Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 7,680 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
/-
Copyright (c) 2019 Neil Strickland. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Neil Strickland, Yury Kudryashov
-/
import algebra.group.semiconj

/-!
# Commuting pairs of elements in monoids

We define the predicate `commute a b := a * b = b * a` and provide some operations on terms `(h :
commute a b)`. E.g., if `a`, `b`, and c are elements of a semiring, and that `hb : commute a b` and
`hc : commute a c`.  Then `hb.pow_left 5` proves `commute (a ^ 5) b` and `(hb.pow_right 2).add_right
(hb.mul_right hc)` proves `commute a (b ^ 2 + b * c)`.

Lean does not immediately recognise these terms as equations, so for rewriting we need syntax like
`rw [(hb.pow_left 5).eq]` rather than just `rw [hb.pow_left 5]`.

This file defines only a few operations (`mul_left`, `inv_right`, etc).  Other operations
(`pow_right`, field inverse etc) are in the files that define corresponding notions.

## Implementation details

Most of the proofs come from the properties of `semiconj_by`.
-/

variables {G : Type*}

/-- Two elements commute if `a * b = b * a`. -/
@[to_additive add_commute "Two elements additively commute if `a + b = b + a`"]
def commute {S : Type*} [has_mul S] (a b : S) : Prop := semiconj_by a b b

namespace commute

section has_mul

variables {S : Type*} [has_mul S]

/-- Equality behind `commute a b`; useful for rewriting. -/
@[to_additive "Equality behind `add_commute a b`; useful for rewriting."]
protected lemma eq {a b : S} (h : commute a b) : a * b = b * a := h

/-- Any element commutes with itself. -/
@[refl, simp, to_additive "Any element commutes with itself."]
protected lemma refl (a : S) : commute a a := eq.refl (a * a)

/-- If `a` commutes with `b`, then `b` commutes with `a`. -/
@[symm, to_additive "If `a` commutes with `b`, then `b` commutes with `a`."]
protected lemma symm {a b : S} (h : commute a b) : commute b a := eq.symm h

@[to_additive] protected theorem semiconj_by {a b : S} (h : commute a b) : semiconj_by a b b := h

@[to_additive]
protected theorem symm_iff {a b : S} : commute a b ↔ commute b a :=
⟨commute.symm, commute.symm⟩

end has_mul

section semigroup

variables {S : Type*} [semigroup S] {a b c : S}

/-- If `a` commutes with both `b` and `c`, then it commutes with their product. -/
@[simp, to_additive "If `a` commutes with both `b` and `c`, then it commutes with their sum."]
lemma mul_right (hab : commute a b) (hac : commute a c) : commute a (b * c) := hab.mul_right hac

/-- If both `a` and `b` commute with `c`, then their product commutes with `c`. -/
@[simp, to_additive "If both `a` and `b` commute with `c`, then their product commutes with `c`."]
lemma mul_left (hac : commute a c) (hbc : commute b c) : commute (a * b) c := hac.mul_left hbc

@[to_additive] protected lemma right_comm (h : commute b c) (a : S) :
  a * b * c = a * c * b :=
by simp only [mul_assoc, h.eq]

@[to_additive] protected lemma left_comm (h : commute a b) (c) :
  a * (b * c) = b * (a * c) :=
by simp only [← mul_assoc, h.eq]

end semigroup

@[to_additive]
protected theorem all {S : Type*} [comm_semigroup S] (a b : S) : commute a b := mul_comm a b

section mul_one_class

variables {M : Type*} [mul_one_class M]

@[simp, to_additive] theorem one_right (a : M) : commute a 1 := semiconj_by.one_right a
@[simp, to_additive] theorem one_left (a : M) : commute 1 a := semiconj_by.one_left a

end mul_one_class

section monoid

variables {M : Type*} [monoid M] {a b : M} {u u₁ u₂ : Mˣ}

@[simp, to_additive]
theorem pow_right (h : commute a b) (n : ℕ) : commute a (b ^ n) := h.pow_right n
@[simp, to_additive]
theorem pow_left (h : commute a b) (n : ℕ) : commute (a ^ n) b := (h.symm.pow_right n).symm
@[simp, to_additive]
theorem pow_pow (h : commute a b) (m n : ℕ) : commute (a ^ m) (b ^ n) :=
(h.pow_left m).pow_right n

@[simp, to_additive]
theorem self_pow (a : M) (n : ℕ) : commute a (a ^ n) := (commute.refl a).pow_right n
@[simp, to_additive]
theorem pow_self (a : M) (n : ℕ) : commute (a ^ n) a := (commute.refl a).pow_left n
@[simp, to_additive]
theorem pow_pow_self (a : M) (m n : ℕ) : commute (a ^ m) (a ^ n) :=
(commute.refl a).pow_pow m n

@[to_additive succ_nsmul'] theorem _root_.pow_succ' (a : M) (n : ℕ) : a ^ (n + 1) = a ^ n * a :=
(pow_succ a n).trans (self_pow _ _)

@[to_additive] theorem units_inv_right : commute a u → commute a ↑u⁻¹ :=
semiconj_by.units_inv_right

@[simp, to_additive] theorem units_inv_right_iff :
  commute a ↑u⁻¹ ↔ commute a u :=
semiconj_by.units_inv_right_iff

@[to_additive] theorem units_inv_left : commute ↑u a → commute ↑u⁻¹ a :=
semiconj_by.units_inv_symm_left

@[simp, to_additive]
theorem units_inv_left_iff: commute ↑u⁻¹ a ↔ commute ↑u a :=
semiconj_by.units_inv_symm_left_iff

@[to_additive]
theorem units_coe : commute u₁ u₂ → commute (u₁ : M) u₂ := semiconj_by.units_coe
@[to_additive]
theorem units_of_coe : commute (u₁ : M) u₂ → commute u₁ u₂ := semiconj_by.units_of_coe
@[simp, to_additive]
theorem units_coe_iff : commute (u₁ : M) u₂ ↔ commute u₁ u₂ := semiconj_by.units_coe_iff

@[to_additive] lemma is_unit_mul_iff (h : commute a b) :
  is_unit (a * b) ↔ is_unit a ∧ is_unit b :=
begin
  refine ⟨_, λ H, H.1.mul H.2⟩,
  rintro ⟨u, hu⟩,
  have : b * ↑u⁻¹ * a = 1,
  { have : commute a u := hu.symm ▸ (commute.refl _).mul_right h,
    rw [← this.units_inv_right.right_comm, ← h.eq, ← hu, u.mul_inv] },
  split,
  { refine ⟨⟨a, b * ↑u⁻¹, _, this⟩, rfl⟩,
    rw [← mul_assoc, ← hu, u.mul_inv] },
  { rw mul_assoc at this,
    refine ⟨⟨b, ↑u⁻¹ * a, this, _⟩, rfl⟩,
    rw [mul_assoc, ← hu, u.inv_mul] }
end

@[simp, to_additive] lemma _root_.is_unit_mul_self_iff :
  is_unit (a * a) ↔ is_unit a :=
(commute.refl a).is_unit_mul_iff.trans (and_self _)

end monoid

section division_monoid
variables [division_monoid G] {a b : G}

@[to_additive] lemma inv_inv : commute a b → commute a⁻¹ b⁻¹ := semiconj_by.inv_inv_symm
@[simp, to_additive]
lemma inv_inv_iff : commute a⁻¹ b⁻¹ ↔ commute a b := semiconj_by.inv_inv_symm_iff

end division_monoid

section group

variables [group G] {a b : G}

@[to_additive]
theorem inv_right : commute a b → commute a b⁻¹ := semiconj_by.inv_right
@[simp, to_additive]
theorem inv_right_iff : commute a b⁻¹ ↔ commute a b := semiconj_by.inv_right_iff

@[to_additive] theorem inv_left :  commute a b → commute a⁻¹ b := semiconj_by.inv_symm_left
@[simp, to_additive]
theorem inv_left_iff : commute a⁻¹ b ↔ commute a b := semiconj_by.inv_symm_left_iff

@[to_additive]
protected theorem inv_mul_cancel (h : commute a b) : a⁻¹ * b * a = b :=
by rw [h.inv_left.eq, inv_mul_cancel_right]

@[to_additive]
theorem inv_mul_cancel_assoc (h : commute a b) : a⁻¹ * (b * a) = b :=
by rw [← mul_assoc, h.inv_mul_cancel]

@[to_additive]
protected theorem mul_inv_cancel (h : commute a b) : a * b * a⁻¹ = b :=
by rw [h.eq, mul_inv_cancel_right]

@[to_additive]
theorem mul_inv_cancel_assoc (h : commute a b) : a * (b * a⁻¹) = b :=
by rw [← mul_assoc, h.mul_inv_cancel]

end group

end commute

section comm_group

variables [comm_group G] (a b : G)

@[simp, to_additive] lemma mul_inv_cancel_comm : a * b * a⁻¹ = b :=
(commute.all a b).mul_inv_cancel

@[simp, to_additive] lemma mul_inv_cancel_comm_assoc : a * (b * a⁻¹) = b :=
(commute.all a b).mul_inv_cancel_assoc

@[simp, to_additive] lemma inv_mul_cancel_comm : a⁻¹ * b * a = b :=
(commute.all a b).inv_mul_cancel

@[simp, to_additive] lemma inv_mul_cancel_comm_assoc : a⁻¹ * (b * a) = b :=
(commute.all a b).inv_mul_cancel_assoc

end comm_group