d : ℕ) (k : fin d → ℕ), nonempty $ N ≃ₗ[R] ⨁ (i : fin d), R ⧸ R ∙ (p ^ (k i : ℕ)) :=
begin
  obtain ⟨d, s, hs⟩ := @module.finite.exists_fin _ _ _ _ _ h', use d, clear h',
  unfreezingI { induction d with d IH generalizing N },
  { use λ i, fin_zero_elim i,
    rw [set.range_eq_empty, submodule.span_empty] at hs,
    haveI : unique N := ⟨⟨0⟩, λ x, by { rw [← mem_bot _, hs], trivial }⟩,
    exact ⟨0⟩ },
  { haveI : Π x : N, decidable (x = 0), classical, apply_instance,
    obtain ⟨j, hj⟩ := exists_is_torsion_by hN d.succ d.succ_ne_zero s hs,
    let s' : fin d → N ⧸ R ∙ s j := submodule.quotient.mk ∘ s ∘ j.succ_above,
    obtain ⟨k, ⟨f⟩⟩ := IH _ s' _; clear IH,
    { have : ∀ i : fin d, ∃ x : N,
        p ^ k i • x = 0 ∧ f (submodule.quotient.mk x) = direct_sum.lof R _ _ i 1,
      { intro i,
        let fi := f.symm.to_linear_map.comp (direct_sum.lof _ _ _ i),
        obtain ⟨x, h0, h1⟩ := exists_smul_eq_zero_and_mk_eq hp hN hj fi, refine ⟨x, h0, _⟩, rw h1,
        simp only [linear_map.coe_comp, f.symm.coe_to_linear_map, f.apply_symm_apply] },
      refine ⟨_, ⟨(((
        @lequiv_prod_of_right_split_exact _ _ _ _ _ _ _ _ _ _ _ _
          ((f.trans ulift.module_equiv.{u u v}.symm).to_linear_map.comp $ mkq _)
          ((direct_sum.to_module _ _ _ $ λ i, (liftq_span_singleton.{u u} (p ^ k i)
            (linear_map.to_span_singleton _ _ _) (this i).some_spec.left : R ⧸ _ →ₗ[R] _)).comp
            ulift.module_equiv.to_linear_map)
          (R ∙ s j).injective_subtype _ _).symm.trans $
        ((quot_torsion_of_equiv_span_singleton _ _ _).symm.trans $
          quot_equiv_of_eq _ _ $ ideal.torsion_of_eq_span_pow_p_order hp hN _).prod $
          ulift.module_equiv).trans $
        (@direct_sum.lequiv_prod_direct_sum R _ _ _
          (λ i, R ⧸ R ∙ p ^ @option.rec _ (λ _, ℕ) (p_order hN $ s j) k i) _ _).symm).trans $
        direct_sum.lequiv_congr_left R (fin_succ_equiv d).symm⟩⟩,
      { rw [range_subtype, linear_equiv.to_linear_map_eq_coe, linear_equiv.ker_comp, ker_mkq] },
      { rw [linear_equiv.to_linear_map_eq_coe, ← f.comp_coe, linear_map.comp_assoc,
          linear_map.comp_assoc, ← linear_equiv.to_linear_map_eq_coe,
          linear_equiv.to_linear_map_symm_comp_eq, linear_map.comp_id,
          ← linear_map.comp_assoc, ← linear_map.comp_assoc],
        suffices : (f.to_linear_map.comp (R ∙ s j).mkq).comp _ = linear_map.id,
        { rw [← f.to_linear_map_eq_coe, this, linear_map.id_comp] },
        ext i : 3,
        simp only [linear_map.coe_comp, function.comp_app, mkq_apply],
        rw [linear_equiv.coe_to_linear_map, linear_map.id_apply, direct_sum.to_module_lof,
          liftq_span_singleton_apply, linear_map.to_span_singleton_one,
          ideal.quotient.mk_eq_mk, map_one, (this i).some_spec.right] } },
    { exact (mk_surjective _).forall.mpr
      (λ x, ⟨(@hN x).some, by rw [← quotient.mk_smul, (@hN x).some_spec, quotient.mk_zero]⟩) },
    { have hs' := congr_arg (submodule.map $ mkq $ R ∙ s j) hs,
      rw [submodule.map_span, submodule.map_top, range_mkq] at hs', simp only [mkq_apply] at hs',
      simp only [s'], rw [set.range_comp (_ ∘ s), fin.range_succ_above],
      rw [← set.range_comp, ← set.insert_image_compl_eq_range _ j, function.comp_apply,
        (quotient.mk_eq_zero _).mpr (mem_span_singleton_self _), span_insert_zero] at hs',
      exact hs' } }
end
end p_torsion

/--A finitely generated torsion module over a PID is isomorphic to a direct sum of some
  `R ⧸ R ∙ (p i ^ e i)` where the `p i ^ e i` are prime powers.-/
theorem equiv_direct_sum_of_is_torsion [h' : module.finite R N] (hN : module.is_torsion R N) :
  ∃ (ι : Type u) [fintype ι] (p : ι → R) (h : ∀ i, irreducible $ p i) (e : ι → ℕ),
  nonempty $ N ≃ₗ[R] ⨁ (i : ι), R ⧸ R ∙ (p i ^ e i) :=
begin
  obtain ⟨I, fI, _, p, hp, e, h⟩ := submodule.is_internal_prime_power_torsion_of_pid hN,
  haveI := fI,
  have : ∀ i, ∃ (d : ℕ) (k : fin d → ℕ),
    nonempty $ torsion_by R N (p i ^ e i) ≃ₗ[R] ⨁ j, R ⧸ R ∙ (p i ^ k j),
  { haveI := is_noetherian_of_fg_of_noetherian' (module.finite_def.mp h'),
    haveI := λ i, is_noetherian_submodule' (torsion_by R N $ p i ^ e i),
    exact λ i, torsion_by_prime_power_decomposition (hp i)
      ((is_torsion'_powers_iff $ p i).mpr $ λ x, ⟨e i, smul_torsion_by _ _⟩) },
  refine ⟨Σ i, fin (this i).some, infer_instance,
    λ ⟨i, j⟩, p i, λ ⟨i, j⟩, hp i, λ ⟨i, j⟩, (this i).some_spec.some j,
    ⟨(linear_equiv.of_bijective (direct_sum.coe_linear_map _) h.1 h.2).symm.trans $
      (dfinsupp.map_range.linear_equiv $ λ i, (this i).some_spec.some_spec.some).trans $
      (direct_sum.sigma_lcurry_equiv R).symm.trans
      (dfinsupp.map_range.linear_equiv $ λ i, quot_equiv_of_eq _ _ _)⟩⟩,
  cases i with i j, simp only
end

/--**Structure theorem of finitely generated modules over a PID** : A finitely generated
  module over a PID is isomorphic to the product of a free module and a direct sum of some
  `R ⧸ R ∙ (p i ^ e i)` where the `p i ^ e i` are prime powers.-/
theorem equiv_free_prod_direct_sum [h' : module.finite R N] :
  ∃ (n : ℕ) (ι : Type u) [fintype ι] (p : ι → R) (h : ∀ i, irreducible $ p i) (e : ι → ℕ),
  nonempty $ N ≃ₗ[R] (fin n →₀ R) × ⨁ (i : ι), R ⧸ R ∙ (p i ^ e i) :=
begin
  haveI := is_noetherian_of_fg_of_noetherian' (module.finite_def.mp h'),
  haveI := is_noetherian_submodule' (torsion R N),
  haveI := module.finite.of_surjective _ (torsion R N).mkq_surjective,
  obtain ⟨I, fI, p, hp, e, ⟨h⟩⟩ := equiv_direct_sum_of_is_torsion (@torsion_is_torsion R N _ _ _),
  obtain ⟨n, ⟨g⟩⟩ := @module.free_of_finite_type_torsion_free' R _ _ _ (N ⧸ torsion R N) _ _ _ _,
  haveI : module.projective R (N ⧸ torsion R N) := module.projective_of_basis ⟨g⟩,
  obtain ⟨f, hf⟩ := module.projective_lifting_property _ linear_map.id (torsion R N).mkq_surjective,
  refine ⟨n, I, fI, p, hp, e,
    ⟨(lequiv_prod_of_right_split_exact (torsion R N).injective_subtype _ hf).symm.trans $
      (h.prod g).trans $ linear_equiv.prod_comm R _ _⟩⟩,
  rw [range_subtype, ker_mkq]
end
end module