Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 13,100 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
/-
Copyright (c) 2022 Pierre-Alexandre Bazin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Pierre-Alexandre Bazin
-/
import algebra.module.dedekind_domain
import linear_algebra.free_module.pid
import algebra.module.projective
import algebra.category.Module.biproducts
/-!
# Structure of finitely generated modules over a PID
## Main statements
* `module.equiv_direct_sum_of_is_torsion` : A finitely generated torsion module over a PID is
isomorphic to a direct sum of some `R ⧸ R ∙ (p i ^ e i)` where the `p i ^ e i` are prime powers.
* `module.equiv_free_prod_direct_sum` : A finitely generated module over a PID is isomorphic to the
product of a free module (its torsion free part) and a direct sum of the form above (its torsion
submodule).
## Notation
* `R` is a PID and `M` is a (finitely generated for main statements) `R`-module, with additional
torsion hypotheses in the intermediate lemmas.
* `N` is a `R`-module lying over a higher type universe than `R`. This assumption is needed on the
final statement for technical reasons.
* `p` is an irreducible element of `R` or a tuple of these.
## Implementation details
We first prove (`submodule.is_internal_prime_power_torsion_of_pid`) that a finitely generated
torsion module is the internal direct sum of its `p i ^ e i`-torsion submodules for some
(finitely many) prime powers `p i ^ e i`. This is proved in more generality for a Dedekind domain
at `submodule.is_internal_prime_power_torsion`.
Then we treat the case of a `p ^ ∞`-torsion module (that is, a module where all elements are
cancelled by scalar multiplication by some power of `p`) and apply it to the `p i ^ e i`-torsion
submodules (that are `p i ^ ∞`-torsion) to get the result for torsion modules.
Then we get the general result using that a torsion free module is free (which has been proved at
`module.free_of_finite_type_torsion_free'` at `linear_algebra/free_module/pid.lean`.)
## Tags
Finitely generated module, principal ideal domain, classification, structure theorem
-/
universes u v
open_locale big_operators
variables {R : Type u} [comm_ring R] [is_domain R] [is_principal_ideal_ring R]
variables {M : Type v} [add_comm_group M] [module R M]
variables {N : Type (max u v)} [add_comm_group N] [module R N]
open_locale direct_sum
open submodule
/--A finitely generated torsion module over a PID is an internal direct sum of its
`p i ^ e i`-torsion submodules for some primes `p i` and numbers `e i`.-/
theorem submodule.is_internal_prime_power_torsion_of_pid
[module.finite R M] (hM : module.is_torsion R M) :
∃ (ι : Type u) [fintype ι] [decidable_eq ι] (p : ι → R) (h : ∀ i, irreducible $ p i) (e : ι → ℕ),
by exactI direct_sum.is_internal (λ i, torsion_by R M $ p i ^ e i) :=
begin
obtain ⟨P, dec, hP, e, this⟩ := is_internal_prime_power_torsion hM,
refine ⟨P, infer_instance, dec, λ p, is_principal.generator (p : ideal R), _, e, _⟩,
{ rintro ⟨p, hp⟩,
haveI := ideal.is_prime_of_prime (hP p hp),
exact (is_principal.prime_generator_of_is_prime p (hP p hp).ne_zero).irreducible },
{ convert this, ext p : 1,
rw [← torsion_by_span_singleton_eq, ideal.submodule_span_eq, ← ideal.span_singleton_pow,
ideal.span_singleton_generator] }
end
namespace module
section p_torsion
variables {p : R} (hp : irreducible p) (hM : module.is_torsion' M (submonoid.powers p))
variables [dec : Π x : M, decidable (x = 0)]
open ideal submodule.is_principal
include dec
include hp hM
lemma _root_.ideal.torsion_of_eq_span_pow_p_order (x : M) :
torsion_of R M x = span {p ^ p_order hM x} :=
begin
dunfold p_order,
rw [← (torsion_of R M x).span_singleton_generator, ideal.span_singleton_eq_span_singleton,
← associates.mk_eq_mk_iff_associated, associates.mk_pow],
have prop : (λ n : ℕ, p ^ n • x = 0) =
λ n : ℕ, (associates.mk $ generator $ torsion_of R M x) ∣ associates.mk p ^ n,
{ ext n, rw [← associates.mk_pow, associates.mk_dvd_mk, ← mem_iff_generator_dvd], refl },
have := (is_torsion'_powers_iff p).mp hM x, rw prop at this,
classical,
convert associates.eq_pow_find_of_dvd_irreducible_pow ((associates.irreducible_mk p).mpr hp)
this.some_spec,
end
lemma p_pow_smul_lift {x y : M} {k : ℕ} (hM' : module.is_torsion_by R M (p ^ p_order hM y))
(h : p ^ k • x ∈ R ∙ y) : ∃ a : R, p ^ k • x = p ^ k • a • y :=
begin
by_cases hk : k ≤ p_order hM y,
{ let f := ((R ∙ p ^ (p_order hM y - k) * p ^ k).quot_equiv_of_eq _ _).trans
(quot_torsion_of_equiv_span_singleton R M y),
have : f.symm ⟨p ^ k • x, h⟩ ∈
R ∙ ideal.quotient.mk (R ∙ p ^ (p_order hM y - k) * p ^ k) (p ^ k),
{ rw [← quotient.torsion_by_eq_span_singleton, mem_torsion_by_iff, ← f.symm.map_smul],
convert f.symm.map_zero, ext,
rw [coe_smul_of_tower, coe_mk, coe_zero, smul_smul, ← pow_add, nat.sub_add_cancel hk, @hM' x],
{ exact mem_non_zero_divisors_of_ne_zero (pow_ne_zero _ hp.ne_zero) } },
rw submodule.mem_span_singleton at this, obtain ⟨a, ha⟩ := this, use a,
rw [f.eq_symm_apply, ← ideal.quotient.mk_eq_mk, ← quotient.mk_smul] at ha,
dsimp only [smul_eq_mul, f, linear_equiv.trans_apply, submodule.quot_equiv_of_eq_mk,
quot_torsion_of_equiv_span_singleton_apply_mk] at ha,
rw [smul_smul, mul_comm], exact congr_arg coe ha.symm,
{ symmetry, convert ideal.torsion_of_eq_span_pow_p_order hp hM y,
rw [← pow_add, nat.sub_add_cancel hk] } },
{ use 0, rw [zero_smul, smul_zero, ← nat.sub_add_cancel (le_of_not_le hk),
pow_add, mul_smul, hM', smul_zero] }
end
open submodule.quotient
lemma exists_smul_eq_zero_and_mk_eq {z : M} (hz : module.is_torsion_by R M (p ^ p_order hM z))
{k : ℕ} (f : (R ⧸ R ∙ p ^ k) →ₗ[R] M ⧸ R ∙ z) :
∃ x : M, p ^ k • x = 0 ∧ submodule.quotient.mk x = f 1 :=
begin
have f1 := mk_surjective (R ∙ z) (f 1),
have : p ^ k • f1.some ∈ R ∙ z,
{ rw [← quotient.mk_eq_zero, mk_smul, f1.some_spec, ← f.map_smul],
convert f.map_zero, change _ • submodule.quotient.mk _ = _,
rw [← mk_smul, quotient.mk_eq_zero, algebra.id.smul_eq_mul, mul_one],
exact mem_span_singleton_self _ },
obtain ⟨a, ha⟩ := p_pow_smul_lift hp hM hz this,
refine ⟨f1.some - a • z, by rw [smul_sub, sub_eq_zero, ha], _⟩,
rw [mk_sub, mk_smul, (quotient.mk_eq_zero _).mpr $ mem_span_singleton_self _,
smul_zero, sub_zero, f1.some_spec]
end
open finset multiset
omit dec hM
/--A finitely generated `p ^ ∞`-torsion module over a PID is isomorphic to a direct sum of some
`R ⧸ R ∙ (p ^ e i)` for some `e i`.-/
theorem torsion_by_prime_power_decomposition (hN : module.is_torsion' N (submonoid.powers p))
[h' : module.finite R N] :
∃ (d : ℕ) (k : fin d → ℕ), nonempty $ N ≃ₗ[R] ⨁ (i : fin d), R ⧸ R ∙ (p ^ (k i : ℕ)) :=
begin
obtain ⟨d, s, hs⟩ := @module.finite.exists_fin _ _ _ _ _ h', use d, clear h',
unfreezingI { induction d with d IH generalizing N },
{ use λ i, fin_zero_elim i,
rw [set.range_eq_empty, submodule.span_empty] at hs,
haveI : unique N := ⟨⟨0⟩, λ x, by { rw [← mem_bot _, hs], trivial }⟩,
exact ⟨0⟩ },
{ haveI : Π x : N, decidable (x = 0), classical, apply_instance,
obtain ⟨j, hj⟩ := exists_is_torsion_by hN d.succ d.succ_ne_zero s hs,
let s' : fin d → N ⧸ R ∙ s j := submodule.quotient.mk ∘ s ∘ j.succ_above,
obtain ⟨k, ⟨f⟩⟩ := IH _ s' _; clear IH,
{ have : ∀ i : fin d, ∃ x : N,
p ^ k i • x = 0 ∧ f (submodule.quotient.mk x) = direct_sum.lof R _ _ i 1,
{ intro i,
let fi := f.symm.to_linear_map.comp (direct_sum.lof _ _ _ i),
obtain ⟨x, h0, h1⟩ := exists_smul_eq_zero_and_mk_eq hp hN hj fi, refine ⟨x, h0, _⟩, rw h1,
simp only [linear_map.coe_comp, f.symm.coe_to_linear_map, f.apply_symm_apply] },
refine ⟨_, ⟨(((
@lequiv_prod_of_right_split_exact _ _ _ _ _ _ _ _ _ _ _ _
((f.trans ulift.module_equiv.{u u v}.symm).to_linear_map.comp $ mkq _)
((direct_sum.to_module _ _ _ $ λ i, (liftq_span_singleton.{u u} (p ^ k i)
(linear_map.to_span_singleton _ _ _) (this i).some_spec.left : R ⧸ _ →ₗ[R] _)).comp
ulift.module_equiv.to_linear_map)
(R ∙ s j).injective_subtype _ _).symm.trans $
((quot_torsion_of_equiv_span_singleton _ _ _).symm.trans $
quot_equiv_of_eq _ _ $ ideal.torsion_of_eq_span_pow_p_order hp hN _).prod $
ulift.module_equiv).trans $
(@direct_sum.lequiv_prod_direct_sum R _ _ _
(λ i, R ⧸ R ∙ p ^ @option.rec _ (λ _, ℕ) (p_order hN $ s j) k i) _ _).symm).trans $
direct_sum.lequiv_congr_left R (fin_succ_equiv d).symm⟩⟩,
{ rw [range_subtype, linear_equiv.to_linear_map_eq_coe, linear_equiv.ker_comp, ker_mkq] },
{ rw [linear_equiv.to_linear_map_eq_coe, ← f.comp_coe, linear_map.comp_assoc,
linear_map.comp_assoc, ← linear_equiv.to_linear_map_eq_coe,
linear_equiv.to_linear_map_symm_comp_eq, linear_map.comp_id,
← linear_map.comp_assoc, ← linear_map.comp_assoc],
suffices : (f.to_linear_map.comp (R ∙ s j).mkq).comp _ = linear_map.id,
{ rw [← f.to_linear_map_eq_coe, this, linear_map.id_comp] },
ext i : 3,
simp only [linear_map.coe_comp, function.comp_app, mkq_apply],
rw [linear_equiv.coe_to_linear_map, linear_map.id_apply, direct_sum.to_module_lof,
liftq_span_singleton_apply, linear_map.to_span_singleton_one,
ideal.quotient.mk_eq_mk, map_one, (this i).some_spec.right] } },
{ exact (mk_surjective _).forall.mpr
(λ x, ⟨(@hN x).some, by rw [← quotient.mk_smul, (@hN x).some_spec, quotient.mk_zero]⟩) },
{ have hs' := congr_arg (submodule.map $ mkq $ R ∙ s j) hs,
rw [submodule.map_span, submodule.map_top, range_mkq] at hs', simp only [mkq_apply] at hs',
simp only [s'], rw [set.range_comp (_ ∘ s), fin.range_succ_above],
rw [← set.range_comp, ← set.insert_image_compl_eq_range _ j, function.comp_apply,
(quotient.mk_eq_zero _).mpr (mem_span_singleton_self _), span_insert_zero] at hs',
exact hs' } }
end
end p_torsion
/--A finitely generated torsion module over a PID is isomorphic to a direct sum of some
`R ⧸ R ∙ (p i ^ e i)` where the `p i ^ e i` are prime powers.-/
theorem equiv_direct_sum_of_is_torsion [h' : module.finite R N] (hN : module.is_torsion R N) :
∃ (ι : Type u) [fintype ι] (p : ι → R) (h : ∀ i, irreducible $ p i) (e : ι → ℕ),
nonempty $ N ≃ₗ[R] ⨁ (i : ι), R ⧸ R ∙ (p i ^ e i) :=
begin
obtain ⟨I, fI, _, p, hp, e, h⟩ := submodule.is_internal_prime_power_torsion_of_pid hN,
haveI := fI,
have : ∀ i, ∃ (d : ℕ) (k : fin d → ℕ),
nonempty $ torsion_by R N (p i ^ e i) ≃ₗ[R] ⨁ j, R ⧸ R ∙ (p i ^ k j),
{ haveI := is_noetherian_of_fg_of_noetherian' (module.finite_def.mp h'),
haveI := λ i, is_noetherian_submodule' (torsion_by R N $ p i ^ e i),
exact λ i, torsion_by_prime_power_decomposition (hp i)
((is_torsion'_powers_iff $ p i).mpr $ λ x, ⟨e i, smul_torsion_by _ _⟩) },
refine ⟨Σ i, fin (this i).some, infer_instance,
λ ⟨i, j⟩, p i, λ ⟨i, j⟩, hp i, λ ⟨i, j⟩, (this i).some_spec.some j,
⟨(linear_equiv.of_bijective (direct_sum.coe_linear_map _) h.1 h.2).symm.trans $
(dfinsupp.map_range.linear_equiv $ λ i, (this i).some_spec.some_spec.some).trans $
(direct_sum.sigma_lcurry_equiv R).symm.trans
(dfinsupp.map_range.linear_equiv $ λ i, quot_equiv_of_eq _ _ _)⟩⟩,
cases i with i j, simp only
end
/--**Structure theorem of finitely generated modules over a PID** : A finitely generated
module over a PID is isomorphic to the product of a free module and a direct sum of some
`R ⧸ R ∙ (p i ^ e i)` where the `p i ^ e i` are prime powers.-/
theorem equiv_free_prod_direct_sum [h' : module.finite R N] :
∃ (n : ℕ) (ι : Type u) [fintype ι] (p : ι → R) (h : ∀ i, irreducible $ p i) (e : ι → ℕ),
nonempty $ N ≃ₗ[R] (fin n →₀ R) × ⨁ (i : ι), R ⧸ R ∙ (p i ^ e i) :=
begin
haveI := is_noetherian_of_fg_of_noetherian' (module.finite_def.mp h'),
haveI := is_noetherian_submodule' (torsion R N),
haveI := module.finite.of_surjective _ (torsion R N).mkq_surjective,
obtain ⟨I, fI, p, hp, e, ⟨h⟩⟩ := equiv_direct_sum_of_is_torsion (@torsion_is_torsion R N _ _ _),
obtain ⟨n, ⟨g⟩⟩ := @module.free_of_finite_type_torsion_free' R _ _ _ (N ⧸ torsion R N) _ _ _ _,
haveI : module.projective R (N ⧸ torsion R N) := module.projective_of_basis ⟨g⟩,
obtain ⟨f, hf⟩ := module.projective_lifting_property _ linear_map.id (torsion R N).mkq_surjective,
refine ⟨n, I, fI, p, hp, e,
⟨(lequiv_prod_of_right_split_exact (torsion R N).injective_subtype _ hf).symm.trans $
(h.prod g).trans $ linear_equiv.prod_comm R _ _⟩⟩,
rw [range_subtype, ker_mkq]
end
end module
|