Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 7,680 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
/-
Copyright (c) 2019 Neil Strickland. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Neil Strickland, Yury Kudryashov
-/
import algebra.group.semiconj
/-!
# Commuting pairs of elements in monoids
We define the predicate `commute a b := a * b = b * a` and provide some operations on terms `(h :
commute a b)`. E.g., if `a`, `b`, and c are elements of a semiring, and that `hb : commute a b` and
`hc : commute a c`. Then `hb.pow_left 5` proves `commute (a ^ 5) b` and `(hb.pow_right 2).add_right
(hb.mul_right hc)` proves `commute a (b ^ 2 + b * c)`.
Lean does not immediately recognise these terms as equations, so for rewriting we need syntax like
`rw [(hb.pow_left 5).eq]` rather than just `rw [hb.pow_left 5]`.
This file defines only a few operations (`mul_left`, `inv_right`, etc). Other operations
(`pow_right`, field inverse etc) are in the files that define corresponding notions.
## Implementation details
Most of the proofs come from the properties of `semiconj_by`.
-/
variables {G : Type*}
/-- Two elements commute if `a * b = b * a`. -/
@[to_additive add_commute "Two elements additively commute if `a + b = b + a`"]
def commute {S : Type*} [has_mul S] (a b : S) : Prop := semiconj_by a b b
namespace commute
section has_mul
variables {S : Type*} [has_mul S]
/-- Equality behind `commute a b`; useful for rewriting. -/
@[to_additive "Equality behind `add_commute a b`; useful for rewriting."]
protected lemma eq {a b : S} (h : commute a b) : a * b = b * a := h
/-- Any element commutes with itself. -/
@[refl, simp, to_additive "Any element commutes with itself."]
protected lemma refl (a : S) : commute a a := eq.refl (a * a)
/-- If `a` commutes with `b`, then `b` commutes with `a`. -/
@[symm, to_additive "If `a` commutes with `b`, then `b` commutes with `a`."]
protected lemma symm {a b : S} (h : commute a b) : commute b a := eq.symm h
@[to_additive] protected theorem semiconj_by {a b : S} (h : commute a b) : semiconj_by a b b := h
@[to_additive]
protected theorem symm_iff {a b : S} : commute a b ↔ commute b a :=
⟨commute.symm, commute.symm⟩
end has_mul
section semigroup
variables {S : Type*} [semigroup S] {a b c : S}
/-- If `a` commutes with both `b` and `c`, then it commutes with their product. -/
@[simp, to_additive "If `a` commutes with both `b` and `c`, then it commutes with their sum."]
lemma mul_right (hab : commute a b) (hac : commute a c) : commute a (b * c) := hab.mul_right hac
/-- If both `a` and `b` commute with `c`, then their product commutes with `c`. -/
@[simp, to_additive "If both `a` and `b` commute with `c`, then their product commutes with `c`."]
lemma mul_left (hac : commute a c) (hbc : commute b c) : commute (a * b) c := hac.mul_left hbc
@[to_additive] protected lemma right_comm (h : commute b c) (a : S) :
a * b * c = a * c * b :=
by simp only [mul_assoc, h.eq]
@[to_additive] protected lemma left_comm (h : commute a b) (c) :
a * (b * c) = b * (a * c) :=
by simp only [← mul_assoc, h.eq]
end semigroup
@[to_additive]
protected theorem all {S : Type*} [comm_semigroup S] (a b : S) : commute a b := mul_comm a b
section mul_one_class
variables {M : Type*} [mul_one_class M]
@[simp, to_additive] theorem one_right (a : M) : commute a 1 := semiconj_by.one_right a
@[simp, to_additive] theorem one_left (a : M) : commute 1 a := semiconj_by.one_left a
end mul_one_class
section monoid
variables {M : Type*} [monoid M] {a b : M} {u u₁ u₂ : Mˣ}
@[simp, to_additive]
theorem pow_right (h : commute a b) (n : ℕ) : commute a (b ^ n) := h.pow_right n
@[simp, to_additive]
theorem pow_left (h : commute a b) (n : ℕ) : commute (a ^ n) b := (h.symm.pow_right n).symm
@[simp, to_additive]
theorem pow_pow (h : commute a b) (m n : ℕ) : commute (a ^ m) (b ^ n) :=
(h.pow_left m).pow_right n
@[simp, to_additive]
theorem self_pow (a : M) (n : ℕ) : commute a (a ^ n) := (commute.refl a).pow_right n
@[simp, to_additive]
theorem pow_self (a : M) (n : ℕ) : commute (a ^ n) a := (commute.refl a).pow_left n
@[simp, to_additive]
theorem pow_pow_self (a : M) (m n : ℕ) : commute (a ^ m) (a ^ n) :=
(commute.refl a).pow_pow m n
@[to_additive succ_nsmul'] theorem _root_.pow_succ' (a : M) (n : ℕ) : a ^ (n + 1) = a ^ n * a :=
(pow_succ a n).trans (self_pow _ _)
@[to_additive] theorem units_inv_right : commute a u → commute a ↑u⁻¹ :=
semiconj_by.units_inv_right
@[simp, to_additive] theorem units_inv_right_iff :
commute a ↑u⁻¹ ↔ commute a u :=
semiconj_by.units_inv_right_iff
@[to_additive] theorem units_inv_left : commute ↑u a → commute ↑u⁻¹ a :=
semiconj_by.units_inv_symm_left
@[simp, to_additive]
theorem units_inv_left_iff: commute ↑u⁻¹ a ↔ commute ↑u a :=
semiconj_by.units_inv_symm_left_iff
@[to_additive]
theorem units_coe : commute u₁ u₂ → commute (u₁ : M) u₂ := semiconj_by.units_coe
@[to_additive]
theorem units_of_coe : commute (u₁ : M) u₂ → commute u₁ u₂ := semiconj_by.units_of_coe
@[simp, to_additive]
theorem units_coe_iff : commute (u₁ : M) u₂ ↔ commute u₁ u₂ := semiconj_by.units_coe_iff
@[to_additive] lemma is_unit_mul_iff (h : commute a b) :
is_unit (a * b) ↔ is_unit a ∧ is_unit b :=
begin
refine ⟨_, λ H, H.1.mul H.2⟩,
rintro ⟨u, hu⟩,
have : b * ↑u⁻¹ * a = 1,
{ have : commute a u := hu.symm ▸ (commute.refl _).mul_right h,
rw [← this.units_inv_right.right_comm, ← h.eq, ← hu, u.mul_inv] },
split,
{ refine ⟨⟨a, b * ↑u⁻¹, _, this⟩, rfl⟩,
rw [← mul_assoc, ← hu, u.mul_inv] },
{ rw mul_assoc at this,
refine ⟨⟨b, ↑u⁻¹ * a, this, _⟩, rfl⟩,
rw [mul_assoc, ← hu, u.inv_mul] }
end
@[simp, to_additive] lemma _root_.is_unit_mul_self_iff :
is_unit (a * a) ↔ is_unit a :=
(commute.refl a).is_unit_mul_iff.trans (and_self _)
end monoid
section division_monoid
variables [division_monoid G] {a b : G}
@[to_additive] lemma inv_inv : commute a b → commute a⁻¹ b⁻¹ := semiconj_by.inv_inv_symm
@[simp, to_additive]
lemma inv_inv_iff : commute a⁻¹ b⁻¹ ↔ commute a b := semiconj_by.inv_inv_symm_iff
end division_monoid
section group
variables [group G] {a b : G}
@[to_additive]
theorem inv_right : commute a b → commute a b⁻¹ := semiconj_by.inv_right
@[simp, to_additive]
theorem inv_right_iff : commute a b⁻¹ ↔ commute a b := semiconj_by.inv_right_iff
@[to_additive] theorem inv_left : commute a b → commute a⁻¹ b := semiconj_by.inv_symm_left
@[simp, to_additive]
theorem inv_left_iff : commute a⁻¹ b ↔ commute a b := semiconj_by.inv_symm_left_iff
@[to_additive]
protected theorem inv_mul_cancel (h : commute a b) : a⁻¹ * b * a = b :=
by rw [h.inv_left.eq, inv_mul_cancel_right]
@[to_additive]
theorem inv_mul_cancel_assoc (h : commute a b) : a⁻¹ * (b * a) = b :=
by rw [← mul_assoc, h.inv_mul_cancel]
@[to_additive]
protected theorem mul_inv_cancel (h : commute a b) : a * b * a⁻¹ = b :=
by rw [h.eq, mul_inv_cancel_right]
@[to_additive]
theorem mul_inv_cancel_assoc (h : commute a b) : a * (b * a⁻¹) = b :=
by rw [← mul_assoc, h.mul_inv_cancel]
end group
end commute
section comm_group
variables [comm_group G] (a b : G)
@[simp, to_additive] lemma mul_inv_cancel_comm : a * b * a⁻¹ = b :=
(commute.all a b).mul_inv_cancel
@[simp, to_additive] lemma mul_inv_cancel_comm_assoc : a * (b * a⁻¹) = b :=
(commute.all a b).mul_inv_cancel_assoc
@[simp, to_additive] lemma inv_mul_cancel_comm : a⁻¹ * b * a = b :=
(commute.all a b).inv_mul_cancel
@[simp, to_additive] lemma inv_mul_cancel_comm_assoc : a⁻¹ * (b * a) = b :=
(commute.all a b).inv_mul_cancel_assoc
end comm_group
|