Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 4,405 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/

import algebra.ring.equiv
import group_theory.group_action.group
import ring_theory.subring.basic

/-!
# Group action on rings

This file defines the typeclass of monoid acting on semirings `mul_semiring_action M R`,
and the corresponding typeclass of invariant subrings.

Note that `algebra` does not satisfy the axioms of `mul_semiring_action`.

## Implementation notes

There is no separate typeclass for group acting on rings, group acting on fields, etc.
They are all grouped under `mul_semiring_action`.

## Tags

group action, invariant subring

-/

universes u v
open_locale big_operators

/-- Typeclass for multiplicative actions by monoids on semirings.

This combines `distrib_mul_action` with `mul_distrib_mul_action`. -/
class mul_semiring_action (M : Type u) (R : Type v) [monoid M] [semiring R]
  extends distrib_mul_action M R :=
(smul_one : ∀ (g : M), (g • 1 : R) = 1)
(smul_mul : ∀ (g : M) (x y : R), g • (x * y) = (gx) * (gy))

section semiring

variables (M G : Type u) [monoid M] [group G]
variables (A R S F : Type v) [add_monoid A] [semiring R] [comm_semiring S] [division_ring F]

-- note we could not use `extends` since these typeclasses are made with `old_structure_cmd`
@[priority 100]
instance mul_semiring_action.to_mul_distrib_mul_action [h : mul_semiring_action M R] :
  mul_distrib_mul_action M R :=
{ ..h }

/-- Each element of the monoid defines a semiring homomorphism. -/
@[simps]
def mul_semiring_action.to_ring_hom [mul_semiring_action M R] (x : M) : R →+* R :=
{ .. mul_distrib_mul_action.to_monoid_hom R x,
  .. distrib_mul_action.to_add_monoid_hom R x }

theorem to_ring_hom_injective [mul_semiring_action M R] [has_faithful_smul M R] :
  function.injective (mul_semiring_action.to_ring_hom M R) :=
λ m₁ m₂ h, eq_of_smul_eq_smul $ λ r, ring_hom.ext_iff.1 h r

/-- Each element of the group defines a semiring isomorphism. -/
@[simps]
def mul_semiring_action.to_ring_equiv [mul_semiring_action G R] (x : G) : R ≃+* R :=
{ .. distrib_mul_action.to_add_equiv R x,
  .. mul_semiring_action.to_ring_hom G R x }

section
variables {M G R}

/-- A stronger version of `submonoid.distrib_mul_action`. -/
instance submonoid.mul_semiring_action [mul_semiring_action M R] (H : submonoid M) :
  mul_semiring_action H R :=
{ smul := (•),
  .. H.mul_distrib_mul_action,
  .. H.distrib_mul_action }

/-- A stronger version of `subgroup.distrib_mul_action`. -/
instance subgroup.mul_semiring_action [mul_semiring_action G R] (H : subgroup G) :
  mul_semiring_action H R :=
H.to_submonoid.mul_semiring_action

/-- A stronger version of `subsemiring.distrib_mul_action`. -/
instance subsemiring.mul_semiring_action {R'} [semiring R'] [mul_semiring_action R' R]
  (H : subsemiring R') :
  mul_semiring_action H R :=
H.to_submonoid.mul_semiring_action

/-- A stronger version of `subring.distrib_mul_action`. -/
instance subring.mul_semiring_action {R'} [ring R'] [mul_semiring_action R' R]
  (H : subring R') :
  mul_semiring_action H R :=
H.to_subsemiring.mul_semiring_action

end

section simp_lemmas

variables {M G A R F}

attribute [simp] smul_one smul_mul' smul_zero smul_add

/-- Note that `smul_inv'` refers to the group case, and `smul_inv` has an additional inverse
on `x`. -/
@[simp] lemma smul_inv'' [mul_semiring_action M F] (x : M) (m : F) : x • m⁻¹ = (xm)⁻¹ :=
(mul_semiring_action.to_ring_hom M F x).map_inv _

end simp_lemmas

end semiring

section ring

variables (M : Type u) [monoid M] {R : Type v} [ring R] [mul_semiring_action M R]
variables (S : subring R)
open mul_action

/-- A typeclass for subrings invariant under a `mul_semiring_action`. -/
class is_invariant_subring : Prop :=
(smul_mem : ∀ (m : M) {x : R}, x ∈ S → m • x ∈ S)

instance is_invariant_subring.to_mul_semiring_action [is_invariant_subring M S] :
  mul_semiring_action M S :=
{ smul := λ m x, ⟨m • x, is_invariant_subring.smul_mem m x.2⟩,
  one_smul := λ s, subtype.eq $ one_smul M s,
  mul_smul := λ m₁ m₂ s, subtype.eq $ mul_smul m₁ m₂ s,
  smul_add := λ m s₁ s₂, subtype.eq $ smul_add m s₁ s₂,
  smul_zero := λ m, subtype.eq $ smul_zero m,
  smul_one := λ m, subtype.eq $ smul_one m,
  smul_mul := λ m s₁ s₂, subtype.eq $ smul_mul' m s₁ s₂ }

end ring