Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 16,516 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
/-
Copyright (c) 2022 Jujian Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jujian Zhang
-/
import algebra.category.Module.abelian
import category_theory.preadditive.injective
import ring_theory.ideal.basic
/-!
# Injective modules
## Main definitions
* `module.injective`: an `R`-module `Q` is injective if and only if every injective `R`-linear
map descends to a linear map to `Q`, i.e. in the following diagram, if `f` is injective then there
is an `R`-linear map `h : Y ⟶ Q` such that `g = h ∘ f`
```
X --- f ---> Y
|
| g
v
Q
```
* `module.Baer`: an `R`-module `Q` satisfies Baer's criterion if any `R`-linear map from an
`ideal R` extends to an `R`-linear map `R ⟶ Q`
## Main statements
* `module.Baer.criterion`: an `R`-module is injective if it is Baer.
-/
noncomputable theory
universes u v
variables (R : Type u) [ring R] (Q : Type (max u v)) [add_comm_group Q] [module R Q]
/--An `R`-module `Q` is injective if and only if every injective `R`-linear map descends to a linear
map to `Q`, i.e. in the following diagram, if `f` is injective then there is an `R`-linear map
`h : Y ⟶ Q` such that `g = h ∘ f`
```
X --- f ---> Y
|
| g
v
Q
```
-/
class module.injective : Prop :=
(out : ∀ (X Y : Type (max u v)) [add_comm_group X] [add_comm_group Y] [module R X] [module R Y]
(f : X →ₗ[R] Y) (hf : function.injective f) (g : X →ₗ[R] Q),
∃ (h : Y →ₗ[R] Q), ∀ x, h (f x) = g x)
lemma module.injective_object_of_injective_module [module.injective.{u v} R Q] :
category_theory.injective.{max u v} (⟨Q⟩ : Module.{max u v} R) :=
{ factors := λ X Y g f mn, begin
rcases module.injective.out X Y f ((Module.mono_iff_injective f).mp mn) g with ⟨h, eq1⟩,
exact ⟨h, linear_map.ext eq1⟩,
end }
lemma module.injective_module_of_injective_object
[category_theory.injective.{max u v} (⟨Q⟩ : Module.{max u v} R)] :
module.injective.{u v} R Q :=
{ out := λ X Y ins1 ins2 ins3 ins4 f hf g, begin
resetI,
rcases @category_theory.injective.factors (Module R) _ ⟨Q⟩ _ ⟨X⟩ ⟨Y⟩ g f
((Module.mono_iff_injective _).mpr hf) with ⟨h, rfl⟩,
exact ⟨h, λ x, rfl⟩
end }
lemma module.injective_iff_injective_object :
module.injective.{u v} R Q ↔ category_theory.injective.{max u v} (⟨Q⟩ : Module.{max u v} R) :=
⟨λ h, @@module.injective_object_of_injective_module R _ Q _ _ h,
λ h, @@module.injective_module_of_injective_object R _ Q _ _ h⟩
/--An `R`-module `Q` satisfies Baer's criterion if any `R`-linear map from an `ideal R` extends to
an `R`-linear map `R ⟶ Q`-/
def module.Baer : Prop := ∀ (I : ideal R) (g : I →ₗ[R] Q), ∃ (g' : R →ₗ[R] Q),
∀ (x : R) (mem : x ∈ I), g' x = g ⟨x, mem⟩
namespace module.Baer
variables {R Q} {M N : Type (max u v)} [add_comm_group M] [add_comm_group N]
variables [module R M] [module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q)
/-- If we view `M` as a submodule of `N` via the injective linear map `i : M ↪ N`, then a submodule
between `M` and `N` is a submodule `N'` of `N`. To prove Baer's criterion, we need to consider
pairs of `(N', f')` such that `M ≤ N' ≤ N` and `f'` extends `f`. -/
structure extension_of extends linear_pmap R N Q :=
(le : i.range ≤ domain)
(is_extension : ∀ (m : M), f m = to_linear_pmap ⟨i m, le ⟨m, rfl⟩⟩)
section ext
variables {i f}
@[ext] lemma extension_of.ext {a b : extension_of i f}
(domain_eq : a.domain = b.domain)
(to_fun_eq : ∀ ⦃x : a.domain⦄ ⦃y : b.domain⦄,
(x : N) = y → a.to_linear_pmap x = b.to_linear_pmap y) : a = b :=
begin
rcases a with ⟨a, a_le, e1⟩,
rcases b with ⟨b, b_le, e2⟩,
congr,
exact linear_pmap.ext domain_eq to_fun_eq,
end
lemma extension_of.ext_iff {a b : extension_of i f} :
a = b ↔ ∃ (domain_eq : a.domain = b.domain),
∀ ⦃x : a.domain⦄ ⦃y : b.domain⦄, (x : N) = y → a.to_linear_pmap x = b.to_linear_pmap y :=
⟨λ r, r ▸ ⟨rfl, λ x y h, congr_arg a.to_fun $ by exact_mod_cast h⟩,
λ ⟨h1, h2⟩, extension_of.ext h1 h2⟩
end ext
instance : has_inf (extension_of i f) :=
{ inf := λ X1 X2,
{ le := λ x hx, (begin
rcases hx with ⟨x, rfl⟩,
refine ⟨X1.le (set.mem_range_self _), X2.le (set.mem_range_self _), _⟩,
rw [← X1.is_extension x, ← X2.is_extension x],
end : x ∈ X1.to_linear_pmap.eq_locus X2.to_linear_pmap),
is_extension := λ m, X1.is_extension _,
.. (X1.to_linear_pmap ⊓ X2.to_linear_pmap)} }
instance : semilattice_inf (extension_of i f) :=
function.injective.semilattice_inf extension_of.to_linear_pmap
(λ X Y h, extension_of.ext (by rw h) $ λ x y h', by { induction h, congr, exact_mod_cast h' }) $
λ X Y, linear_pmap.ext rfl $ λ x y h, by { congr, exact_mod_cast h }
variables {R i f}
lemma chain_linear_pmap_of_chain_extension_of
{c : set (extension_of i f)} (hchain : is_chain (≤) c) :
(is_chain (≤) $ (λ x : extension_of i f, x.to_linear_pmap) '' c) :=
begin
rintro _ ⟨a, a_mem, rfl⟩ _ ⟨b, b_mem, rfl⟩ neq,
exact hchain a_mem b_mem (ne_of_apply_ne _ neq),
end
/-- The maximal element of every nonempty chain of `extension_of i f`. -/
def extension_of.max {c : set (extension_of i f)} (hchain : is_chain (≤) c)
(hnonempty : c.nonempty) :
extension_of i f :=
{ le := le_trans hnonempty.some.le $ (linear_pmap.le_Sup _ $ (set.mem_image _ _ _).mpr
⟨hnonempty.some, hnonempty.some_spec, rfl⟩).1,
is_extension := λ m, begin
refine eq.trans (hnonempty.some.is_extension m) _,
symmetry,
generalize_proofs _ h0 h1,
exact linear_pmap.Sup_apply
(is_chain.directed_on $ chain_linear_pmap_of_chain_extension_of hchain)
((set.mem_image _ _ _).mpr ⟨hnonempty.some, hnonempty.some_spec, rfl⟩) ⟨i m, h1⟩,
end,
..linear_pmap.Sup _ (is_chain.directed_on $ chain_linear_pmap_of_chain_extension_of hchain) }
lemma extension_of.le_max {c : set (extension_of i f)} (hchain : is_chain (≤) c)
(hnonempty : c.nonempty) (a : extension_of i f) (ha : a ∈ c) :
a ≤ extension_of.max hchain hnonempty :=
linear_pmap.le_Sup (is_chain.directed_on $ chain_linear_pmap_of_chain_extension_of hchain) $
(set.mem_image _ _ _).mpr ⟨a, ha, rfl⟩
variables (i f) [fact $ function.injective i]
instance extension_of.inhabited : inhabited (extension_of i f) :=
{ default :=
{ domain := i.range,
to_fun :=
{ to_fun := λ x, f x.2.some,
map_add' := λ x y, begin
have eq1 : _ + _ = (x + y).1 := congr_arg2 (+) x.2.some_spec y.2.some_spec,
rw [← map_add, ← (x + y).2.some_spec] at eq1,
rw [← fact.out (function.injective i) eq1, map_add],
end,
map_smul' := λ r x, begin
have eq1 : r • _ = (r • x).1 := congr_arg ((•) r) x.2.some_spec,
rw [← linear_map.map_smul, ← (r • x).2.some_spec] at eq1,
rw [ring_hom.id_apply, ← fact.out (function.injective i) eq1, linear_map.map_smul],
end },
le := le_refl _,
is_extension := λ m, begin
simp only [linear_pmap.mk_apply, linear_map.coe_mk],
congr,
exact fact.out (function.injective i) (⟨i m, ⟨_, rfl⟩⟩ : i.range).2.some_spec.symm,
end } }
/-- Since every nonempty chain has a maximal element, by Zorn's lemma, there is a maximal
`extension_of i f`. -/
def extension_of_max : extension_of i f :=
(@zorn_nonempty_partial_order (extension_of i f) _ ⟨inhabited.default⟩
(λ c hchain hnonempty,
⟨extension_of.max hchain hnonempty, extension_of.le_max hchain hnonempty⟩)).some
lemma extension_of_max_is_max :
∀ (a : extension_of i f), extension_of_max i f ≤ a → a = extension_of_max i f :=
(@zorn_nonempty_partial_order (extension_of i f) _ ⟨inhabited.default⟩
((λ c hchain hnonempty,
⟨extension_of.max hchain hnonempty, extension_of.le_max hchain hnonempty⟩))).some_spec
variables {f}
private lemma extension_of_max_adjoin.aux1
{y : N}
(x : (extension_of_max i f).domain ⊔ submodule.span R {y}) :
∃ (a : (extension_of_max i f).domain) (b : R), x.1 = a.1 + b • y :=
begin
have mem1 : x.1 ∈ (_ : set _) := x.2,
rw submodule.coe_sup at mem1,
rcases mem1 with ⟨a, b, a_mem, (b_mem : b ∈ (submodule.span R _ : submodule R N)), eq1⟩,
rw submodule.mem_span_singleton at b_mem,
rcases b_mem with ⟨z, eq2⟩,
exact ⟨⟨a, a_mem⟩, z, by rw [← eq1, ← eq2]⟩,
end
/--If `x ∈ M ⊔ ⟨y⟩`, then `x = m + r • y`, `fst` pick an arbitrary such `m`.-/
def extension_of_max_adjoin.fst
{y : N} (x : (extension_of_max i f).domain ⊔ submodule.span R {y}) :
(extension_of_max i f).domain :=
(extension_of_max_adjoin.aux1 i x).some
/--If `x ∈ M ⊔ ⟨y⟩`, then `x = m + r • y`, `snd` pick an arbitrary such `r`.-/
def extension_of_max_adjoin.snd
{y : N} (x : (extension_of_max i f).domain ⊔ submodule.span R {y}) : R :=
(extension_of_max_adjoin.aux1 i x).some_spec.some
lemma extension_of_max_adjoin.eqn
{y : N} (x : (extension_of_max i f).domain ⊔ submodule.span R {y}) :
↑x = ↑(extension_of_max_adjoin.fst i x) + (extension_of_max_adjoin.snd i x) • y :=
(extension_of_max_adjoin.aux1 i x).some_spec.some_spec
variables (f)
/--the ideal `I = {r | r • y ∈ N}`-/
def extension_of_max_adjoin.ideal (y : N) :
ideal R :=
(extension_of_max i f).domain.comap (linear_map.id.smul_right y)
/--A linear map `I ⟶ Q` by `x ↦ f' (x • y)` where `f'` is the maximal extension-/
def extension_of_max_adjoin.ideal_to (y : N) :
extension_of_max_adjoin.ideal i f y →ₗ[R] Q :=
{ to_fun := λ z, (extension_of_max i f).to_linear_pmap ⟨(↑z : R) • y, z.prop⟩,
map_add' := λ z1 z2, by simp [← (extension_of_max i f).to_linear_pmap.map_add, add_smul],
map_smul' := λ z1 z2, by simp [← (extension_of_max i f).to_linear_pmap.map_smul, mul_smul]; refl }
/-- Since we assumed `Q` being Baer, the linear map `x ↦ f' (x • y) : I ⟶ Q` extends to `R ⟶ Q`,
call this extended map `φ`-/
def extension_of_max_adjoin.extend_ideal_to (h : module.Baer R Q) (y : N) : R →ₗ[R] Q :=
(h (extension_of_max_adjoin.ideal i f y) (extension_of_max_adjoin.ideal_to i f y)).some
lemma extension_of_max_adjoin.extend_ideal_to_is_extension (h : module.Baer R Q) (y : N) :
∀ (x : R) (mem : x ∈ extension_of_max_adjoin.ideal i f y),
extension_of_max_adjoin.extend_ideal_to i f h y x =
extension_of_max_adjoin.ideal_to i f y ⟨x, mem⟩ :=
(h (extension_of_max_adjoin.ideal i f y) (extension_of_max_adjoin.ideal_to i f y)).some_spec
lemma extension_of_max_adjoin.extend_ideal_to_wd' (h : module.Baer R Q) {y : N} (r : R)
(eq1 : r • y = 0) :
extension_of_max_adjoin.extend_ideal_to i f h y r = 0 :=
begin
rw extension_of_max_adjoin.extend_ideal_to_is_extension i f h y r
(by rw eq1; exact submodule.zero_mem _ : r • y ∈ _),
simp only [extension_of_max_adjoin.ideal_to, linear_map.coe_mk, eq1, subtype.coe_mk,
← add_submonoid_class.zero_def, (extension_of_max i f).to_linear_pmap.map_zero]
end
lemma extension_of_max_adjoin.extend_ideal_to_wd (h : module.Baer R Q) {y : N} (r r' : R)
(eq1 : r • y = r' • y) :
extension_of_max_adjoin.extend_ideal_to i f h y r =
extension_of_max_adjoin.extend_ideal_to i f h y r' :=
begin
rw [← sub_eq_zero, ← map_sub],
convert extension_of_max_adjoin.extend_ideal_to_wd' i f h (r - r') _,
rw [sub_smul, sub_eq_zero, eq1],
end
lemma extension_of_max_adjoin.extend_ideal_to_eq (h : module.Baer R Q) {y : N} (r : R)
(hr : r • y ∈ (extension_of_max i f).domain) :
extension_of_max_adjoin.extend_ideal_to i f h y r =
(extension_of_max i f).to_linear_pmap ⟨r • y, hr⟩ :=
by simp only [extension_of_max_adjoin.extend_ideal_to_is_extension i f h _ _ hr,
extension_of_max_adjoin.ideal_to, linear_map.coe_mk, subtype.coe_mk]
/--We can finally define a linear map `M ⊔ ⟨y⟩ ⟶ Q` by `x + r • y ↦ f x + φ r`
-/
def extension_of_max_adjoin.extension_to_fun (h : module.Baer R Q)
{y : N} :
(extension_of_max i f).domain ⊔ submodule.span R {y} → Q :=
λ x, (extension_of_max i f).to_linear_pmap (extension_of_max_adjoin.fst i x) +
extension_of_max_adjoin.extend_ideal_to i f h y (extension_of_max_adjoin.snd i x)
lemma extension_of_max_adjoin.extension_to_fun_wd (h : module.Baer R Q)
{y : N} (x : (extension_of_max i f).domain ⊔ submodule.span R {y})
(a : (extension_of_max i f).domain) (r : R)
(eq1 : ↑x = ↑a + r • y) :
extension_of_max_adjoin.extension_to_fun i f h x =
(extension_of_max i f).to_linear_pmap a +
extension_of_max_adjoin.extend_ideal_to i f h y r :=
begin
cases a with a ha,
rw subtype.coe_mk at eq1,
have eq2 : (extension_of_max_adjoin.fst i x - a : N) = (r - extension_of_max_adjoin.snd i x) • y,
{ rwa [extension_of_max_adjoin.eqn, ← sub_eq_zero, ←sub_sub_sub_eq,
sub_eq_zero, ← sub_smul] at eq1 },
have eq3 := extension_of_max_adjoin.extend_ideal_to_eq i f h (r - extension_of_max_adjoin.snd i x)
(by rw ← eq2; exact submodule.sub_mem _ (extension_of_max_adjoin.fst i x).2 ha),
simp only [map_sub, sub_smul, sub_eq_iff_eq_add] at eq3,
unfold extension_of_max_adjoin.extension_to_fun,
rw [eq3, ← add_assoc, ← (extension_of_max i f).to_linear_pmap.map_add, add_mem_class.mk_add_mk],
congr,
ext,
rw [subtype.coe_mk, add_sub, ← eq1],
exact eq_sub_of_add_eq (extension_of_max_adjoin.eqn _ _).symm
end
/--The linear map `M ⊔ ⟨y⟩ ⟶ Q` by `x + r • y ↦ f x + φ r` is an extension of `f`-/
def extension_of_max_adjoin (h : module.Baer R Q) (y : N) :
extension_of i f :=
{ domain := (extension_of_max i f).domain ⊔ submodule.span R {y},
le := le_trans (extension_of_max i f).le le_sup_left,
to_fun :=
{ to_fun := extension_of_max_adjoin.extension_to_fun i f h,
map_add' := λ a b, begin
have eq1 : ↑a + ↑b =
↑((extension_of_max_adjoin.fst i a) + (extension_of_max_adjoin.fst i b)) +
(extension_of_max_adjoin.snd i a + extension_of_max_adjoin.snd i b) • y,
{ rw [extension_of_max_adjoin.eqn, extension_of_max_adjoin.eqn, add_smul],
abel, },
rw [extension_of_max_adjoin.extension_to_fun_wd i f h (a + b) _ _ eq1,
linear_pmap.map_add, map_add],
unfold extension_of_max_adjoin.extension_to_fun,
abel,
end,
map_smul' := λ r a, begin
rw [ring_hom.id_apply],
have eq1 : r • ↑a = ↑(r • extension_of_max_adjoin.fst i a) +
(r • extension_of_max_adjoin.snd i a) • y,
{ rw [extension_of_max_adjoin.eqn, smul_add, smul_eq_mul, mul_smul],
refl, },
rw [extension_of_max_adjoin.extension_to_fun_wd i f h (r • a) _ _ eq1,
linear_map.map_smul, linear_pmap.map_smul, ← smul_add],
congr',
end },
is_extension := λ m, begin
simp only [linear_pmap.mk_apply, linear_map.coe_mk],
rw [(extension_of_max i f).is_extension, extension_of_max_adjoin.extension_to_fun_wd i f h
_ ⟨i m, _⟩ 0 _, map_zero, add_zero],
simp,
end }
lemma extension_of_max_le (h : module.Baer R Q) {y : N} :
extension_of_max i f ≤ extension_of_max_adjoin i f h y :=
⟨le_sup_left, λ x x' EQ, begin
symmetry,
change extension_of_max_adjoin.extension_to_fun i f h _ = _,
rw [extension_of_max_adjoin.extension_to_fun_wd i f h x' x 0 (by simp [EQ]), map_zero, add_zero],
end⟩
lemma extension_of_max_to_submodule_eq_top (h : module.Baer R Q) :
(extension_of_max i f).domain = ⊤ :=
begin
refine submodule.eq_top_iff'.mpr (λ y, _),
rw [← extension_of_max_is_max i f _ (extension_of_max_le i f h), extension_of_max_adjoin,
submodule.mem_sup],
exact ⟨0, submodule.zero_mem _, y, submodule.mem_span_singleton_self _, zero_add _⟩
end
/--**Baer's criterion** for injective module : a Baer module is an injective module, i.e. if every
linear map from an ideal can be extended, then the module is injective.-/
protected theorem injective (h : module.Baer R Q) :
module.injective R Q :=
{ out := λ X Y ins1 ins2 ins3 ins4 i hi f, begin
haveI : fact (function.injective i) := ⟨hi⟩,
exact ⟨{ to_fun := λ y, (extension_of_max i f).to_linear_pmap
⟨y, (extension_of_max_to_submodule_eq_top i f h).symm ▸ trivial⟩,
map_add' := λ x y, by { rw ← linear_pmap.map_add, congr, },
map_smul' := λ r x, by { rw ← linear_pmap.map_smul, congr } },
λ x, ((extension_of_max i f).is_extension x).symm⟩,
end }
end module.Baer
|