Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 6,623 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
/-
Copyright (c) 2020 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import data.int.cast.defs
import algebra.hom.equiv
/-!
# `ulift` instances for groups and monoids
This file defines instances for group, monoid, semigroup and related structures on `ulift` types.
(Recall `ulift α` is just a "copy" of a type `α` in a higher universe.)
We use `tactic.pi_instance_derive_field`, even though it wasn't intended for this purpose,
which seems to work fine.
We also provide `ulift.mul_equiv : ulift R ≃* R` (and its additive analogue).
-/
universes u v
variables {α : Type u} {β : Type*} {x y : ulift.{v} α}
namespace ulift
@[to_additive] instance has_one [has_one α] : has_one (ulift α) := ⟨⟨1⟩⟩
@[simp, to_additive] lemma one_down [has_one α] : (1 : ulift α).down = 1 := rfl
@[to_additive] instance has_mul [has_mul α] : has_mul (ulift α) := ⟨λ f g, ⟨f.down * g.down⟩⟩
@[simp, to_additive] lemma mul_down [has_mul α] : (x * y).down = x.down * y.down := rfl
@[to_additive] instance has_div [has_div α] : has_div (ulift α) := ⟨λ f g, ⟨f.down / g.down⟩⟩
@[simp, to_additive] lemma div_down [has_div α] : (x / y).down = x.down / y.down := rfl
@[to_additive] instance has_inv [has_inv α] : has_inv (ulift α) := ⟨λ f, ⟨f.down⁻¹⟩⟩
@[simp, to_additive] lemma inv_down [has_inv α] : x⁻¹.down = (x.down)⁻¹ := rfl
@[to_additive]
instance has_smul [has_smul α β] : has_smul α (ulift β) := ⟨λ n x, up (n • x.down)⟩
@[simp, to_additive]
lemma smul_down [has_smul α β] (a : α) (b : ulift.{v} β) : (a • b).down = a • b.down := rfl
@[to_additive has_smul, to_additive_reorder 1]
instance has_pow [has_pow α β] : has_pow (ulift α) β := ⟨λ x n, up (x.down ^ n)⟩
@[simp, to_additive smul_down, to_additive_reorder 1]
lemma pow_down [has_pow α β] (a : ulift.{v} α) (b : β) : (a ^ b).down = a.down ^ b := rfl
/--
The multiplicative equivalence between `ulift α` and `α`.
-/
@[to_additive "The additive equivalence between `ulift α` and `α`."]
def _root_.mul_equiv.ulift [has_mul α] : ulift α ≃* α :=
{ map_mul' := λ x y, rfl,
.. equiv.ulift }
@[to_additive]
instance semigroup [semigroup α] : semigroup (ulift α) :=
mul_equiv.ulift.injective.semigroup _ $ λ x y, rfl
@[to_additive]
instance comm_semigroup [comm_semigroup α] : comm_semigroup (ulift α) :=
equiv.ulift.injective.comm_semigroup _ $ λ x y, rfl
@[to_additive]
instance mul_one_class [mul_one_class α] : mul_one_class (ulift α) :=
equiv.ulift.injective.mul_one_class _ rfl $ λ x y, rfl
instance mul_zero_one_class [mul_zero_one_class α] : mul_zero_one_class (ulift α) :=
equiv.ulift.injective.mul_zero_one_class _ rfl rfl $ λ x y, rfl
@[to_additive]
instance monoid [monoid α] : monoid (ulift α) :=
equiv.ulift.injective.monoid _ rfl (λ _ _, rfl) (λ _ _, rfl)
instance add_monoid_with_one [add_monoid_with_one α] : add_monoid_with_one (ulift α) :=
{ nat_cast := λ n, ⟨n⟩,
nat_cast_zero := congr_arg ulift.up nat.cast_zero,
nat_cast_succ := λ n, congr_arg ulift.up (nat.cast_succ _),
.. ulift.has_one, .. ulift.add_monoid }
@[simp] lemma nat_cast_down [add_monoid_with_one α] (n : ℕ) :
(n : ulift α).down = n :=
rfl
@[to_additive]
instance comm_monoid [comm_monoid α] : comm_monoid (ulift α) :=
equiv.ulift.injective.comm_monoid _ rfl (λ _ _, rfl) (λ _ _, rfl)
instance monoid_with_zero [monoid_with_zero α] : monoid_with_zero (ulift α) :=
equiv.ulift.injective.monoid_with_zero _ rfl rfl (λ _ _, rfl) (λ _ _, rfl)
instance comm_monoid_with_zero [comm_monoid_with_zero α] : comm_monoid_with_zero (ulift α) :=
equiv.ulift.injective.comm_monoid_with_zero _ rfl rfl (λ _ _, rfl) (λ _ _, rfl)
@[to_additive]
instance div_inv_monoid [div_inv_monoid α] : div_inv_monoid (ulift α) :=
equiv.ulift.injective.div_inv_monoid _ rfl (λ _ _, rfl) (λ _, rfl)
(λ _ _, rfl) (λ _ _, rfl) (λ _ _, rfl)
@[to_additive]
instance group [group α] : group (ulift α) :=
equiv.ulift.injective.group _ rfl (λ _ _, rfl) (λ _, rfl)
(λ _ _, rfl) (λ _ _, rfl) (λ _ _, rfl)
instance add_group_with_one [add_group_with_one α] : add_group_with_one (ulift α) :=
{ int_cast := λ n, ⟨n⟩,
int_cast_of_nat := λ n, congr_arg ulift.up (int.cast_of_nat _),
int_cast_neg_succ_of_nat := λ n, congr_arg ulift.up (int.cast_neg_succ_of_nat _),
.. ulift.add_monoid_with_one, .. ulift.add_group }
@[simp] lemma int_cast_down [add_group_with_one α] (n : ℤ) :
(n : ulift α).down = n :=
rfl
@[to_additive]
instance comm_group [comm_group α] : comm_group (ulift α) :=
equiv.ulift.injective.comm_group _ rfl (λ _ _, rfl) (λ _, rfl)
(λ _ _, rfl) (λ _ _, rfl) (λ _ _, rfl)
instance group_with_zero [group_with_zero α] : group_with_zero (ulift α) :=
equiv.ulift.injective.group_with_zero _ rfl rfl (λ _ _, rfl) (λ _, rfl) (λ _ _, rfl) (λ _ _, rfl)
(λ _ _, rfl)
instance comm_group_with_zero [comm_group_with_zero α] : comm_group_with_zero (ulift α) :=
equiv.ulift.injective.comm_group_with_zero _ rfl rfl (λ _ _, rfl) (λ _, rfl) (λ _ _, rfl)
(λ _ _, rfl) (λ _ _, rfl)
@[to_additive add_left_cancel_semigroup]
instance left_cancel_semigroup [left_cancel_semigroup α] :
left_cancel_semigroup (ulift α) :=
equiv.ulift.injective.left_cancel_semigroup _ (λ _ _, rfl)
@[to_additive add_right_cancel_semigroup]
instance right_cancel_semigroup [right_cancel_semigroup α] :
right_cancel_semigroup (ulift α) :=
equiv.ulift.injective.right_cancel_semigroup _ (λ _ _, rfl)
@[to_additive add_left_cancel_monoid]
instance left_cancel_monoid [left_cancel_monoid α] :
left_cancel_monoid (ulift α) :=
equiv.ulift.injective.left_cancel_monoid _ rfl (λ _ _, rfl) (λ _ _, rfl)
@[to_additive add_right_cancel_monoid]
instance right_cancel_monoid [right_cancel_monoid α] :
right_cancel_monoid (ulift α) :=
equiv.ulift.injective.right_cancel_monoid _ rfl (λ _ _, rfl) (λ _ _, rfl)
@[to_additive add_cancel_monoid]
instance cancel_monoid [cancel_monoid α] :
cancel_monoid (ulift α) :=
equiv.ulift.injective.cancel_monoid _ rfl (λ _ _, rfl) (λ _ _, rfl)
@[to_additive add_cancel_monoid]
instance cancel_comm_monoid [cancel_comm_monoid α] :
cancel_comm_monoid (ulift α) :=
equiv.ulift.injective.cancel_comm_monoid _ rfl (λ _ _, rfl) (λ _ _, rfl)
instance nontrivial [nontrivial α] : nontrivial (ulift α) :=
equiv.ulift.symm.injective.nontrivial
-- TODO we don't do `ordered_cancel_comm_monoid` or `ordered_comm_group`
-- We'd need to add instances for `ulift` in `order.basic`.
end ulift
|