Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 21,620 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Leonardo de Moura, Simon Hudon, Mario Carneiro
-/

import algebra.group.defs
import data.bracket
import logic.function.basic

/-!
# Basic lemmas about semigroups, monoids, and groups

This file lists various basic lemmas about semigroups, monoids, and groups. Most proofs are
one-liners from the corresponding axioms. For the definitions of semigroups, monoids and groups, see
`algebra/group/defs.lean`.
-/

open function

universe u
variables {α G : Type*}

section associative
variables (f : α → α → α) [is_associative α f] (x y : α)

/--
Composing two associative operations of `f : α → α → α` on the left
is equal to an associative operation on the left.
-/
lemma comp_assoc_left : (f x) ∘ (f y) = (f (f x y)) :=
by { ext z, rw [function.comp_apply, @is_associative.assoc _ f] }

/--
Composing two associative operations of `f : α → α → α` on the right
is equal to an associative operation on the right.
-/
lemma comp_assoc_right : (λ z, f z x) ∘ (λ z, f z y) = (λ z, f z (f y x)) :=
by { ext z, rw [function.comp_apply, @is_associative.assoc _ f] }

end associative

section semigroup

/--
Composing two multiplications on the left by `y` then `x`
is equal to a multiplication on the left by `x * y`.
-/
@[simp, to_additive
"Composing two additions on the left by `y` then `x`
is equal to a addition on the left by `x + y`."]
lemma comp_mul_left [semigroup α] (x y : α) :
  ((*) x) ∘ ((*) y) = ((*) (x * y)) :=
comp_assoc_left _ _ _

/--
Composing two multiplications on the right by `y` and `x`
is equal to a multiplication on the right by `y * x`.
-/
@[simp, to_additive
"Composing two additions on the right by `y` and `x`
is equal to a addition on the right by `y + x`."]
lemma comp_mul_right [semigroup α] (x y : α) :
  (* x) ∘ (* y) = (* (y * x)) :=
comp_assoc_right _ _ _

end semigroup

section mul_one_class
variables {M : Type u} [mul_one_class M]

@[to_additive]
lemma ite_mul_one {P : Prop} [decidable P] {a b : M} :
  ite P (a * b) 1 = ite P a 1 * ite P b 1 :=
by { by_cases h : P; simp [h], }

@[to_additive]
lemma ite_one_mul {P : Prop} [decidable P] {a b : M} :
  ite P 1 (a * b) = ite P 1 a * ite P 1 b :=
by { by_cases h : P; simp [h], }

@[to_additive]
lemma eq_one_iff_eq_one_of_mul_eq_one {a b : M} (h : a * b = 1) : a = 1b = 1 :=
by split; { rintro rfl, simpa using h }

@[to_additive]
lemma one_mul_eq_id : ((*) (1 : M)) = id := funext one_mul

@[to_additive]
lemma mul_one_eq_id : (* (1 : M)) = id := funext mul_one

end mul_one_class

section comm_semigroup
variables [comm_semigroup G]

@[no_rsimp, to_additive]
lemma mul_left_comm : ∀ a b c : G, a * (b * c) = b * (a * c) :=
left_comm has_mul.mul mul_comm mul_assoc

@[to_additive]
lemma mul_right_comm : ∀ a b c : G, a * b * c = a * c * b :=
right_comm has_mul.mul mul_comm mul_assoc

@[to_additive]
theorem mul_mul_mul_comm (a b c d : G) : (a * b) * (c * d) = (a * c) * (b * d) :=
by simp only [mul_left_comm, mul_assoc]

@[to_additive]
lemma mul_rotate (a b c : G) : a * b * c = b * c * a :=
by simp only [mul_left_comm, mul_comm]

@[to_additive]
lemma mul_rotate' (a b c : G) : a * (b * c) = b * (c * a) :=
by simp only [mul_left_comm, mul_comm]

end comm_semigroup

section add_comm_semigroup
variables {M : Type u} [add_comm_semigroup M]

lemma bit0_add (a b : M) : bit0 (a + b) = bit0 a + bit0 b :=
add_add_add_comm _ _ _ _
lemma bit1_add [has_one M] (a b : M) : bit1 (a + b) = bit0 a + bit1 b :=
(congr_arg (+ (1 : M)) $ bit0_add a b : _).trans (add_assoc _ _ _)
lemma bit1_add' [has_one M] (a b : M) : bit1 (a + b) = bit1 a + bit0 b :=
by rw [add_comm, bit1_add, add_comm]

end add_comm_semigroup

local attribute [simp] mul_assoc sub_eq_add_neg

section add_monoid
variables {M : Type u} [add_monoid M] {a b c : M}

@[simp] lemma bit0_zero : bit0 (0 : M) = 0 := add_zero _
@[simp] lemma bit1_zero [has_one M] : bit1 (0 : M) = 1 :=
by rw [bit1, bit0_zero, zero_add]

end add_monoid

section comm_monoid
variables {M : Type u} [comm_monoid M] {x y z : M}

@[to_additive] lemma inv_unique (hy : x * y = 1) (hz : x * z = 1) : y = z :=
left_inv_eq_right_inv (trans (mul_comm _ _) hy) hz

end comm_monoid

section left_cancel_monoid

variables {M : Type u} [left_cancel_monoid M] {a b : M}

@[simp, to_additive] lemma mul_right_eq_self : a * b = ab = 1 :=
calc a * b = aa * b = a * 1 : by rw mul_one
           ... ↔ b = 1         : mul_left_cancel_iff

@[simp, to_additive] lemma self_eq_mul_right : a = a * bb = 1 :=
eq_comm.trans mul_right_eq_self

end left_cancel_monoid

section right_cancel_monoid

variables {M : Type u} [right_cancel_monoid M] {a b : M}

@[simp, to_additive] lemma mul_left_eq_self : a * b = ba = 1 :=
calc a * b = ba * b = 1 * b : by rw one_mul
           ... ↔ a = 1         : mul_right_cancel_iff

@[simp, to_additive] lemma self_eq_mul_left : b = a * ba = 1 :=
eq_comm.trans mul_left_eq_self

end right_cancel_monoid

section has_involutive_inv
variables [has_involutive_inv G] {a b : G}

@[simp, to_additive]
lemma inv_involutive : function.involutive (has_inv.inv : G → G) := inv_inv

@[simp, to_additive]
lemma inv_surjective : function.surjective (has_inv.inv : G → G) :=
inv_involutive.surjective

@[to_additive]
lemma inv_injective : function.injective (has_inv.inv : G → G) :=
inv_involutive.injective

@[simp, to_additive] theorem inv_inj {a b : G} : a⁻¹ = b⁻¹ ↔ a = b := inv_injective.eq_iff

@[to_additive]
lemma eq_inv_of_eq_inv (h : a = b⁻¹) : b = a⁻¹ :=
by simp [h]

@[to_additive]
theorem eq_inv_iff_eq_inv : a = b⁻¹ ↔ b = a⁻¹ :=
⟨eq_inv_of_eq_inv, eq_inv_of_eq_inv⟩

@[to_additive]
theorem inv_eq_iff_inv_eq  : a⁻¹ = bb⁻¹ = a :=
eq_comm.trans $ eq_inv_iff_eq_inv.trans eq_comm

variables (G)

@[simp, to_additive] lemma inv_comp_inv : has_inv.inv ∘ has_inv.inv = @id G :=
inv_involutive.comp_self

@[to_additive] lemma left_inverse_inv : left_inverse (λ a : G, a⁻¹) (λ a, a⁻¹) := inv_inv
@[to_additive] lemma right_inverse_inv : left_inverse (λ a : G, a⁻¹) (λ a, a⁻¹) := inv_inv

end has_involutive_inv

section div_inv_monoid
variables [div_inv_monoid G] {a b c : G}

@[to_additive, field_simps] -- The attributes are out of order on purpose
lemma inv_eq_one_div (x : G) :
  x⁻¹ = 1 / x :=
by rw [div_eq_mul_inv, one_mul]

@[to_additive]
lemma mul_one_div (x y : G) :
  x * (1 / y) = x / y :=
by rw [div_eq_mul_inv, one_mul, div_eq_mul_inv]

@[to_additive]
lemma mul_div_assoc (a b c : G) : a * b / c = a * (b / c) :=
by rw [div_eq_mul_inv, div_eq_mul_inv, mul_assoc _ _ _]

@[to_additive, field_simps] -- The attributes are out of order on purpose
lemma mul_div_assoc' (a b c : G) : a * (b / c) = (a * b) / c :=
(mul_div_assoc _ _ _).symm

@[simp, to_additive] lemma one_div (a : G) : 1 / a = a⁻¹ :=
(inv_eq_one_div a).symm

@[to_additive] lemma mul_div (a b c : G) : a * (b / c) = a * b / c :=
by simp only [mul_assoc, div_eq_mul_inv]

@[to_additive] lemma div_eq_mul_one_div (a b : G) : a / b = a * (1 / b) :=
by rw [div_eq_mul_inv, one_div]

end div_inv_monoid

section division_monoid
variables [division_monoid α] {a b c : α}

local attribute [simp] mul_assoc div_eq_mul_inv

@[to_additive] lemma inv_eq_of_mul_eq_one_left (h : a * b = 1) : b⁻¹ = a :=
by rw [←inv_eq_of_mul_eq_one_right h, inv_inv]

@[to_additive] lemma eq_inv_of_mul_eq_one_left (h : a * b = 1) : a = b⁻¹ :=
(inv_eq_of_mul_eq_one_left h).symm

@[to_additive] lemma eq_inv_of_mul_eq_one_right (h : a * b = 1) : b = a⁻¹ :=
(inv_eq_of_mul_eq_one_right h).symm

@[to_additive] lemma eq_one_div_of_mul_eq_one_left (h : b * a = 1) : b = 1 / a :=
by rw [eq_inv_of_mul_eq_one_left h,  one_div]

@[to_additive] lemma eq_one_div_of_mul_eq_one_right (h : a * b = 1) : b = 1 / a :=
by rw [eq_inv_of_mul_eq_one_right h, one_div]

@[to_additive] lemma eq_of_div_eq_one (h : a / b = 1) : a = b :=
inv_injective $ inv_eq_of_mul_eq_one_right $ by rwa ←div_eq_mul_inv

@[to_additive] lemma div_ne_one_of_ne : a ≠ b → a / b ≠ 1 := mt eq_of_div_eq_one

variables (a b c)

@[to_additive] lemma one_div_mul_one_div_rev : (1 / a) * (1 / b) =  1 / (b * a) := by simp
@[to_additive] lemma inv_div_left : a⁻¹ / b = (b * a)⁻¹ := by simp
@[simp, to_additive] lemma inv_div : (a / b)⁻¹ = b / a := by simp
@[simp, to_additive] lemma one_div_div : 1 / (a / b) = b / a := by simp
@[simp, to_additive] lemma inv_one : (1 : α)⁻¹ = 1 :=
by simpa only [one_div, inv_inv] using (inv_div (1 : α) 1).symm
@[simp, to_additive] lemma div_one : a / 1 = a := by simp
@[to_additive] lemma one_div_one : (1 : α) / 1 = 1 := div_one _
@[to_additive] lemma one_div_one_div : 1 / (1 / a) = a := by simp

variables {a b c}

@[simp, to_additive] lemma inv_eq_one : a⁻¹ = 1 ↔ a = 1 := inv_injective.eq_iff' inv_one
@[simp, to_additive] lemma one_eq_inv : 1 = a⁻¹ ↔ a = 1 := eq_comm.trans inv_eq_one
@[to_additive] lemma inv_ne_one : a⁻¹ ≠ 1a1 := inv_eq_one.not

@[to_additive] lemma eq_of_one_div_eq_one_div (h : 1 / a = 1 / b) : a = b :=
by rw [←one_div_one_div a, h, one_div_one_div]

variables (a b c)

 -- The attributes are out of order on purpose
@[to_additive, field_simps] lemma div_div_eq_mul_div : a / (b / c) = a * c / b := by simp
@[simp, to_additive] lemma div_inv_eq_mul : a / b⁻¹ = a * b := by simp
@[to_additive] lemma div_mul_eq_div_div_swap : a / (b * c) = a / c / b :=
by simp only [mul_assoc, mul_inv_rev, div_eq_mul_inv]

end division_monoid

lemma bit0_neg [subtraction_monoid α] (a : α) : bit0 (-a) = -bit0 a := (neg_add_rev _ _).symm

section division_comm_monoid
variables [division_comm_monoid α] (a b c d : α)

local attribute [simp] mul_assoc mul_comm mul_left_comm div_eq_mul_inv

@[to_additive neg_add] lemma mul_inv : (a * b)⁻¹ = a⁻¹ * b⁻¹ := by simp
@[to_additive] lemma inv_div' : (a / b)⁻¹ = a⁻¹ / b⁻¹ := by simp
@[to_additive] lemma div_eq_inv_mul : a / b = b⁻¹ * a := by simp
@[to_additive] lemma inv_mul_eq_div : a⁻¹ * b = b / a := by simp
@[to_additive] lemma inv_mul' : (a * b)⁻¹ = a⁻¹ / b := by simp
@[simp, to_additive] lemma inv_div_inv : (a⁻¹ / b⁻¹) = b / a := by simp
@[to_additive] lemma inv_inv_div_inv : (a⁻¹ / b⁻¹)⁻¹ = a / b := by simp
@[to_additive] lemma one_div_mul_one_div : (1 / a) * (1 / b) =  1 / (a * b) := by simp

@[to_additive] lemma div_right_comm : a / b / c = a / c / b := by simp
@[to_additive, field_simps] lemma div_div : a / b / c = a / (b * c) := by simp
@[to_additive] lemma div_mul : a / b * c = a / (b / c) := by simp
@[to_additive] lemma mul_div_left_comm : a * (b / c) = b * (a / c) := by simp
@[to_additive] lemma mul_div_right_comm : a * b / c = a / c * b := by simp
@[to_additive] lemma div_mul_eq_div_div : a / (b * c) = a / b / c := by simp
@[to_additive, field_simps] lemma div_mul_eq_mul_div : a / b * c = a * c / b := by simp
@[to_additive] lemma mul_comm_div : a / b * c = a * (c / b) := by simp
@[to_additive] lemma div_mul_comm : a / b * c = c / b * a := by simp
@[to_additive] lemma div_mul_eq_div_mul_one_div : a / (b * c) = (a / b) * (1 / c) := by simp

@[to_additive] lemma div_div_div_eq : a / b / (c / d) = a * d / (b * c) := by simp
@[to_additive] lemma div_div_div_comm : a / b / (c / d) = a / c / (b / d) := by simp
@[to_additive] lemma div_mul_div_comm : a / b * (c / d) = a * c / (b * d) := by simp
@[to_additive] lemma mul_div_mul_comm : a * b / (c * d) = a / c * (b / d) := by simp

end division_comm_monoid

section group
variables [group G] {a b c d : G}

@[simp, to_additive] theorem div_eq_inv_self : a / b = b⁻¹ ↔ a = 1 :=
by rw [div_eq_mul_inv, mul_left_eq_self]

@[to_additive]
theorem mul_left_surjective (a : G) : function.surjective ((*) a) :=
λ x, ⟨a⁻¹ * x, mul_inv_cancel_left a x⟩

@[to_additive]
theorem mul_right_surjective (a : G) : function.surjective (λ x, x * a) :=
λ x, ⟨x * a⁻¹, inv_mul_cancel_right x a⟩

@[to_additive]
lemma eq_mul_inv_of_mul_eq (h : a * c = b) : a = b * c⁻¹ :=
by simp [h.symm]

@[to_additive]
lemma eq_inv_mul_of_mul_eq (h : b * a = c) : a = b⁻¹ * c :=
by simp [h.symm]

@[to_additive]
lemma inv_mul_eq_of_eq_mul (h : b = a * c) : a⁻¹ * b = c :=
by simp [h]

@[to_additive]
lemma mul_inv_eq_of_eq_mul (h : a = c * b) : a * b⁻¹ = c :=
by simp [h]

@[to_additive]
lemma eq_mul_of_mul_inv_eq (h : a * c⁻¹ = b) : a = b * c :=
by simp [h.symm]

@[to_additive]
lemma eq_mul_of_inv_mul_eq (h : b⁻¹ * a = c) : a = b * c :=
by simp [h.symm, mul_inv_cancel_left]

@[to_additive]
lemma mul_eq_of_eq_inv_mul (h : b = a⁻¹ * c) : a * b = c :=
by rw [h, mul_inv_cancel_left]

@[to_additive]
lemma mul_eq_of_eq_mul_inv (h : a = c * b⁻¹) : a * b = c :=
by simp [h]

@[to_additive]
theorem mul_eq_one_iff_eq_inv : a * b = 1a = b⁻¹ :=
⟨eq_inv_of_mul_eq_one_left, λ h, by rw [h, mul_left_inv]⟩

@[to_additive]
theorem mul_eq_one_iff_inv_eq : a * b = 1a⁻¹ = b :=
by rw [mul_eq_one_iff_eq_inv, eq_inv_iff_eq_inv, eq_comm]

@[to_additive]
theorem eq_inv_iff_mul_eq_one : a = b⁻¹ ↔ a * b = 1 :=
mul_eq_one_iff_eq_inv.symm

@[to_additive]
theorem inv_eq_iff_mul_eq_one : a⁻¹ = ba * b = 1 :=
mul_eq_one_iff_inv_eq.symm

@[to_additive]
theorem eq_mul_inv_iff_mul_eq : a = b * c⁻¹ ↔ a * c = b :=
⟨λ h, by rw [h, inv_mul_cancel_right], λ h, by rw [← h, mul_inv_cancel_right]⟩

@[to_additive]
theorem eq_inv_mul_iff_mul_eq : a = b⁻¹ * cb * a = c :=
⟨λ h, by rw [h, mul_inv_cancel_left], λ h, by rw [← h, inv_mul_cancel_left]⟩

@[to_additive]
theorem inv_mul_eq_iff_eq_mul : a⁻¹ * b = cb = a * c :=
⟨λ h, by rw [← h, mul_inv_cancel_left], λ h, by rw [h, inv_mul_cancel_left]⟩

@[to_additive]
theorem mul_inv_eq_iff_eq_mul : a * b⁻¹ = ca = c * b :=
⟨λ h, by rw [← h, inv_mul_cancel_right], λ h, by rw [h, mul_inv_cancel_right]⟩

@[to_additive]
theorem mul_inv_eq_one : a * b⁻¹ = 1a = b :=
by rw [mul_eq_one_iff_eq_inv, inv_inv]

@[to_additive]
theorem inv_mul_eq_one : a⁻¹ * b = 1a = b :=
by rw [mul_eq_one_iff_eq_inv, inv_inj]

@[to_additive]
lemma div_left_injective : function.injective (λ a, a / b) :=
by simpa only [div_eq_mul_inv] using λ a a' h, mul_left_injective (b⁻¹) h

@[to_additive]
lemma div_right_injective : function.injective (λ a, b / a) :=
by simpa only [div_eq_mul_inv] using λ a a' h, inv_injective (mul_right_injective b h)

@[simp, to_additive sub_add_cancel]
lemma div_mul_cancel' (a b : G) : a / b * b = a :=
by rw [div_eq_mul_inv, inv_mul_cancel_right a b]

@[simp, to_additive sub_self]
lemma div_self' (a : G) : a / a = 1 :=
by rw [div_eq_mul_inv, mul_right_inv a]

@[simp, to_additive add_sub_cancel]
lemma mul_div_cancel'' (a b : G) : a * b / b = a :=
by rw [div_eq_mul_inv, mul_inv_cancel_right a b]

@[simp, to_additive]
lemma mul_div_mul_right_eq_div (a b c : G) : (a * c) / (b * c) = a / b :=
by rw [div_mul_eq_div_div_swap]; simp only [mul_left_inj, eq_self_iff_true, mul_div_cancel'']

@[to_additive eq_sub_of_add_eq]
lemma eq_div_of_mul_eq' (h : a * c = b) : a = b / c :=
by simp [← h]

@[to_additive sub_eq_of_eq_add]
lemma div_eq_of_eq_mul'' (h : a = c * b) : a / b = c :=
by simp [h]

@[to_additive]
lemma eq_mul_of_div_eq (h : a / c = b) : a = b * c :=
by simp [← h]

@[to_additive]
lemma mul_eq_of_eq_div (h : a = c / b) : a * b = c :=
by simp [h]

@[simp, to_additive]
lemma div_right_inj : a / b = a / c ↔ b = c :=
div_right_injective.eq_iff

@[simp, to_additive]
lemma div_left_inj : b / a = c / a ↔ b = c :=
by { rw [div_eq_mul_inv, div_eq_mul_inv], exact mul_left_inj _ }

@[simp, to_additive sub_add_sub_cancel]
lemma div_mul_div_cancel' (a b c : G) : (a / b) * (b / c) = a / c :=
by rw [← mul_div_assoc, div_mul_cancel']

@[simp, to_additive sub_sub_sub_cancel_right]
lemma div_div_div_cancel_right' (a b c : G) : (a / c) / (b / c) = a / b :=
by rw [← inv_div c b, div_inv_eq_mul, div_mul_div_cancel']

@[to_additive]
theorem div_eq_one : a / b = 1 ↔ a = b :=
⟨eq_of_div_eq_one, λ h, by rw [h, div_self']⟩

alias div_eq_one ↔ _ div_eq_one_of_eq
alias sub_eq_zero ↔ _ sub_eq_zero_of_eq

@[to_additive]
theorem div_ne_one : a / b1ab :=
not_congr div_eq_one

@[simp, to_additive]
theorem div_eq_self : a / b = ab = 1 :=
by rw [div_eq_mul_inv, mul_right_eq_self, inv_eq_one]

@[to_additive eq_sub_iff_add_eq]
theorem eq_div_iff_mul_eq' : a = b / c ↔ a * c = b :=
by rw [div_eq_mul_inv, eq_mul_inv_iff_mul_eq]

@[to_additive]
theorem div_eq_iff_eq_mul : a / b = c ↔ a = c * b :=
by rw [div_eq_mul_inv, mul_inv_eq_iff_eq_mul]

@[to_additive]
theorem eq_iff_eq_of_div_eq_div (H : a / b = c / d) : a = b ↔ c = d :=
by rw [← div_eq_one, H, div_eq_one]

@[to_additive]
theorem left_inverse_div_mul_left (c : G) : function.left_inverse (λ x, x / c) (λ x, x * c) :=
assume x, mul_div_cancel'' x c

@[to_additive]
theorem left_inverse_mul_left_div (c : G) : function.left_inverse (λ x, x * c) (λ x, x / c) :=
assume x, div_mul_cancel' x c

@[to_additive]
theorem left_inverse_mul_right_inv_mul (c : G) :
  function.left_inverse (λ x, c * x) (λ x, c⁻¹ * x) :=
assume x, mul_inv_cancel_left c x

@[to_additive]
theorem left_inverse_inv_mul_mul_right (c : G) :
  function.left_inverse (λ x, c⁻¹ * x) (λ x, c * x) :=
assume x, inv_mul_cancel_left c x

@[to_additive]
lemma exists_npow_eq_one_of_zpow_eq_one {n : ℤ} (hn : n ≠ 0) {x : G} (h : x ^ n = 1) :
  ∃ n : ℕ, 0 < n ∧ x ^ n = 1 :=
begin
  cases n with n n,
  { rw zpow_of_nat at h,
    refine ⟨n, nat.pos_of_ne_zero (λ n0, hn _), h⟩, rw n0, refl },
  { rw [zpow_neg_succ_of_nat, inv_eq_one] at h,
    refine ⟨n + 1, n.succ_pos, h⟩ }
end

end group

section comm_group
variables [comm_group G] {a b c d : G}

local attribute [simp] mul_assoc mul_comm mul_left_comm div_eq_mul_inv

@[to_additive]
lemma div_eq_of_eq_mul' {a b c : G} (h : a = b * c) : a / b = c :=
by rw [h, div_eq_mul_inv, mul_comm, inv_mul_cancel_left]

@[simp, to_additive]
lemma mul_div_mul_left_eq_div (a b c : G) : (c * a) / (c * b) = a / b :=
by simp

@[to_additive eq_sub_of_add_eq']
lemma eq_div_of_mul_eq'' (h : c * a = b) : a = b / c :=
by simp [h.symm]

@[to_additive]
lemma eq_mul_of_div_eq' (h : a / b = c) : a = b * c :=
by simp [h.symm]

@[to_additive]
lemma mul_eq_of_eq_div' (h : b = c / a) : a * b = c :=
begin simp [h], rw [mul_comm c, mul_inv_cancel_left] end

@[to_additive sub_sub_self]
lemma div_div_self' (a b : G) : a / (a / b) = b :=
by simpa using mul_inv_cancel_left a b

@[to_additive]
lemma div_eq_div_mul_div (a b c : G) : a / b = c / b * (a / c) := by simp [mul_left_comm c]

@[simp, to_additive]
lemma div_div_cancel (a b : G) : a / (a / b) = b := div_div_self' a b

@[simp, to_additive]
lemma div_div_cancel_left (a b : G) : a / b / a = b⁻¹ := by simp

@[to_additive eq_sub_iff_add_eq']
lemma eq_div_iff_mul_eq'' : a = b / c ↔ c * a = b :=
by rw [eq_div_iff_mul_eq', mul_comm]

@[to_additive]
lemma div_eq_iff_eq_mul' : a / b = c ↔ a = b * c :=
by rw [div_eq_iff_eq_mul, mul_comm]

@[simp, to_additive add_sub_cancel']
lemma mul_div_cancel''' (a b : G) : a * b / a = b := by rw [div_eq_inv_mul, inv_mul_cancel_left]

@[simp, to_additive]
lemma mul_div_cancel'_right (a b : G) : a * (b / a) = b :=
by rw [← mul_div_assoc, mul_div_cancel''']

@[simp, to_additive sub_add_cancel']
lemma div_mul_cancel'' (a b : G) : a / (a * b) = b⁻¹ :=
by rw [← inv_div, mul_div_cancel''']

-- This lemma is in the `simp` set under the name `mul_inv_cancel_comm_assoc`,
-- along with the additive version `add_neg_cancel_comm_assoc`,
-- defined  in `algebra/group/commute`
@[to_additive]
lemma mul_mul_inv_cancel'_right (a b : G) : a * (b * a⁻¹) = b :=
by rw [← div_eq_mul_inv, mul_div_cancel'_right a b]

@[simp, to_additive]
lemma mul_mul_div_cancel (a b c : G) : (a * c) * (b / c) = a * b :=
by rw [mul_assoc, mul_div_cancel'_right]

@[simp, to_additive]
lemma div_mul_mul_cancel (a b c : G) : (a / c) * (b * c) = a * b :=
by rw [mul_left_comm, div_mul_cancel', mul_comm]

@[simp, to_additive sub_add_sub_cancel']
lemma div_mul_div_cancel'' (a b c : G) : (a / b) * (c / a) = c / b :=
by rw mul_comm; apply div_mul_div_cancel'

@[simp, to_additive]
lemma mul_div_div_cancel (a b c : G) : (a * b) / (a / c) = b * c :=
by rw [← div_mul, mul_div_cancel''']

@[simp, to_additive]
lemma div_div_div_cancel_left (a b c : G) : (c / a) / (c / b) = b / a :=
by rw [← inv_div b c, div_inv_eq_mul, mul_comm, div_mul_div_cancel']

@[to_additive] lemma div_eq_div_iff_mul_eq_mul : a / b = c / d ↔ a * d = c * b :=
begin
  rw [div_eq_iff_eq_mul, div_mul_eq_mul_div, eq_comm, div_eq_iff_eq_mul'],
  simp only [mul_comm, eq_comm]
end

@[to_additive] lemma div_eq_div_iff_div_eq_div : a / b = c / d ↔ a / c = b / d :=
by rw [div_eq_iff_eq_mul, div_mul_eq_mul_div, div_eq_iff_eq_mul', mul_div_assoc]

end comm_group

section subtraction_comm_monoid
variables {M : Type u} [subtraction_comm_monoid M]

lemma bit0_sub (a b : M) : bit0 (a - b) = bit0 a - bit0 b :=
sub_add_sub_comm _ _ _ _
lemma bit1_sub [has_one M] (a b : M) : bit1 (a - b) = bit1 a - bit0 b :=
(congr_arg (+ (1 : M)) $ bit0_sub a b : _).trans $ sub_add_eq_add_sub _ _ _

end subtraction_comm_monoid

section commutator

/-- The commutator of two elements `g₁` and `g₂`. -/
instance commutator_element {G : Type*} [group G] : has_bracket G G :=
⟨λ g₁ g₂, g₁ * g₂ * g₁⁻¹ * g₂⁻¹⟩

lemma commutator_element_def  {G : Type*} [group G] (g₁ g₂ : G) :
  ⁅g₁, g₂⁆ = g₁ * g₂ * g₁⁻¹ * g₂⁻¹ := rfl

end commutator