Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 21,992 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 |
/-
Copyright (c) 2021 Eric Wieser. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Eric Wieser
-/
import algebra.group.inj_surj
import data.list.big_operators
import data.list.range
import group_theory.group_action.defs
import group_theory.submonoid.basic
import data.set_like.basic
import data.sigma.basic
/-!
# Additively-graded multiplicative structures
This module provides a set of heterogeneous typeclasses for defining a multiplicative structure
over the sigma type `graded_monoid A` such that `(*) : A i → A j → A (i + j)`; that is to say, `A`
forms an additively-graded monoid. The typeclasses are:
* `graded_monoid.ghas_one A`
* `graded_monoid.ghas_mul A`
* `graded_monoid.gmonoid A`
* `graded_monoid.gcomm_monoid A`
With the `sigma_graded` locale open, these respectively imbue:
* `has_one (graded_monoid A)`
* `has_mul (graded_monoid A)`
* `monoid (graded_monoid A)`
* `comm_monoid (graded_monoid A)`
the base type `A 0` with:
* `graded_monoid.grade_zero.has_one`
* `graded_monoid.grade_zero.has_mul`
* `graded_monoid.grade_zero.monoid`
* `graded_monoid.grade_zero.comm_monoid`
and the `i`th grade `A i` with `A 0`-actions (`•`) defined as left-multiplication:
* (nothing)
* `graded_monoid.grade_zero.has_smul (A 0)`
* `graded_monoid.grade_zero.mul_action (A 0)`
* (nothing)
For now, these typeclasses are primarily used in the construction of `direct_sum.ring` and the rest
of that file.
## Dependent graded products
This also introduces `list.dprod`, which takes the (possibly non-commutative) product of a list
of graded elements of type `A i`. This definition primarily exist to allow `graded_monoid.mk`
and `direct_sum.of` to be pulled outside a product, such as in `graded_monoid.mk_list_dprod` and
`direct_sum.of_list_dprod`.
## Internally graded monoids
In addition to the above typeclasses, in the most frequent case when `A` is an indexed collection of
`set_like` subobjects (such as `add_submonoid`s, `add_subgroup`s, or `submodule`s), this file
provides the `Prop` typeclasses:
* `set_like.has_graded_one A` (which provides the obvious `graded_monoid.ghas_one A` instance)
* `set_like.has_graded_mul A` (which provides the obvious `graded_monoid.ghas_mul A` instance)
* `set_like.graded_monoid A` (which provides the obvious `graded_monoid.gmonoid A` and
`graded_monoid.gcomm_monoid A` instances)
which respectively provide the API lemmas
* `set_like.one_mem_graded`
* `set_like.mul_mem_graded`
* `set_like.pow_mem_graded`, `set_like.list_prod_map_mem_graded`
Strictly this last class is unecessary as it has no fields not present in its parents, but it is
included for convenience. Note that there is no need for `set_like.graded_ring` or similar, as all
the information it would contain is already supplied by `graded_monoid` when `A` is a collection
of objects satisfying `add_submonoid_class` such as `submodule`s. These constructions are explored
in `algebra.direct_sum.internal`.
This file also defines:
* `set_like.is_homogeneous A` (which says that `a` is homogeneous iff `a ∈ A i` for some `i : ι`)
* `set_like.homogeneous_submonoid A`, which is, as the name suggests, the submonoid consisting of
all the homogeneous elements.
## tags
graded monoid
-/
set_option old_structure_cmd true
variables {ι : Type*}
/-- A type alias of sigma types for graded monoids. -/
def graded_monoid (A : ι → Type*) := sigma A
namespace graded_monoid
instance {A : ι → Type*} [inhabited ι] [inhabited (A default)]: inhabited (graded_monoid A) :=
sigma.inhabited
/-- Construct an element of a graded monoid. -/
def mk {A : ι → Type*} : Π i, A i → graded_monoid A := sigma.mk
/-! ### Typeclasses -/
section defs
variables (A : ι → Type*)
/-- A graded version of `has_one`, which must be of grade 0. -/
class ghas_one [has_zero ι] :=
(one : A 0)
/-- `ghas_one` implies `has_one (graded_monoid A)` -/
instance ghas_one.to_has_one [has_zero ι] [ghas_one A] : has_one (graded_monoid A) :=
⟨⟨_, ghas_one.one⟩⟩
/-- A graded version of `has_mul`. Multiplication combines grades additively, like
`add_monoid_algebra`. -/
class ghas_mul [has_add ι] :=
(mul {i j} : A i → A j → A (i + j))
/-- `ghas_mul` implies `has_mul (graded_monoid A)`. -/
instance ghas_mul.to_has_mul [has_add ι] [ghas_mul A] :
has_mul (graded_monoid A) :=
⟨λ (x y : graded_monoid A), ⟨_, ghas_mul.mul x.snd y.snd⟩⟩
lemma mk_mul_mk [has_add ι] [ghas_mul A] {i j} (a : A i) (b : A j) :
mk i a * mk j b = mk (i + j) (ghas_mul.mul a b) :=
rfl
namespace gmonoid
variables {A} [add_monoid ι] [ghas_mul A] [ghas_one A]
/-- A default implementation of power on a graded monoid, like `npow_rec`.
`gmonoid.gnpow` should be used instead. -/
def gnpow_rec : Π (n : ℕ) {i}, A i → A (n • i)
| 0 i a := cast (congr_arg A (zero_nsmul i).symm) ghas_one.one
| (n + 1) i a := cast (congr_arg A (succ_nsmul i n).symm) (ghas_mul.mul a $ gnpow_rec _ a)
@[simp] lemma gnpow_rec_zero (a : graded_monoid A) : graded_monoid.mk _ (gnpow_rec 0 a.snd) = 1 :=
sigma.ext (zero_nsmul _) (heq_of_cast_eq _ rfl).symm
/-- Tactic used to autofill `graded_monoid.gmonoid.gnpow_zero'` when the default
`graded_monoid.gmonoid.gnpow_rec` is used. -/
meta def apply_gnpow_rec_zero_tac : tactic unit := `[apply graded_monoid.gmonoid.gnpow_rec_zero]
@[simp] lemma gnpow_rec_succ (n : ℕ) (a : graded_monoid A) :
(graded_monoid.mk _ $ gnpow_rec n.succ a.snd) = a * ⟨_, gnpow_rec n a.snd⟩ :=
sigma.ext (succ_nsmul _ _) (heq_of_cast_eq _ rfl).symm
/-- Tactic used to autofill `graded_monoid.gmonoid.gnpow_succ'` when the default
`graded_monoid.gmonoid.gnpow_rec` is used. -/
meta def apply_gnpow_rec_succ_tac : tactic unit := `[apply graded_monoid.gmonoid.gnpow_rec_succ]
end gmonoid
/-- A graded version of `monoid`.
Like `monoid.npow`, this has an optional `gmonoid.gnpow` field to allow definitional control of
natural powers of a graded monoid. -/
class gmonoid [add_monoid ι] extends ghas_mul A, ghas_one A :=
(one_mul (a : graded_monoid A) : 1 * a = a)
(mul_one (a : graded_monoid A) : a * 1 = a)
(mul_assoc (a b c : graded_monoid A) : a * b * c = a * (b * c))
(gnpow : Π (n : ℕ) {i}, A i → A (n • i) := gmonoid.gnpow_rec)
(gnpow_zero' : Π (a : graded_monoid A), graded_monoid.mk _ (gnpow 0 a.snd) = 1
. gmonoid.apply_gnpow_rec_zero_tac)
(gnpow_succ' : Π (n : ℕ) (a : graded_monoid A),
(graded_monoid.mk _ $ gnpow n.succ a.snd) = a * ⟨_, gnpow n a.snd⟩
. gmonoid.apply_gnpow_rec_succ_tac)
/-- `gmonoid` implies a `monoid (graded_monoid A)`. -/
instance gmonoid.to_monoid [add_monoid ι] [gmonoid A] :
monoid (graded_monoid A) :=
{ one := (1), mul := (*),
npow := λ n a, graded_monoid.mk _ (gmonoid.gnpow n a.snd),
npow_zero' := λ a, gmonoid.gnpow_zero' a,
npow_succ' := λ n a, gmonoid.gnpow_succ' n a,
one_mul := gmonoid.one_mul, mul_one := gmonoid.mul_one, mul_assoc := gmonoid.mul_assoc }
lemma mk_pow [add_monoid ι] [gmonoid A] {i} (a : A i) (n : ℕ) :
mk i a ^ n = mk (n • i) (gmonoid.gnpow _ a) :=
begin
induction n with n,
{ rw [pow_zero],
exact (gmonoid.gnpow_zero' ⟨_, a⟩).symm, },
{ rw [pow_succ, n_ih, mk_mul_mk],
exact (gmonoid.gnpow_succ' n ⟨_, a⟩).symm, },
end
/-- A graded version of `comm_monoid`. -/
class gcomm_monoid [add_comm_monoid ι] extends gmonoid A :=
(mul_comm (a : graded_monoid A) (b : graded_monoid A) : a * b = b * a)
/-- `gcomm_monoid` implies a `comm_monoid (graded_monoid A)`, although this is only used as an
instance locally to define notation in `gmonoid` and similar typeclasses. -/
instance gcomm_monoid.to_comm_monoid [add_comm_monoid ι] [gcomm_monoid A] :
comm_monoid (graded_monoid A) :=
{ mul_comm := gcomm_monoid.mul_comm, ..gmonoid.to_monoid A }
end defs
/-! ### Instances for `A 0`
The various `g*` instances are enough to promote the `add_comm_monoid (A 0)` structure to various
types of multiplicative structure.
-/
section grade_zero
variables (A : ι → Type*)
section one
variables [has_zero ι] [ghas_one A]
/-- `1 : A 0` is the value provided in `ghas_one.one`. -/
@[nolint unused_arguments]
instance grade_zero.has_one : has_one (A 0) :=
⟨ghas_one.one⟩
end one
section mul
variables [add_zero_class ι] [ghas_mul A]
/-- `(•) : A 0 → A i → A i` is the value provided in `graded_monoid.ghas_mul.mul`, composed with
an `eq.rec` to turn `A (0 + i)` into `A i`.
-/
instance grade_zero.has_smul (i : ι) : has_smul (A 0) (A i) :=
{ smul := λ x y, (zero_add i).rec (ghas_mul.mul x y) }
/-- `(*) : A 0 → A 0 → A 0` is the value provided in `graded_monoid.ghas_mul.mul`, composed with
an `eq.rec` to turn `A (0 + 0)` into `A 0`.
-/
instance grade_zero.has_mul : has_mul (A 0) :=
{ mul := (•) }
variables {A}
@[simp] lemma mk_zero_smul {i} (a : A 0) (b : A i) : mk _ (a • b) = mk _ a * mk _ b :=
sigma.ext (zero_add _).symm $ eq_rec_heq _ _
@[simp] lemma grade_zero.smul_eq_mul (a b : A 0) : a • b = a * b := rfl
end mul
section monoid
variables [add_monoid ι] [gmonoid A]
instance : has_pow (A 0) ℕ :=
{ pow := λ x n, (nsmul_zero n).rec (gmonoid.gnpow n x : A (n • 0)) }
variables {A}
@[simp] lemma mk_zero_pow (a : A 0) (n : ℕ) : mk _ (a ^ n) = mk _ a ^ n :=
sigma.ext (nsmul_zero n).symm $ eq_rec_heq _ _
variables (A)
/-- The `monoid` structure derived from `gmonoid A`. -/
instance grade_zero.monoid : monoid (A 0) :=
function.injective.monoid (mk 0) sigma_mk_injective rfl mk_zero_smul mk_zero_pow
end monoid
section monoid
variables [add_comm_monoid ι] [gcomm_monoid A]
/-- The `comm_monoid` structure derived from `gcomm_monoid A`. -/
instance grade_zero.comm_monoid : comm_monoid (A 0) :=
function.injective.comm_monoid (mk 0) sigma_mk_injective rfl mk_zero_smul mk_zero_pow
end monoid
section mul_action
variables [add_monoid ι] [gmonoid A]
/-- `graded_monoid.mk 0` is a `monoid_hom`, using the `graded_monoid.grade_zero.monoid` structure.
-/
def mk_zero_monoid_hom : A 0 →* (graded_monoid A) :=
{ to_fun := mk 0, map_one' := rfl, map_mul' := mk_zero_smul }
/-- Each grade `A i` derives a `A 0`-action structure from `gmonoid A`. -/
instance grade_zero.mul_action {i} : mul_action (A 0) (A i) :=
begin
letI := mul_action.comp_hom (graded_monoid A) (mk_zero_monoid_hom A),
exact function.injective.mul_action (mk i) sigma_mk_injective mk_zero_smul,
end
end mul_action
end grade_zero
end graded_monoid
/-! ### Dependent products of graded elements -/
section dprod
variables {α : Type*} {A : ι → Type*} [add_monoid ι] [graded_monoid.gmonoid A]
/-- The index used by `list.dprod`. Propositionally this is equal to `(l.map fι).sum`, but
definitionally it needs to have a different form to avoid introducing `eq.rec`s in `list.dprod`. -/
def list.dprod_index (l : list α) (fι : α → ι) : ι :=
l.foldr (λ i b, fι i + b) 0
@[simp] lemma list.dprod_index_nil (fι : α → ι) : ([] : list α).dprod_index fι = 0 := rfl
@[simp] lemma list.dprod_index_cons (a : α) (l : list α) (fι : α → ι) :
(a :: l).dprod_index fι = fι a + l.dprod_index fι := rfl
lemma list.dprod_index_eq_map_sum (l : list α) (fι : α → ι) :
l.dprod_index fι = (l.map fι).sum :=
begin
dunfold list.dprod_index,
induction l,
{ simp, },
{ simp [l_ih], },
end
/-- A dependent product for graded monoids represented by the indexed family of types `A i`.
This is a dependent version of `(l.map fA).prod`.
For a list `l : list α`, this computes the product of `fA a` over `a`, where each `fA` is of type
`A (fι a)`. -/
def list.dprod (l : list α) (fι : α → ι) (fA : Π a, A (fι a)) :
A (l.dprod_index fι) :=
l.foldr_rec_on _ _ graded_monoid.ghas_one.one (λ i x a ha, graded_monoid.ghas_mul.mul (fA a) x)
@[simp] lemma list.dprod_nil (fι : α → ι) (fA : Π a, A (fι a)) :
(list.nil : list α).dprod fι fA = graded_monoid.ghas_one.one := rfl
-- the `( : _)` in this lemma statement results in the type on the RHS not being unfolded, which
-- is nicer in the goal view.
@[simp] lemma list.dprod_cons (fι : α → ι) (fA : Π a, A (fι a)) (a : α) (l : list α) :
(a :: l).dprod fι fA = (graded_monoid.ghas_mul.mul (fA a) (l.dprod fι fA) : _) := rfl
lemma graded_monoid.mk_list_dprod (l : list α) (fι : α → ι) (fA : Π a, A (fι a)) :
graded_monoid.mk _ (l.dprod fι fA) = (l.map (λ a, graded_monoid.mk (fι a) (fA a))).prod :=
begin
induction l,
{ simp, refl },
{ simp [←l_ih, graded_monoid.mk_mul_mk, list.prod_cons],
refl, },
end
/-- A variant of `graded_monoid.mk_list_dprod` for rewriting in the other direction. -/
lemma graded_monoid.list_prod_map_eq_dprod (l : list α) (f : α → graded_monoid A) :
(l.map f).prod = graded_monoid.mk _ (l.dprod (λ i, (f i).1) (λ i, (f i).2)) :=
begin
rw [graded_monoid.mk_list_dprod, graded_monoid.mk],
simp_rw sigma.eta,
end
lemma graded_monoid.list_prod_of_fn_eq_dprod {n : ℕ} (f : fin n → graded_monoid A) :
(list.of_fn f).prod =
graded_monoid.mk _ ((list.fin_range n).dprod (λ i, (f i).1) (λ i, (f i).2)) :=
by rw [list.of_fn_eq_map, graded_monoid.list_prod_map_eq_dprod]
end dprod
/-! ### Concrete instances -/
section
variables (ι) {R : Type*}
@[simps one]
instance has_one.ghas_one [has_zero ι] [has_one R] : graded_monoid.ghas_one (λ i : ι, R) :=
{ one := 1 }
@[simps mul]
instance has_mul.ghas_mul [has_add ι] [has_mul R] : graded_monoid.ghas_mul (λ i : ι, R) :=
{ mul := λ i j, (*) }
/-- If all grades are the same type and themselves form a monoid, then there is a trivial grading
structure. -/
@[simps gnpow]
instance monoid.gmonoid [add_monoid ι] [monoid R] : graded_monoid.gmonoid (λ i : ι, R) :=
{ one_mul := λ a, sigma.ext (zero_add _) (heq_of_eq (one_mul _)),
mul_one := λ a, sigma.ext (add_zero _) (heq_of_eq (mul_one _)),
mul_assoc := λ a b c, sigma.ext (add_assoc _ _ _) (heq_of_eq (mul_assoc _ _ _)),
gnpow := λ n i a, a ^ n,
gnpow_zero' := λ a, sigma.ext (zero_nsmul _) (heq_of_eq (monoid.npow_zero' _)),
gnpow_succ' := λ n ⟨i, a⟩, sigma.ext (succ_nsmul _ _) (heq_of_eq (monoid.npow_succ' _ _)),
..has_one.ghas_one ι,
..has_mul.ghas_mul ι }
/-- If all grades are the same type and themselves form a commutative monoid, then there is a
trivial grading structure. -/
instance comm_monoid.gcomm_monoid [add_comm_monoid ι] [comm_monoid R] :
graded_monoid.gcomm_monoid (λ i : ι, R) :=
{ mul_comm := λ a b, sigma.ext (add_comm _ _) (heq_of_eq (mul_comm _ _)),
..monoid.gmonoid ι }
/-- When all the indexed types are the same, the dependent product is just the regular product. -/
@[simp] lemma list.dprod_monoid {α} [add_monoid ι] [monoid R] (l : list α) (fι : α → ι)
(fA : α → R) :
(l.dprod fι fA : (λ i : ι, R) _) = ((l.map fA).prod : _) :=
begin
induction l,
{ rw [list.dprod_nil, list.map_nil, list.prod_nil], refl },
{ rw [list.dprod_cons, list.map_cons, list.prod_cons, l_ih], refl },
end
end
/-! ### Shorthands for creating instance of the above typeclasses for collections of subobjects -/
section subobjects
variables {R : Type*}
/-- A version of `graded_monoid.ghas_one` for internally graded objects. -/
class set_like.has_graded_one {S : Type*} [set_like S R] [has_one R] [has_zero ι]
(A : ι → S) : Prop :=
(one_mem : (1 : R) ∈ A 0)
lemma set_like.one_mem_graded {S : Type*} [set_like S R] [has_one R] [has_zero ι] (A : ι → S)
[set_like.has_graded_one A] : (1 : R) ∈ A 0 := set_like.has_graded_one.one_mem
instance set_like.ghas_one {S : Type*} [set_like S R] [has_one R] [has_zero ι] (A : ι → S)
[set_like.has_graded_one A] : graded_monoid.ghas_one (λ i, A i) :=
{ one := ⟨1, set_like.one_mem_graded _⟩ }
@[simp] lemma set_like.coe_ghas_one {S : Type*} [set_like S R] [has_one R] [has_zero ι] (A : ι → S)
[set_like.has_graded_one A] : ↑(@graded_monoid.ghas_one.one _ (λ i, A i) _ _) = (1 : R) := rfl
/-- A version of `graded_monoid.ghas_one` for internally graded objects. -/
class set_like.has_graded_mul {S : Type*} [set_like S R] [has_mul R] [has_add ι]
(A : ι → S) : Prop :=
(mul_mem : ∀ ⦃i j⦄ {gi gj}, gi ∈ A i → gj ∈ A j → gi * gj ∈ A (i + j))
lemma set_like.mul_mem_graded {S : Type*} [set_like S R] [has_mul R] [has_add ι] {A : ι → S}
[set_like.has_graded_mul A] ⦃i j⦄ {gi gj} (hi : gi ∈ A i) (hj : gj ∈ A j) :
gi * gj ∈ A (i + j) :=
set_like.has_graded_mul.mul_mem hi hj
instance set_like.ghas_mul {S : Type*} [set_like S R] [has_mul R] [has_add ι] (A : ι → S)
[set_like.has_graded_mul A] :
graded_monoid.ghas_mul (λ i, A i) :=
{ mul := λ i j a b, ⟨(a * b : R), set_like.mul_mem_graded a.prop b.prop⟩ }
@[simp] lemma set_like.coe_ghas_mul {S : Type*} [set_like S R] [has_mul R] [has_add ι] (A : ι → S)
[set_like.has_graded_mul A] {i j : ι} (x : A i) (y : A j) :
↑(@graded_monoid.ghas_mul.mul _ (λ i, A i) _ _ _ _ x y) = (x * y : R) := rfl
/-- A version of `graded_monoid.gmonoid` for internally graded objects. -/
class set_like.graded_monoid {S : Type*} [set_like S R] [monoid R] [add_monoid ι]
(A : ι → S) extends set_like.has_graded_one A, set_like.has_graded_mul A : Prop
namespace set_like
variables {S : Type*} [set_like S R] [monoid R] [add_monoid ι]
variables {A : ι → S} [set_like.graded_monoid A]
lemma pow_mem_graded (n : ℕ) {r : R} {i : ι} (h : r ∈ A i) : r ^ n ∈ A (n • i) :=
begin
induction n,
{ rw [pow_zero, zero_nsmul], exact one_mem_graded _ },
{ rw [pow_succ', succ_nsmul'], exact mul_mem_graded n_ih h },
end
lemma list_prod_map_mem_graded {ι'} (l : list ι') (i : ι' → ι) (r : ι' → R)
(h : ∀ j ∈ l, r j ∈ A (i j)) :
(l.map r).prod ∈ A (l.map i).sum :=
begin
induction l,
{ rw [list.map_nil, list.map_nil, list.prod_nil, list.sum_nil],
exact one_mem_graded _ },
{ rw [list.map_cons, list.map_cons, list.prod_cons, list.sum_cons],
exact mul_mem_graded
(h _ $ list.mem_cons_self _ _) (l_ih $ λ j hj, h _ $ list.mem_cons_of_mem _ hj) },
end
lemma list_prod_of_fn_mem_graded {n} (i : fin n → ι) (r : fin n → R) (h : ∀ j, r j ∈ A (i j)) :
(list.of_fn r).prod ∈ A (list.of_fn i).sum :=
begin
rw [list.of_fn_eq_map, list.of_fn_eq_map],
exact list_prod_map_mem_graded _ _ _ (λ _ _, h _),
end
end set_like
/-- Build a `gmonoid` instance for a collection of subobjects. -/
instance set_like.gmonoid {S : Type*} [set_like S R] [monoid R] [add_monoid ι] (A : ι → S)
[set_like.graded_monoid A] :
graded_monoid.gmonoid (λ i, A i) :=
{ one_mul := λ ⟨i, a, h⟩, sigma.subtype_ext (zero_add _) (one_mul _),
mul_one := λ ⟨i, a, h⟩, sigma.subtype_ext (add_zero _) (mul_one _),
mul_assoc := λ ⟨i, a, ha⟩ ⟨j, b, hb⟩ ⟨k, c, hc⟩,
sigma.subtype_ext (add_assoc _ _ _) (mul_assoc _ _ _),
gnpow := λ n i a, ⟨a ^ n, set_like.pow_mem_graded n a.prop⟩,
gnpow_zero' := λ n, sigma.subtype_ext (zero_nsmul _) (pow_zero _),
gnpow_succ' := λ n a, sigma.subtype_ext (succ_nsmul _ _) (pow_succ _ _),
..set_like.ghas_one A,
..set_like.ghas_mul A }
@[simp] lemma set_like.coe_gnpow {S : Type*} [set_like S R] [monoid R] [add_monoid ι] (A : ι → S)
[set_like.graded_monoid A] {i : ι} (x : A i) (n : ℕ) :
↑(@graded_monoid.gmonoid.gnpow _ (λ i, A i) _ _ n _ x) = (x ^ n : R) := rfl
/-- Build a `gcomm_monoid` instance for a collection of subobjects. -/
instance set_like.gcomm_monoid {S : Type*} [set_like S R] [comm_monoid R] [add_comm_monoid ι]
(A : ι → S) [set_like.graded_monoid A] :
graded_monoid.gcomm_monoid (λ i, A i) :=
{ mul_comm := λ ⟨i, a, ha⟩ ⟨j, b, hb⟩, sigma.subtype_ext (add_comm _ _) (mul_comm _ _),
..set_like.gmonoid A}
section dprod
open set_like set_like.graded_monoid
variables {α S : Type*} [set_like S R] [monoid R] [add_monoid ι]
/-- Coercing a dependent product of subtypes is the same as taking the regular product of the
coercions. -/
@[simp] lemma set_like.coe_list_dprod (A : ι → S) [set_like.graded_monoid A]
(fι : α → ι) (fA : Π a, A (fι a)) (l : list α) :
↑(l.dprod fι fA : (λ i, ↥(A i)) _) = (list.prod (l.map (λ a, fA a)) : R) :=
begin
induction l,
{ rw [list.dprod_nil, coe_ghas_one, list.map_nil, list.prod_nil] },
{ rw [list.dprod_cons, coe_ghas_mul, list.map_cons, list.prod_cons, l_ih], },
end
include R
/-- A version of `list.coe_dprod_set_like` with `subtype.mk`. -/
lemma set_like.list_dprod_eq (A : ι → S) [set_like.graded_monoid A]
(fι : α → ι) (fA : Π a, A (fι a)) (l : list α) :
(l.dprod fι fA : (λ i, ↥(A i)) _) =
⟨list.prod (l.map (λ a, fA a)), (l.dprod_index_eq_map_sum fι).symm ▸
list_prod_map_mem_graded l _ _ (λ i hi, (fA i).prop)⟩ :=
subtype.ext $ set_like.coe_list_dprod _ _ _ _
end dprod
end subobjects
section homogeneous_elements
variables {R S : Type*} [set_like S R]
/-- An element `a : R` is said to be homogeneous if there is some `i : ι` such that `a ∈ A i`. -/
def set_like.is_homogeneous (A : ι → S) (a : R) : Prop := ∃ i, a ∈ A i
@[simp] lemma set_like.is_homogeneous_coe {A : ι → S} {i} (x : A i) :
set_like.is_homogeneous A (x : R) :=
⟨i, x.prop⟩
lemma set_like.is_homogeneous_one [has_zero ι] [has_one R]
(A : ι → S) [set_like.has_graded_one A] : set_like.is_homogeneous A (1 : R) :=
⟨0, set_like.one_mem_graded _⟩
lemma set_like.is_homogeneous.mul [has_add ι] [has_mul R] {A : ι → S}
[set_like.has_graded_mul A] {a b : R} :
set_like.is_homogeneous A a → set_like.is_homogeneous A b → set_like.is_homogeneous A (a * b)
| ⟨i, hi⟩ ⟨j, hj⟩ := ⟨i + j, set_like.mul_mem_graded hi hj⟩
/-- When `A` is a `set_like.graded_monoid A`, then the homogeneous elements forms a submonoid. -/
def set_like.homogeneous_submonoid [add_monoid ι] [monoid R]
(A : ι → S) [set_like.graded_monoid A] : submonoid R :=
{ carrier := { a | set_like.is_homogeneous A a },
one_mem' := set_like.is_homogeneous_one A,
mul_mem' := λ a b, set_like.is_homogeneous.mul }
end homogeneous_elements
|