Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 16,516 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
/-
Copyright (c) 2022 Jujian Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jujian Zhang
-/

import algebra.category.Module.abelian
import category_theory.preadditive.injective
import ring_theory.ideal.basic

/-!
# Injective modules

## Main definitions

* `module.injective`: an `R`-module `Q` is injective if and only if every injective `R`-linear
  map descends to a linear map to `Q`, i.e. in the following diagram, if `f` is injective then there
  is an `R`-linear map `h : Y ⟶ Q` such that `g = h ∘ f`
  ```
  X --- f ---> Y
  |
  | g
  v
  Q
  ```
* `module.Baer`: an `R`-module `Q` satisfies Baer's criterion if any `R`-linear map from an
  `ideal R` extends to an `R`-linear map `R ⟶ Q`

## Main statements

* `module.Baer.criterion`: an `R`-module is injective if it is Baer.

-/


noncomputable theory

universes u v

variables (R : Type u) [ring R] (Q : Type (max u v)) [add_comm_group Q] [module R Q]

/--An `R`-module `Q` is injective if and only if every injective `R`-linear map descends to a linear
map to `Q`, i.e. in the following diagram, if `f` is injective then there is an `R`-linear map
`h : Y ⟶ Q` such that `g = h ∘ f`
  ```
  X --- f ---> Y
  |
  | g
  v
  Q
  ```
-/
class module.injective : Prop :=
(out : ∀ (X Y : Type (max u v)) [add_comm_group X] [add_comm_group Y] [module R X] [module R Y]
  (f : X →ₗ[R] Y) (hf : function.injective f) (g : X →ₗ[R] Q),
  ∃ (h : Y →ₗ[R] Q), ∀ x, h (f x) = g x)

lemma module.injective_object_of_injective_module [module.injective.{u v} R Q] :
  category_theory.injective.{max u v} (⟨Q⟩ : Module.{max u v} R) :=
{ factors := λ X Y g f mn, begin
    rcases module.injective.out X Y f ((Module.mono_iff_injective f).mp mn) g with ⟨h, eq1⟩,
    exact ⟨h, linear_map.ext eq1⟩,
  end }

lemma module.injective_module_of_injective_object
  [category_theory.injective.{max u v} (⟨Q⟩ : Module.{max u v} R)] :
  module.injective.{u v} R Q :=
{ out := λ X Y ins1 ins2 ins3 ins4 f hf g, begin
    resetI,
    rcases @category_theory.injective.factors (Module R) _ ⟨Q⟩ _ ⟨X⟩ ⟨Y⟩ g f
      ((Module.mono_iff_injective _).mpr hf) with ⟨h, rfl⟩,
    exact ⟨h, λ x, rfl⟩
  end }

lemma module.injective_iff_injective_object :
  module.injective.{u v} R Q ↔ category_theory.injective.{max u v} (⟨Q⟩ : Module.{max u v} R) :=
⟨λ h, @@module.injective_object_of_injective_module R _ Q _ _ h,
 λ h, @@module.injective_module_of_injective_object R _ Q _ _ h⟩

/--An `R`-module `Q` satisfies Baer's criterion if any `R`-linear map from an `ideal R` extends to
an `R`-linear map `R ⟶ Q`-/
def module.Baer : Prop := ∀ (I : ideal R) (g : I →ₗ[R] Q), ∃ (g' : R →ₗ[R] Q),
  ∀ (x : R) (mem : xI), g' x = g ⟨x, mem⟩

namespace module.Baer

variables {R Q} {M N : Type (max u v)} [add_comm_group M] [add_comm_group N]
variables [module R M] [module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q)

/-- If we view `M` as a submodule of `N` via the injective linear map `i : M ↪ N`, then a submodule
between `M` and `N` is a submodule `N'` of `N`. To prove Baer's criterion, we need to consider
pairs of `(N', f')` such that `M ≤ N' ≤ N` and `f'` extends `f`. -/
structure extension_of extends linear_pmap R N Q :=
(le : i.rangedomain)
(is_extension : ∀ (m : M), f m = to_linear_pmap ⟨i m, le ⟨m, rfl⟩⟩)
section ext

variables {i f}

@[ext] lemma extension_of.ext {a b : extension_of i f}
  (domain_eq : a.domain = b.domain)
  (to_fun_eq : ∀ ⦃x : a.domain⦄ ⦃y : b.domain⦄,
    (x : N) = y → a.to_linear_pmap x = b.to_linear_pmap y) : a = b :=
begin
  rcases a with ⟨a, a_le, e1⟩,
  rcases b with ⟨b, b_le, e2⟩,
  congr,
  exact linear_pmap.ext domain_eq to_fun_eq,
end

lemma extension_of.ext_iff {a b : extension_of i f} :
  a = b ↔ ∃ (domain_eq : a.domain = b.domain),
    ∀ ⦃x : a.domain⦄ ⦃y : b.domain⦄, (x : N) = y → a.to_linear_pmap x = b.to_linear_pmap y :=
⟨λ r, r ▸ ⟨rfl, λ x y h, congr_arg a.to_fun $ by exact_mod_cast h⟩,
 λ ⟨h1, h2⟩, extension_of.ext h1 h2⟩

end ext

instance : has_inf (extension_of i f) :=
{ inf := λ X1 X2,
  { le := λ x hx, (begin
      rcases hx withx, rfl⟩,
      refineX1.le (set.mem_range_self _), X2.le (set.mem_range_self _), _⟩,
      rw [← X1.is_extension x, ← X2.is_extension x],
    end : x ∈ X1.to_linear_pmap.eq_locus X2.to_linear_pmap),
    is_extension := λ m, X1.is_extension _,
    .. (X1.to_linear_pmapX2.to_linear_pmap)} }

instance : semilattice_inf (extension_of i f) :=
function.injective.semilattice_inf extension_of.to_linear_pmap
  (λ X Y h, extension_of.ext (by rw h) $ λ x y h', by { induction h, congr, exact_mod_cast h' }) $
    λ X Y, linear_pmap.ext rfl $ λ x y h, by { congr, exact_mod_cast h }

variables {R i f}

lemma chain_linear_pmap_of_chain_extension_of
  {c : set (extension_of i f)} (hchain : is_chain (≤) c) :
  (is_chain (≤) $ (λ x : extension_of i f, x.to_linear_pmap) '' c) :=
begin
  rintro _ ⟨a, a_mem, rfl⟩ _ ⟨b, b_mem, rfl⟩ neq,
  exact hchain a_mem b_mem (ne_of_apply_ne _ neq),
end

/-- The maximal element of every nonempty chain of `extension_of i f`. -/
def extension_of.max {c : set (extension_of i f)} (hchain : is_chain (≤) c)
  (hnonempty : c.nonempty) :
  extension_of i f :=
{ le := le_trans hnonempty.some.le $ (linear_pmap.le_Sup _ $ (set.mem_image _ _ _).mpr
    ⟨hnonempty.some, hnonempty.some_spec, rfl⟩).1,
  is_extension := λ m, begin
    refine eq.trans (hnonempty.some.is_extension m) _,
    symmetry,
    generalize_proofs _ h0 h1,
    exact linear_pmap.Sup_apply
      (is_chain.directed_on $ chain_linear_pmap_of_chain_extension_of hchain)
        ((set.mem_image _ _ _).mpr ⟨hnonempty.some, hnonempty.some_spec, rfl⟩) ⟨i m, h1⟩,
  end,
  ..linear_pmap.Sup _ (is_chain.directed_on $ chain_linear_pmap_of_chain_extension_of hchain) }

lemma extension_of.le_max {c : set (extension_of i f)} (hchain : is_chain (≤) c)
  (hnonempty : c.nonempty) (a : extension_of i f) (ha : ac) :
  a ≤ extension_of.max hchain hnonempty :=
linear_pmap.le_Sup (is_chain.directed_on $ chain_linear_pmap_of_chain_extension_of hchain) $
  (set.mem_image _ _ _).mpr ⟨a, ha, rfl⟩

variables (i f) [fact $ function.injective i]

instance extension_of.inhabited : inhabited (extension_of i f) :=
{ default :=
  { domain := i.range,
    to_fun :=
    { to_fun := λ x, f x.2.some,
      map_add' := λ x y, begin
        have eq1  : _ + _ = (x + y).1 := congr_arg2 (+) x.2.some_spec y.2.some_spec,
        rw [← map_add, ← (x + y).2.some_spec] at eq1,
        rw [← fact.out (function.injective i) eq1, map_add],
      end,
      map_smul' := λ r x, begin
        have eq1 : r • _ = (rx).1 := congr_arg ((•) r) x.2.some_spec,
        rw [← linear_map.map_smul, ← (rx).2.some_spec] at eq1,
        rw [ring_hom.id_apply, ← fact.out (function.injective i) eq1, linear_map.map_smul],
      end },
    le := le_refl _,
    is_extension := λ m, begin
      simp only [linear_pmap.mk_apply, linear_map.coe_mk],
      congr,
      exact fact.out (function.injective i) (⟨i m, ⟨_, rfl⟩⟩ : i.range).2.some_spec.symm,
    end } }

/-- Since every nonempty chain has a maximal element, by Zorn's lemma, there is a maximal
`extension_of i f`. -/
def extension_of_max : extension_of i f :=
(@zorn_nonempty_partial_order (extension_of i f) _ ⟨inhabited.default⟩
  (λ c hchain hnonempty,
    ⟨extension_of.max hchain hnonempty, extension_of.le_max hchain hnonempty⟩)).some

lemma extension_of_max_is_max :
  ∀ (a : extension_of i f), extension_of_max i f ≤ a → a = extension_of_max i f :=
(@zorn_nonempty_partial_order (extension_of i f) _ ⟨inhabited.default⟩
  ((λ c hchain hnonempty,
    ⟨extension_of.max hchain hnonempty, extension_of.le_max hchain hnonempty⟩))).some_spec

variables {f}
private lemma extension_of_max_adjoin.aux1
  {y : N}
  (x : (extension_of_max i f).domain ⊔ submodule.span R {y}) :
  ∃ (a : (extension_of_max i f).domain) (b : R), x.1 = a.1 + b • y :=
begin
  have mem1 : x.1 ∈ (_ : set _) := x.2,
  rw submodule.coe_sup at mem1,
  rcases mem1 with ⟨a, b, a_mem, (b_mem : b ∈ (submodule.span R _ : submodule R N)), eq1⟩,
  rw submodule.mem_span_singleton at b_mem,
  rcases b_mem with ⟨z, eq2⟩,
  exact ⟨⟨a, a_mem⟩, z, by rw [← eq1, ← eq2]⟩,
end

/--If `x ∈ M ⊔ ⟨y⟩`, then `x = m + r • y`, `fst` pick an arbitrary such `m`.-/
def extension_of_max_adjoin.fst
  {y : N} (x : (extension_of_max i f).domain ⊔ submodule.span R {y}) :
  (extension_of_max i f).domain :=
(extension_of_max_adjoin.aux1 i x).some

/--If `x ∈ M ⊔ ⟨y⟩`, then `x = m + r • y`, `snd` pick an arbitrary such `r`.-/
def extension_of_max_adjoin.snd
  {y : N} (x : (extension_of_max i f).domain ⊔ submodule.span R {y}) : R :=
(extension_of_max_adjoin.aux1 i x).some_spec.some

lemma extension_of_max_adjoin.eqn
  {y : N} (x : (extension_of_max i f).domain ⊔ submodule.span R {y}) :
  ↑x = ↑(extension_of_max_adjoin.fst i x) + (extension_of_max_adjoin.snd i x) • y :=
(extension_of_max_adjoin.aux1 i x).some_spec.some_spec

variables (f)
/--the ideal `I = {r | r • y ∈ N}`-/
def extension_of_max_adjoin.ideal (y : N) :
  ideal R :=
(extension_of_max i f).domain.comap (linear_map.id.smul_right y)

/--A linear map `I ⟶ Q` by `x ↦ f' (x • y)` where `f'` is the maximal extension-/
def extension_of_max_adjoin.ideal_to (y : N) :
  extension_of_max_adjoin.ideal i f y →ₗ[R] Q :=
{ to_fun := λ z, (extension_of_max i f).to_linear_pmap ⟨(↑z : R) • y, z.prop⟩,
  map_add' := λ z1 z2, by simp [← (extension_of_max i f).to_linear_pmap.map_add, add_smul],
  map_smul' := λ z1 z2, by simp [← (extension_of_max i f).to_linear_pmap.map_smul, mul_smul]; refl }

/-- Since we assumed `Q` being Baer, the linear map `x ↦ f' (x • y) : I ⟶ Q` extends to `R ⟶ Q`,
call this extended map `φ`-/
def extension_of_max_adjoin.extend_ideal_to (h : module.Baer R Q) (y : N) : R →ₗ[R] Q :=
(h (extension_of_max_adjoin.ideal i f y) (extension_of_max_adjoin.ideal_to i f y)).some

lemma extension_of_max_adjoin.extend_ideal_to_is_extension (h : module.Baer R Q) (y : N) :
  ∀ (x : R) (mem : xextension_of_max_adjoin.ideal i f y),
  extension_of_max_adjoin.extend_ideal_to i f h y x =
  extension_of_max_adjoin.ideal_to i f y ⟨x, mem⟩ :=
(h (extension_of_max_adjoin.ideal i f y) (extension_of_max_adjoin.ideal_to i f y)).some_spec

lemma extension_of_max_adjoin.extend_ideal_to_wd' (h : module.Baer R Q) {y : N} (r : R)
  (eq1 : ry = 0) :
  extension_of_max_adjoin.extend_ideal_to i f h y r = 0 :=
begin
  rw extension_of_max_adjoin.extend_ideal_to_is_extension i f h y r
    (by rw eq1; exact submodule.zero_mem _ : ry_),
  simp only [extension_of_max_adjoin.ideal_to, linear_map.coe_mk, eq1, subtype.coe_mk,
    ← add_submonoid_class.zero_def, (extension_of_max i f).to_linear_pmap.map_zero]
end

lemma extension_of_max_adjoin.extend_ideal_to_wd (h : module.Baer R Q) {y : N} (r r' : R)
  (eq1 : ry = r'y) :
  extension_of_max_adjoin.extend_ideal_to i f h y r =
  extension_of_max_adjoin.extend_ideal_to i f h y r' :=
begin
  rw [← sub_eq_zero, ← map_sub],
  convert extension_of_max_adjoin.extend_ideal_to_wd' i f h (r - r') _,
  rw [sub_smul, sub_eq_zero, eq1],
end

lemma extension_of_max_adjoin.extend_ideal_to_eq (h : module.Baer R Q) {y : N} (r : R)
  (hr : ry ∈ (extension_of_max i f).domain) :
  extension_of_max_adjoin.extend_ideal_to i f h y r =
    (extension_of_max i f).to_linear_pmap ⟨r • y, hr⟩ :=
by simp only [extension_of_max_adjoin.extend_ideal_to_is_extension i f h _ _ hr,
  extension_of_max_adjoin.ideal_to, linear_map.coe_mk, subtype.coe_mk]

/--We can finally define a linear map `M ⊔ ⟨y⟩ ⟶ Q` by `x + r • y ↦ f x + φ r`
-/
def extension_of_max_adjoin.extension_to_fun (h : module.Baer R Q)
  {y : N} :
  (extension_of_max i f).domain ⊔ submodule.span R {y} → Q :=
λ x, (extension_of_max i f).to_linear_pmap (extension_of_max_adjoin.fst i x) +
  extension_of_max_adjoin.extend_ideal_to i f h y (extension_of_max_adjoin.snd i x)

lemma extension_of_max_adjoin.extension_to_fun_wd (h : module.Baer R Q)
  {y : N} (x : (extension_of_max i f).domain ⊔ submodule.span R {y})
  (a : (extension_of_max i f).domain) (r : R)
  (eq1 : ↑x = ↑a + ry) :
  extension_of_max_adjoin.extension_to_fun i f h x =
    (extension_of_max i f).to_linear_pmap a +
      extension_of_max_adjoin.extend_ideal_to i f h y r :=
begin
  cases a with a ha,
  rw subtype.coe_mk at eq1,
  have eq2 : (extension_of_max_adjoin.fst i x - a : N) = (r - extension_of_max_adjoin.snd i x) • y,
  { rwa [extension_of_max_adjoin.eqn, ← sub_eq_zero, ←sub_sub_sub_eq,
      sub_eq_zero, ← sub_smul] at eq1 },
  have eq3 := extension_of_max_adjoin.extend_ideal_to_eq i f h (r - extension_of_max_adjoin.snd i x)
    (by rweq2; exact submodule.sub_mem _ (extension_of_max_adjoin.fst i x).2 ha),
  simp only [map_sub, sub_smul, sub_eq_iff_eq_add] at eq3,
  unfold extension_of_max_adjoin.extension_to_fun,
  rw [eq3, ← add_assoc, ← (extension_of_max i f).to_linear_pmap.map_add, add_mem_class.mk_add_mk],
  congr,
  ext,
  rw [subtype.coe_mk, add_sub, ← eq1],
  exact eq_sub_of_add_eq (extension_of_max_adjoin.eqn _ _).symm
end

/--The linear map `M ⊔ ⟨y⟩ ⟶ Q` by `x + r • y ↦ f x + φ r` is an extension of `f`-/
def extension_of_max_adjoin (h : module.Baer R Q) (y : N) :
  extension_of i f :=
{ domain := (extension_of_max i f).domain ⊔ submodule.span R {y},
  le := le_trans (extension_of_max i f).le le_sup_left,
  to_fun :=
    { to_fun := extension_of_max_adjoin.extension_to_fun i f h,
      map_add' := λ a b, begin
        have eq1 : ↑a + ↑b =
          ↑((extension_of_max_adjoin.fst i a) + (extension_of_max_adjoin.fst i b)) +
          (extension_of_max_adjoin.snd i a + extension_of_max_adjoin.snd i b) • y,
        { rw [extension_of_max_adjoin.eqn, extension_of_max_adjoin.eqn, add_smul],
          abel, },
        rw [extension_of_max_adjoin.extension_to_fun_wd i f h (a + b) _ _ eq1,
          linear_pmap.map_add, map_add],
        unfold extension_of_max_adjoin.extension_to_fun,
        abel,
      end,
      map_smul' := λ r a, begin
        rw [ring_hom.id_apply],
        have eq1 : r • ↑a = ↑(rextension_of_max_adjoin.fst i a) +
          (rextension_of_max_adjoin.snd i a) • y,
        { rw [extension_of_max_adjoin.eqn, smul_add, smul_eq_mul, mul_smul],
          refl, },
        rw [extension_of_max_adjoin.extension_to_fun_wd i f h (ra) _ _ eq1,
          linear_map.map_smul, linear_pmap.map_smul, ← smul_add],
        congr',
      end },
  is_extension := λ m, begin
    simp only [linear_pmap.mk_apply, linear_map.coe_mk],
    rw [(extension_of_max i f).is_extension, extension_of_max_adjoin.extension_to_fun_wd i f h
      _ ⟨i m, _⟩ 0 _, map_zero, add_zero],
    simp,
  end }

lemma extension_of_max_le (h : module.Baer R Q) {y : N} :
  extension_of_max i f ≤ extension_of_max_adjoin i f h y :=
⟨le_sup_left, λ x x' EQ, begin
  symmetry,
  change extension_of_max_adjoin.extension_to_fun i f h _ = _,
  rw [extension_of_max_adjoin.extension_to_fun_wd i f h x' x 0 (by simp [EQ]), map_zero, add_zero],
end⟩

lemma extension_of_max_to_submodule_eq_top (h : module.Baer R Q) :
  (extension_of_max i f).domain = ⊤ :=
begin
  refine submodule.eq_top_iff'.mpr (λ y, _),
  rw [← extension_of_max_is_max i f _ (extension_of_max_le i f h), extension_of_max_adjoin,
      submodule.mem_sup],
  exact ⟨0, submodule.zero_mem _, y, submodule.mem_span_singleton_self _, zero_add _⟩
end

/--**Baer's criterion** for injective module : a Baer module is an injective module, i.e. if every
linear map from an ideal can be extended, then the module is injective.-/
protected theorem injective (h : module.Baer R Q) :
  module.injective R Q :=
{ out := λ X Y ins1 ins2 ins3 ins4 i hi f, begin
    haveI : fact (function.injective i) := ⟨hi⟩,
    exact ⟨{ to_fun := λ y, (extension_of_max i f).to_linear_pmap
        ⟨y, (extension_of_max_to_submodule_eq_top i f h).symm ▸ trivial⟩,
      map_add' := λ x y, by { rw ← linear_pmap.map_add, congr, },
      map_smul' := λ r x, by { rw ← linear_pmap.map_smul, congr } },
      λ x, ((extension_of_max i f).is_extension x).symm⟩,
  end }

end module.Baer