Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 6,623 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
/-
Copyright (c) 2020 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import data.int.cast.defs
import algebra.hom.equiv

/-!
# `ulift` instances for groups and monoids

This file defines instances for group, monoid, semigroup and related structures on `ulift` types.

(Recall `ulift α` is just a "copy" of a type `α` in a higher universe.)

We use `tactic.pi_instance_derive_field`, even though it wasn't intended for this purpose,
which seems to work fine.

We also provide `ulift.mul_equiv : ulift R ≃* R` (and its additive analogue).
-/

universes u v
variables {α : Type u} {β : Type*} {x y : ulift.{v} α}

namespace ulift

@[to_additive] instance has_one [has_one α] : has_one (ulift α) := ⟨⟨1⟩⟩
@[simp, to_additive] lemma one_down [has_one α] : (1 : ulift α).down = 1 := rfl

@[to_additive] instance has_mul [has_mul α] : has_mul (ulift α) := ⟨λ f g, ⟨f.down * g.down⟩⟩
@[simp, to_additive] lemma mul_down [has_mul α] : (x * y).down = x.down * y.down := rfl

@[to_additive] instance has_div [has_div α] : has_div (ulift α) := ⟨λ f g, ⟨f.down / g.down⟩⟩
@[simp, to_additive] lemma div_down [has_div α] : (x / y).down = x.down / y.down := rfl

@[to_additive] instance has_inv [has_inv α] : has_inv (ulift α) := ⟨λ f, ⟨f.down⁻¹⟩⟩
@[simp, to_additive] lemma inv_down [has_inv α] : x⁻¹.down = (x.down)⁻¹ := rfl

@[to_additive]
instance has_smul [has_smul α β] : has_smul α (ulift β) := ⟨λ n x, up (n • x.down)⟩
@[simp, to_additive]
lemma smul_down [has_smul α β] (a : α) (b : ulift.{v} β) : (a • b).down = a • b.down := rfl

@[to_additive has_smul, to_additive_reorder 1]
instance has_pow [has_pow α β] : has_pow (ulift α) β := ⟨λ x n, up (x.down ^ n)⟩
@[simp, to_additive smul_down, to_additive_reorder 1]
lemma pow_down [has_pow α β] (a : ulift.{v} α) (b : β) : (a ^ b).down = a.down ^ b := rfl

/--
The multiplicative equivalence between `ulift α` and `α`.
-/
@[to_additive "The additive equivalence between `ulift α` and `α`."]
def _root_.mul_equiv.ulift [has_mul α] : ulift α ≃* α :=
{ map_mul' := λ x y, rfl,
  .. equiv.ulift }

@[to_additive]
instance semigroup [semigroup α] : semigroup (ulift α) :=
mul_equiv.ulift.injective.semigroup _ $ λ x y, rfl

@[to_additive]
instance comm_semigroup [comm_semigroup α] : comm_semigroup (ulift α) :=
equiv.ulift.injective.comm_semigroup _ $ λ x y, rfl

@[to_additive]
instance mul_one_class [mul_one_class α] : mul_one_class (ulift α) :=
equiv.ulift.injective.mul_one_class _ rfl $ λ x y, rfl

instance mul_zero_one_class [mul_zero_one_class α] : mul_zero_one_class (ulift α) :=
equiv.ulift.injective.mul_zero_one_class _ rfl rfl $ λ x y, rfl

@[to_additive]
instance monoid [monoid α] : monoid (ulift α) :=
equiv.ulift.injective.monoid _ rfl (λ _ _, rfl) (λ _ _, rfl)

instance add_monoid_with_one [add_monoid_with_one α] : add_monoid_with_one (ulift α) :=
{ nat_cast := λ n, ⟨n⟩,
  nat_cast_zero := congr_arg ulift.up nat.cast_zero,
  nat_cast_succ := λ n, congr_arg ulift.up (nat.cast_succ _),
  .. ulift.has_one, .. ulift.add_monoid }

@[simp] lemma nat_cast_down [add_monoid_with_one α] (n : ℕ) :
  (n : ulift α).down = n :=
rfl

@[to_additive]
instance comm_monoid [comm_monoid α] : comm_monoid (ulift α) :=
equiv.ulift.injective.comm_monoid _ rfl (λ _ _, rfl) (λ _ _, rfl)

instance monoid_with_zero [monoid_with_zero α] : monoid_with_zero (ulift α) :=
equiv.ulift.injective.monoid_with_zero _ rfl rfl (λ _ _, rfl) (λ _ _, rfl)

instance comm_monoid_with_zero [comm_monoid_with_zero α] : comm_monoid_with_zero (ulift α) :=
equiv.ulift.injective.comm_monoid_with_zero _ rfl rfl (λ _ _, rfl) (λ _ _, rfl)

@[to_additive]
instance div_inv_monoid [div_inv_monoid α] : div_inv_monoid (ulift α) :=
equiv.ulift.injective.div_inv_monoid _ rfl (λ _ _, rfl) (λ _, rfl)
  (λ _ _, rfl) (λ _ _, rfl) (λ _ _, rfl)

@[to_additive]
instance group [group α] : group (ulift α) :=
equiv.ulift.injective.group _ rfl (λ _ _, rfl) (λ _, rfl)
  (λ _ _, rfl) (λ _ _, rfl) (λ _ _, rfl)

instance add_group_with_one [add_group_with_one α] : add_group_with_one (ulift α) :=
{ int_cast := λ n, ⟨n⟩,
  int_cast_of_nat := λ n, congr_arg ulift.up (int.cast_of_nat _),
  int_cast_neg_succ_of_nat := λ n, congr_arg ulift.up (int.cast_neg_succ_of_nat _),
  .. ulift.add_monoid_with_one, .. ulift.add_group }

@[simp] lemma int_cast_down [add_group_with_one α] (n : ℤ) :
  (n : ulift α).down = n :=
rfl

@[to_additive]
instance comm_group [comm_group α] : comm_group (ulift α) :=
equiv.ulift.injective.comm_group _ rfl (λ _ _, rfl) (λ _, rfl)
  (λ _ _, rfl) (λ _ _, rfl) (λ _ _, rfl)

instance group_with_zero [group_with_zero α] : group_with_zero (ulift α) :=
equiv.ulift.injective.group_with_zero _ rfl rfl (λ _ _, rfl) (λ _, rfl) (λ _ _, rfl) (λ _ _, rfl)
  (λ _ _, rfl)

instance comm_group_with_zero [comm_group_with_zero α] : comm_group_with_zero (ulift α) :=
equiv.ulift.injective.comm_group_with_zero _ rfl rfl (λ _ _, rfl) (λ _, rfl) (λ _ _, rfl)
  (λ _ _, rfl) (λ _ _, rfl)

@[to_additive add_left_cancel_semigroup]
instance left_cancel_semigroup [left_cancel_semigroup α] :
  left_cancel_semigroup (ulift α) :=
equiv.ulift.injective.left_cancel_semigroup _ (λ _ _, rfl)

@[to_additive add_right_cancel_semigroup]
instance right_cancel_semigroup [right_cancel_semigroup α] :
  right_cancel_semigroup (ulift α) :=
equiv.ulift.injective.right_cancel_semigroup _ (λ _ _, rfl)

@[to_additive add_left_cancel_monoid]
instance left_cancel_monoid [left_cancel_monoid α] :
  left_cancel_monoid (ulift α) :=
equiv.ulift.injective.left_cancel_monoid _ rfl (λ _ _, rfl) (λ _ _, rfl)

@[to_additive add_right_cancel_monoid]
instance right_cancel_monoid [right_cancel_monoid α] :
  right_cancel_monoid (ulift α) :=
equiv.ulift.injective.right_cancel_monoid _ rfl (λ _ _, rfl) (λ _ _, rfl)

@[to_additive add_cancel_monoid]
instance cancel_monoid [cancel_monoid α] :
  cancel_monoid (ulift α) :=
equiv.ulift.injective.cancel_monoid _ rfl (λ _ _, rfl) (λ _ _, rfl)

@[to_additive add_cancel_monoid]
instance cancel_comm_monoid [cancel_comm_monoid α] :
  cancel_comm_monoid (ulift α) :=
equiv.ulift.injective.cancel_comm_monoid _ rfl (λ _ _, rfl) (λ _ _, rfl)

instance nontrivial [nontrivial α] : nontrivial (ulift α) :=
equiv.ulift.symm.injective.nontrivial

-- TODO we don't do `ordered_cancel_comm_monoid` or `ordered_comm_group`
-- We'd need to add instances for `ulift` in `order.basic`.

end ulift