Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 21,620 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 |
/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Leonardo de Moura, Simon Hudon, Mario Carneiro
-/
import algebra.group.defs
import data.bracket
import logic.function.basic
/-!
# Basic lemmas about semigroups, monoids, and groups
This file lists various basic lemmas about semigroups, monoids, and groups. Most proofs are
one-liners from the corresponding axioms. For the definitions of semigroups, monoids and groups, see
`algebra/group/defs.lean`.
-/
open function
universe u
variables {α G : Type*}
section associative
variables (f : α → α → α) [is_associative α f] (x y : α)
/--
Composing two associative operations of `f : α → α → α` on the left
is equal to an associative operation on the left.
-/
lemma comp_assoc_left : (f x) ∘ (f y) = (f (f x y)) :=
by { ext z, rw [function.comp_apply, @is_associative.assoc _ f] }
/--
Composing two associative operations of `f : α → α → α` on the right
is equal to an associative operation on the right.
-/
lemma comp_assoc_right : (λ z, f z x) ∘ (λ z, f z y) = (λ z, f z (f y x)) :=
by { ext z, rw [function.comp_apply, @is_associative.assoc _ f] }
end associative
section semigroup
/--
Composing two multiplications on the left by `y` then `x`
is equal to a multiplication on the left by `x * y`.
-/
@[simp, to_additive
"Composing two additions on the left by `y` then `x`
is equal to a addition on the left by `x + y`."]
lemma comp_mul_left [semigroup α] (x y : α) :
((*) x) ∘ ((*) y) = ((*) (x * y)) :=
comp_assoc_left _ _ _
/--
Composing two multiplications on the right by `y` and `x`
is equal to a multiplication on the right by `y * x`.
-/
@[simp, to_additive
"Composing two additions on the right by `y` and `x`
is equal to a addition on the right by `y + x`."]
lemma comp_mul_right [semigroup α] (x y : α) :
(* x) ∘ (* y) = (* (y * x)) :=
comp_assoc_right _ _ _
end semigroup
section mul_one_class
variables {M : Type u} [mul_one_class M]
@[to_additive]
lemma ite_mul_one {P : Prop} [decidable P] {a b : M} :
ite P (a * b) 1 = ite P a 1 * ite P b 1 :=
by { by_cases h : P; simp [h], }
@[to_additive]
lemma ite_one_mul {P : Prop} [decidable P] {a b : M} :
ite P 1 (a * b) = ite P 1 a * ite P 1 b :=
by { by_cases h : P; simp [h], }
@[to_additive]
lemma eq_one_iff_eq_one_of_mul_eq_one {a b : M} (h : a * b = 1) : a = 1 ↔ b = 1 :=
by split; { rintro rfl, simpa using h }
@[to_additive]
lemma one_mul_eq_id : ((*) (1 : M)) = id := funext one_mul
@[to_additive]
lemma mul_one_eq_id : (* (1 : M)) = id := funext mul_one
end mul_one_class
section comm_semigroup
variables [comm_semigroup G]
@[no_rsimp, to_additive]
lemma mul_left_comm : ∀ a b c : G, a * (b * c) = b * (a * c) :=
left_comm has_mul.mul mul_comm mul_assoc
@[to_additive]
lemma mul_right_comm : ∀ a b c : G, a * b * c = a * c * b :=
right_comm has_mul.mul mul_comm mul_assoc
@[to_additive]
theorem mul_mul_mul_comm (a b c d : G) : (a * b) * (c * d) = (a * c) * (b * d) :=
by simp only [mul_left_comm, mul_assoc]
@[to_additive]
lemma mul_rotate (a b c : G) : a * b * c = b * c * a :=
by simp only [mul_left_comm, mul_comm]
@[to_additive]
lemma mul_rotate' (a b c : G) : a * (b * c) = b * (c * a) :=
by simp only [mul_left_comm, mul_comm]
end comm_semigroup
section add_comm_semigroup
variables {M : Type u} [add_comm_semigroup M]
lemma bit0_add (a b : M) : bit0 (a + b) = bit0 a + bit0 b :=
add_add_add_comm _ _ _ _
lemma bit1_add [has_one M] (a b : M) : bit1 (a + b) = bit0 a + bit1 b :=
(congr_arg (+ (1 : M)) $ bit0_add a b : _).trans (add_assoc _ _ _)
lemma bit1_add' [has_one M] (a b : M) : bit1 (a + b) = bit1 a + bit0 b :=
by rw [add_comm, bit1_add, add_comm]
end add_comm_semigroup
local attribute [simp] mul_assoc sub_eq_add_neg
section add_monoid
variables {M : Type u} [add_monoid M] {a b c : M}
@[simp] lemma bit0_zero : bit0 (0 : M) = 0 := add_zero _
@[simp] lemma bit1_zero [has_one M] : bit1 (0 : M) = 1 :=
by rw [bit1, bit0_zero, zero_add]
end add_monoid
section comm_monoid
variables {M : Type u} [comm_monoid M] {x y z : M}
@[to_additive] lemma inv_unique (hy : x * y = 1) (hz : x * z = 1) : y = z :=
left_inv_eq_right_inv (trans (mul_comm _ _) hy) hz
end comm_monoid
section left_cancel_monoid
variables {M : Type u} [left_cancel_monoid M] {a b : M}
@[simp, to_additive] lemma mul_right_eq_self : a * b = a ↔ b = 1 :=
calc a * b = a ↔ a * b = a * 1 : by rw mul_one
... ↔ b = 1 : mul_left_cancel_iff
@[simp, to_additive] lemma self_eq_mul_right : a = a * b ↔ b = 1 :=
eq_comm.trans mul_right_eq_self
end left_cancel_monoid
section right_cancel_monoid
variables {M : Type u} [right_cancel_monoid M] {a b : M}
@[simp, to_additive] lemma mul_left_eq_self : a * b = b ↔ a = 1 :=
calc a * b = b ↔ a * b = 1 * b : by rw one_mul
... ↔ a = 1 : mul_right_cancel_iff
@[simp, to_additive] lemma self_eq_mul_left : b = a * b ↔ a = 1 :=
eq_comm.trans mul_left_eq_self
end right_cancel_monoid
section has_involutive_inv
variables [has_involutive_inv G] {a b : G}
@[simp, to_additive]
lemma inv_involutive : function.involutive (has_inv.inv : G → G) := inv_inv
@[simp, to_additive]
lemma inv_surjective : function.surjective (has_inv.inv : G → G) :=
inv_involutive.surjective
@[to_additive]
lemma inv_injective : function.injective (has_inv.inv : G → G) :=
inv_involutive.injective
@[simp, to_additive] theorem inv_inj {a b : G} : a⁻¹ = b⁻¹ ↔ a = b := inv_injective.eq_iff
@[to_additive]
lemma eq_inv_of_eq_inv (h : a = b⁻¹) : b = a⁻¹ :=
by simp [h]
@[to_additive]
theorem eq_inv_iff_eq_inv : a = b⁻¹ ↔ b = a⁻¹ :=
⟨eq_inv_of_eq_inv, eq_inv_of_eq_inv⟩
@[to_additive]
theorem inv_eq_iff_inv_eq : a⁻¹ = b ↔ b⁻¹ = a :=
eq_comm.trans $ eq_inv_iff_eq_inv.trans eq_comm
variables (G)
@[simp, to_additive] lemma inv_comp_inv : has_inv.inv ∘ has_inv.inv = @id G :=
inv_involutive.comp_self
@[to_additive] lemma left_inverse_inv : left_inverse (λ a : G, a⁻¹) (λ a, a⁻¹) := inv_inv
@[to_additive] lemma right_inverse_inv : left_inverse (λ a : G, a⁻¹) (λ a, a⁻¹) := inv_inv
end has_involutive_inv
section div_inv_monoid
variables [div_inv_monoid G] {a b c : G}
@[to_additive, field_simps] -- The attributes are out of order on purpose
lemma inv_eq_one_div (x : G) :
x⁻¹ = 1 / x :=
by rw [div_eq_mul_inv, one_mul]
@[to_additive]
lemma mul_one_div (x y : G) :
x * (1 / y) = x / y :=
by rw [div_eq_mul_inv, one_mul, div_eq_mul_inv]
@[to_additive]
lemma mul_div_assoc (a b c : G) : a * b / c = a * (b / c) :=
by rw [div_eq_mul_inv, div_eq_mul_inv, mul_assoc _ _ _]
@[to_additive, field_simps] -- The attributes are out of order on purpose
lemma mul_div_assoc' (a b c : G) : a * (b / c) = (a * b) / c :=
(mul_div_assoc _ _ _).symm
@[simp, to_additive] lemma one_div (a : G) : 1 / a = a⁻¹ :=
(inv_eq_one_div a).symm
@[to_additive] lemma mul_div (a b c : G) : a * (b / c) = a * b / c :=
by simp only [mul_assoc, div_eq_mul_inv]
@[to_additive] lemma div_eq_mul_one_div (a b : G) : a / b = a * (1 / b) :=
by rw [div_eq_mul_inv, one_div]
end div_inv_monoid
section division_monoid
variables [division_monoid α] {a b c : α}
local attribute [simp] mul_assoc div_eq_mul_inv
@[to_additive] lemma inv_eq_of_mul_eq_one_left (h : a * b = 1) : b⁻¹ = a :=
by rw [←inv_eq_of_mul_eq_one_right h, inv_inv]
@[to_additive] lemma eq_inv_of_mul_eq_one_left (h : a * b = 1) : a = b⁻¹ :=
(inv_eq_of_mul_eq_one_left h).symm
@[to_additive] lemma eq_inv_of_mul_eq_one_right (h : a * b = 1) : b = a⁻¹ :=
(inv_eq_of_mul_eq_one_right h).symm
@[to_additive] lemma eq_one_div_of_mul_eq_one_left (h : b * a = 1) : b = 1 / a :=
by rw [eq_inv_of_mul_eq_one_left h, one_div]
@[to_additive] lemma eq_one_div_of_mul_eq_one_right (h : a * b = 1) : b = 1 / a :=
by rw [eq_inv_of_mul_eq_one_right h, one_div]
@[to_additive] lemma eq_of_div_eq_one (h : a / b = 1) : a = b :=
inv_injective $ inv_eq_of_mul_eq_one_right $ by rwa ←div_eq_mul_inv
@[to_additive] lemma div_ne_one_of_ne : a ≠ b → a / b ≠ 1 := mt eq_of_div_eq_one
variables (a b c)
@[to_additive] lemma one_div_mul_one_div_rev : (1 / a) * (1 / b) = 1 / (b * a) := by simp
@[to_additive] lemma inv_div_left : a⁻¹ / b = (b * a)⁻¹ := by simp
@[simp, to_additive] lemma inv_div : (a / b)⁻¹ = b / a := by simp
@[simp, to_additive] lemma one_div_div : 1 / (a / b) = b / a := by simp
@[simp, to_additive] lemma inv_one : (1 : α)⁻¹ = 1 :=
by simpa only [one_div, inv_inv] using (inv_div (1 : α) 1).symm
@[simp, to_additive] lemma div_one : a / 1 = a := by simp
@[to_additive] lemma one_div_one : (1 : α) / 1 = 1 := div_one _
@[to_additive] lemma one_div_one_div : 1 / (1 / a) = a := by simp
variables {a b c}
@[simp, to_additive] lemma inv_eq_one : a⁻¹ = 1 ↔ a = 1 := inv_injective.eq_iff' inv_one
@[simp, to_additive] lemma one_eq_inv : 1 = a⁻¹ ↔ a = 1 := eq_comm.trans inv_eq_one
@[to_additive] lemma inv_ne_one : a⁻¹ ≠ 1 ↔ a ≠ 1 := inv_eq_one.not
@[to_additive] lemma eq_of_one_div_eq_one_div (h : 1 / a = 1 / b) : a = b :=
by rw [←one_div_one_div a, h, one_div_one_div]
variables (a b c)
-- The attributes are out of order on purpose
@[to_additive, field_simps] lemma div_div_eq_mul_div : a / (b / c) = a * c / b := by simp
@[simp, to_additive] lemma div_inv_eq_mul : a / b⁻¹ = a * b := by simp
@[to_additive] lemma div_mul_eq_div_div_swap : a / (b * c) = a / c / b :=
by simp only [mul_assoc, mul_inv_rev, div_eq_mul_inv]
end division_monoid
lemma bit0_neg [subtraction_monoid α] (a : α) : bit0 (-a) = -bit0 a := (neg_add_rev _ _).symm
section division_comm_monoid
variables [division_comm_monoid α] (a b c d : α)
local attribute [simp] mul_assoc mul_comm mul_left_comm div_eq_mul_inv
@[to_additive neg_add] lemma mul_inv : (a * b)⁻¹ = a⁻¹ * b⁻¹ := by simp
@[to_additive] lemma inv_div' : (a / b)⁻¹ = a⁻¹ / b⁻¹ := by simp
@[to_additive] lemma div_eq_inv_mul : a / b = b⁻¹ * a := by simp
@[to_additive] lemma inv_mul_eq_div : a⁻¹ * b = b / a := by simp
@[to_additive] lemma inv_mul' : (a * b)⁻¹ = a⁻¹ / b := by simp
@[simp, to_additive] lemma inv_div_inv : (a⁻¹ / b⁻¹) = b / a := by simp
@[to_additive] lemma inv_inv_div_inv : (a⁻¹ / b⁻¹)⁻¹ = a / b := by simp
@[to_additive] lemma one_div_mul_one_div : (1 / a) * (1 / b) = 1 / (a * b) := by simp
@[to_additive] lemma div_right_comm : a / b / c = a / c / b := by simp
@[to_additive, field_simps] lemma div_div : a / b / c = a / (b * c) := by simp
@[to_additive] lemma div_mul : a / b * c = a / (b / c) := by simp
@[to_additive] lemma mul_div_left_comm : a * (b / c) = b * (a / c) := by simp
@[to_additive] lemma mul_div_right_comm : a * b / c = a / c * b := by simp
@[to_additive] lemma div_mul_eq_div_div : a / (b * c) = a / b / c := by simp
@[to_additive, field_simps] lemma div_mul_eq_mul_div : a / b * c = a * c / b := by simp
@[to_additive] lemma mul_comm_div : a / b * c = a * (c / b) := by simp
@[to_additive] lemma div_mul_comm : a / b * c = c / b * a := by simp
@[to_additive] lemma div_mul_eq_div_mul_one_div : a / (b * c) = (a / b) * (1 / c) := by simp
@[to_additive] lemma div_div_div_eq : a / b / (c / d) = a * d / (b * c) := by simp
@[to_additive] lemma div_div_div_comm : a / b / (c / d) = a / c / (b / d) := by simp
@[to_additive] lemma div_mul_div_comm : a / b * (c / d) = a * c / (b * d) := by simp
@[to_additive] lemma mul_div_mul_comm : a * b / (c * d) = a / c * (b / d) := by simp
end division_comm_monoid
section group
variables [group G] {a b c d : G}
@[simp, to_additive] theorem div_eq_inv_self : a / b = b⁻¹ ↔ a = 1 :=
by rw [div_eq_mul_inv, mul_left_eq_self]
@[to_additive]
theorem mul_left_surjective (a : G) : function.surjective ((*) a) :=
λ x, ⟨a⁻¹ * x, mul_inv_cancel_left a x⟩
@[to_additive]
theorem mul_right_surjective (a : G) : function.surjective (λ x, x * a) :=
λ x, ⟨x * a⁻¹, inv_mul_cancel_right x a⟩
@[to_additive]
lemma eq_mul_inv_of_mul_eq (h : a * c = b) : a = b * c⁻¹ :=
by simp [h.symm]
@[to_additive]
lemma eq_inv_mul_of_mul_eq (h : b * a = c) : a = b⁻¹ * c :=
by simp [h.symm]
@[to_additive]
lemma inv_mul_eq_of_eq_mul (h : b = a * c) : a⁻¹ * b = c :=
by simp [h]
@[to_additive]
lemma mul_inv_eq_of_eq_mul (h : a = c * b) : a * b⁻¹ = c :=
by simp [h]
@[to_additive]
lemma eq_mul_of_mul_inv_eq (h : a * c⁻¹ = b) : a = b * c :=
by simp [h.symm]
@[to_additive]
lemma eq_mul_of_inv_mul_eq (h : b⁻¹ * a = c) : a = b * c :=
by simp [h.symm, mul_inv_cancel_left]
@[to_additive]
lemma mul_eq_of_eq_inv_mul (h : b = a⁻¹ * c) : a * b = c :=
by rw [h, mul_inv_cancel_left]
@[to_additive]
lemma mul_eq_of_eq_mul_inv (h : a = c * b⁻¹) : a * b = c :=
by simp [h]
@[to_additive]
theorem mul_eq_one_iff_eq_inv : a * b = 1 ↔ a = b⁻¹ :=
⟨eq_inv_of_mul_eq_one_left, λ h, by rw [h, mul_left_inv]⟩
@[to_additive]
theorem mul_eq_one_iff_inv_eq : a * b = 1 ↔ a⁻¹ = b :=
by rw [mul_eq_one_iff_eq_inv, eq_inv_iff_eq_inv, eq_comm]
@[to_additive]
theorem eq_inv_iff_mul_eq_one : a = b⁻¹ ↔ a * b = 1 :=
mul_eq_one_iff_eq_inv.symm
@[to_additive]
theorem inv_eq_iff_mul_eq_one : a⁻¹ = b ↔ a * b = 1 :=
mul_eq_one_iff_inv_eq.symm
@[to_additive]
theorem eq_mul_inv_iff_mul_eq : a = b * c⁻¹ ↔ a * c = b :=
⟨λ h, by rw [h, inv_mul_cancel_right], λ h, by rw [← h, mul_inv_cancel_right]⟩
@[to_additive]
theorem eq_inv_mul_iff_mul_eq : a = b⁻¹ * c ↔ b * a = c :=
⟨λ h, by rw [h, mul_inv_cancel_left], λ h, by rw [← h, inv_mul_cancel_left]⟩
@[to_additive]
theorem inv_mul_eq_iff_eq_mul : a⁻¹ * b = c ↔ b = a * c :=
⟨λ h, by rw [← h, mul_inv_cancel_left], λ h, by rw [h, inv_mul_cancel_left]⟩
@[to_additive]
theorem mul_inv_eq_iff_eq_mul : a * b⁻¹ = c ↔ a = c * b :=
⟨λ h, by rw [← h, inv_mul_cancel_right], λ h, by rw [h, mul_inv_cancel_right]⟩
@[to_additive]
theorem mul_inv_eq_one : a * b⁻¹ = 1 ↔ a = b :=
by rw [mul_eq_one_iff_eq_inv, inv_inv]
@[to_additive]
theorem inv_mul_eq_one : a⁻¹ * b = 1 ↔ a = b :=
by rw [mul_eq_one_iff_eq_inv, inv_inj]
@[to_additive]
lemma div_left_injective : function.injective (λ a, a / b) :=
by simpa only [div_eq_mul_inv] using λ a a' h, mul_left_injective (b⁻¹) h
@[to_additive]
lemma div_right_injective : function.injective (λ a, b / a) :=
by simpa only [div_eq_mul_inv] using λ a a' h, inv_injective (mul_right_injective b h)
@[simp, to_additive sub_add_cancel]
lemma div_mul_cancel' (a b : G) : a / b * b = a :=
by rw [div_eq_mul_inv, inv_mul_cancel_right a b]
@[simp, to_additive sub_self]
lemma div_self' (a : G) : a / a = 1 :=
by rw [div_eq_mul_inv, mul_right_inv a]
@[simp, to_additive add_sub_cancel]
lemma mul_div_cancel'' (a b : G) : a * b / b = a :=
by rw [div_eq_mul_inv, mul_inv_cancel_right a b]
@[simp, to_additive]
lemma mul_div_mul_right_eq_div (a b c : G) : (a * c) / (b * c) = a / b :=
by rw [div_mul_eq_div_div_swap]; simp only [mul_left_inj, eq_self_iff_true, mul_div_cancel'']
@[to_additive eq_sub_of_add_eq]
lemma eq_div_of_mul_eq' (h : a * c = b) : a = b / c :=
by simp [← h]
@[to_additive sub_eq_of_eq_add]
lemma div_eq_of_eq_mul'' (h : a = c * b) : a / b = c :=
by simp [h]
@[to_additive]
lemma eq_mul_of_div_eq (h : a / c = b) : a = b * c :=
by simp [← h]
@[to_additive]
lemma mul_eq_of_eq_div (h : a = c / b) : a * b = c :=
by simp [h]
@[simp, to_additive]
lemma div_right_inj : a / b = a / c ↔ b = c :=
div_right_injective.eq_iff
@[simp, to_additive]
lemma div_left_inj : b / a = c / a ↔ b = c :=
by { rw [div_eq_mul_inv, div_eq_mul_inv], exact mul_left_inj _ }
@[simp, to_additive sub_add_sub_cancel]
lemma div_mul_div_cancel' (a b c : G) : (a / b) * (b / c) = a / c :=
by rw [← mul_div_assoc, div_mul_cancel']
@[simp, to_additive sub_sub_sub_cancel_right]
lemma div_div_div_cancel_right' (a b c : G) : (a / c) / (b / c) = a / b :=
by rw [← inv_div c b, div_inv_eq_mul, div_mul_div_cancel']
@[to_additive]
theorem div_eq_one : a / b = 1 ↔ a = b :=
⟨eq_of_div_eq_one, λ h, by rw [h, div_self']⟩
alias div_eq_one ↔ _ div_eq_one_of_eq
alias sub_eq_zero ↔ _ sub_eq_zero_of_eq
@[to_additive]
theorem div_ne_one : a / b ≠ 1 ↔ a ≠ b :=
not_congr div_eq_one
@[simp, to_additive]
theorem div_eq_self : a / b = a ↔ b = 1 :=
by rw [div_eq_mul_inv, mul_right_eq_self, inv_eq_one]
@[to_additive eq_sub_iff_add_eq]
theorem eq_div_iff_mul_eq' : a = b / c ↔ a * c = b :=
by rw [div_eq_mul_inv, eq_mul_inv_iff_mul_eq]
@[to_additive]
theorem div_eq_iff_eq_mul : a / b = c ↔ a = c * b :=
by rw [div_eq_mul_inv, mul_inv_eq_iff_eq_mul]
@[to_additive]
theorem eq_iff_eq_of_div_eq_div (H : a / b = c / d) : a = b ↔ c = d :=
by rw [← div_eq_one, H, div_eq_one]
@[to_additive]
theorem left_inverse_div_mul_left (c : G) : function.left_inverse (λ x, x / c) (λ x, x * c) :=
assume x, mul_div_cancel'' x c
@[to_additive]
theorem left_inverse_mul_left_div (c : G) : function.left_inverse (λ x, x * c) (λ x, x / c) :=
assume x, div_mul_cancel' x c
@[to_additive]
theorem left_inverse_mul_right_inv_mul (c : G) :
function.left_inverse (λ x, c * x) (λ x, c⁻¹ * x) :=
assume x, mul_inv_cancel_left c x
@[to_additive]
theorem left_inverse_inv_mul_mul_right (c : G) :
function.left_inverse (λ x, c⁻¹ * x) (λ x, c * x) :=
assume x, inv_mul_cancel_left c x
@[to_additive]
lemma exists_npow_eq_one_of_zpow_eq_one {n : ℤ} (hn : n ≠ 0) {x : G} (h : x ^ n = 1) :
∃ n : ℕ, 0 < n ∧ x ^ n = 1 :=
begin
cases n with n n,
{ rw zpow_of_nat at h,
refine ⟨n, nat.pos_of_ne_zero (λ n0, hn _), h⟩, rw n0, refl },
{ rw [zpow_neg_succ_of_nat, inv_eq_one] at h,
refine ⟨n + 1, n.succ_pos, h⟩ }
end
end group
section comm_group
variables [comm_group G] {a b c d : G}
local attribute [simp] mul_assoc mul_comm mul_left_comm div_eq_mul_inv
@[to_additive]
lemma div_eq_of_eq_mul' {a b c : G} (h : a = b * c) : a / b = c :=
by rw [h, div_eq_mul_inv, mul_comm, inv_mul_cancel_left]
@[simp, to_additive]
lemma mul_div_mul_left_eq_div (a b c : G) : (c * a) / (c * b) = a / b :=
by simp
@[to_additive eq_sub_of_add_eq']
lemma eq_div_of_mul_eq'' (h : c * a = b) : a = b / c :=
by simp [h.symm]
@[to_additive]
lemma eq_mul_of_div_eq' (h : a / b = c) : a = b * c :=
by simp [h.symm]
@[to_additive]
lemma mul_eq_of_eq_div' (h : b = c / a) : a * b = c :=
begin simp [h], rw [mul_comm c, mul_inv_cancel_left] end
@[to_additive sub_sub_self]
lemma div_div_self' (a b : G) : a / (a / b) = b :=
by simpa using mul_inv_cancel_left a b
@[to_additive]
lemma div_eq_div_mul_div (a b c : G) : a / b = c / b * (a / c) := by simp [mul_left_comm c]
@[simp, to_additive]
lemma div_div_cancel (a b : G) : a / (a / b) = b := div_div_self' a b
@[simp, to_additive]
lemma div_div_cancel_left (a b : G) : a / b / a = b⁻¹ := by simp
@[to_additive eq_sub_iff_add_eq']
lemma eq_div_iff_mul_eq'' : a = b / c ↔ c * a = b :=
by rw [eq_div_iff_mul_eq', mul_comm]
@[to_additive]
lemma div_eq_iff_eq_mul' : a / b = c ↔ a = b * c :=
by rw [div_eq_iff_eq_mul, mul_comm]
@[simp, to_additive add_sub_cancel']
lemma mul_div_cancel''' (a b : G) : a * b / a = b := by rw [div_eq_inv_mul, inv_mul_cancel_left]
@[simp, to_additive]
lemma mul_div_cancel'_right (a b : G) : a * (b / a) = b :=
by rw [← mul_div_assoc, mul_div_cancel''']
@[simp, to_additive sub_add_cancel']
lemma div_mul_cancel'' (a b : G) : a / (a * b) = b⁻¹ :=
by rw [← inv_div, mul_div_cancel''']
-- This lemma is in the `simp` set under the name `mul_inv_cancel_comm_assoc`,
-- along with the additive version `add_neg_cancel_comm_assoc`,
-- defined in `algebra/group/commute`
@[to_additive]
lemma mul_mul_inv_cancel'_right (a b : G) : a * (b * a⁻¹) = b :=
by rw [← div_eq_mul_inv, mul_div_cancel'_right a b]
@[simp, to_additive]
lemma mul_mul_div_cancel (a b c : G) : (a * c) * (b / c) = a * b :=
by rw [mul_assoc, mul_div_cancel'_right]
@[simp, to_additive]
lemma div_mul_mul_cancel (a b c : G) : (a / c) * (b * c) = a * b :=
by rw [mul_left_comm, div_mul_cancel', mul_comm]
@[simp, to_additive sub_add_sub_cancel']
lemma div_mul_div_cancel'' (a b c : G) : (a / b) * (c / a) = c / b :=
by rw mul_comm; apply div_mul_div_cancel'
@[simp, to_additive]
lemma mul_div_div_cancel (a b c : G) : (a * b) / (a / c) = b * c :=
by rw [← div_mul, mul_div_cancel''']
@[simp, to_additive]
lemma div_div_div_cancel_left (a b c : G) : (c / a) / (c / b) = b / a :=
by rw [← inv_div b c, div_inv_eq_mul, mul_comm, div_mul_div_cancel']
@[to_additive] lemma div_eq_div_iff_mul_eq_mul : a / b = c / d ↔ a * d = c * b :=
begin
rw [div_eq_iff_eq_mul, div_mul_eq_mul_div, eq_comm, div_eq_iff_eq_mul'],
simp only [mul_comm, eq_comm]
end
@[to_additive] lemma div_eq_div_iff_div_eq_div : a / b = c / d ↔ a / c = b / d :=
by rw [div_eq_iff_eq_mul, div_mul_eq_mul_div, div_eq_iff_eq_mul', mul_div_assoc]
end comm_group
section subtraction_comm_monoid
variables {M : Type u} [subtraction_comm_monoid M]
lemma bit0_sub (a b : M) : bit0 (a - b) = bit0 a - bit0 b :=
sub_add_sub_comm _ _ _ _
lemma bit1_sub [has_one M] (a b : M) : bit1 (a - b) = bit1 a - bit0 b :=
(congr_arg (+ (1 : M)) $ bit0_sub a b : _).trans $ sub_add_eq_add_sub _ _ _
end subtraction_comm_monoid
section commutator
/-- The commutator of two elements `g₁` and `g₂`. -/
instance commutator_element {G : Type*} [group G] : has_bracket G G :=
⟨λ g₁ g₂, g₁ * g₂ * g₁⁻¹ * g₂⁻¹⟩
lemma commutator_element_def {G : Type*} [group G] (g₁ g₂ : G) :
⁅g₁, g₂⁆ = g₁ * g₂ * g₁⁻¹ * g₂⁻¹ := rfl
end commutator
|