Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 21,992 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
/-
Copyright (c) 2021 Eric Wieser. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Eric Wieser
-/
import algebra.group.inj_surj
import data.list.big_operators
import data.list.range
import group_theory.group_action.defs
import group_theory.submonoid.basic
import data.set_like.basic
import data.sigma.basic

/-!
# Additively-graded multiplicative structures

This module provides a set of heterogeneous typeclasses for defining a multiplicative structure
over the sigma type `graded_monoid A` such that `(*) : A i → A j → A (i + j)`; that is to say, `A`
forms an additively-graded monoid. The typeclasses are:

* `graded_monoid.ghas_one A`
* `graded_monoid.ghas_mul A`
* `graded_monoid.gmonoid A`
* `graded_monoid.gcomm_monoid A`

With the `sigma_graded` locale open, these respectively imbue:

* `has_one (graded_monoid A)`
* `has_mul (graded_monoid A)`
* `monoid (graded_monoid A)`
* `comm_monoid (graded_monoid A)`

the base type `A 0` with:

* `graded_monoid.grade_zero.has_one`
* `graded_monoid.grade_zero.has_mul`
* `graded_monoid.grade_zero.monoid`
* `graded_monoid.grade_zero.comm_monoid`

and the `i`th grade `A i` with `A 0`-actions (`•`) defined as left-multiplication:

* (nothing)
* `graded_monoid.grade_zero.has_smul (A 0)`
* `graded_monoid.grade_zero.mul_action (A 0)`
* (nothing)

For now, these typeclasses are primarily used in the construction of `direct_sum.ring` and the rest
of that file.

## Dependent graded products

This also introduces `list.dprod`, which takes the (possibly non-commutative) product of a list
of graded elements of type `A i`. This definition primarily exist to allow `graded_monoid.mk`
and `direct_sum.of` to be pulled outside a product, such as in `graded_monoid.mk_list_dprod` and
`direct_sum.of_list_dprod`.

## Internally graded monoids

In addition to the above typeclasses, in the most frequent case when `A` is an indexed collection of
`set_like` subobjects (such as `add_submonoid`s, `add_subgroup`s, or `submodule`s), this file
provides the `Prop` typeclasses:

* `set_like.has_graded_one A` (which provides the obvious `graded_monoid.ghas_one A` instance)
* `set_like.has_graded_mul A` (which provides the obvious `graded_monoid.ghas_mul A` instance)
* `set_like.graded_monoid A` (which provides the obvious `graded_monoid.gmonoid A` and
  `graded_monoid.gcomm_monoid A` instances)

which respectively provide the API lemmas

* `set_like.one_mem_graded`
* `set_like.mul_mem_graded`
* `set_like.pow_mem_graded`, `set_like.list_prod_map_mem_graded`

Strictly this last class is unecessary as it has no fields not present in its parents, but it is
included for convenience. Note that there is no need for `set_like.graded_ring` or similar, as all
the information it would contain is already supplied by `graded_monoid` when `A` is a collection
of objects satisfying `add_submonoid_class` such as `submodule`s. These constructions are explored
in `algebra.direct_sum.internal`.

This file also defines:

* `set_like.is_homogeneous A` (which says that `a` is homogeneous iff `a ∈ A i` for some `i : ι`)
* `set_like.homogeneous_submonoid A`, which is, as the name suggests, the submonoid consisting of
  all the homogeneous elements.

## tags

graded monoid
-/

set_option old_structure_cmd true

variables {ι : Type*}

/-- A type alias of sigma types for graded monoids. -/
def graded_monoid (A : ι → Type*) := sigma A

namespace graded_monoid

instance {A : ι → Type*} [inhabited ι] [inhabited (A default)]: inhabited (graded_monoid A) :=
sigma.inhabited

/-- Construct an element of a graded monoid. -/
def mk {A : ι → Type*} : Π i, A i → graded_monoid A := sigma.mk

/-! ### Typeclasses -/
section defs

variables (A : ι → Type*)

/-- A graded version of `has_one`, which must be of grade 0. -/
class ghas_one [has_zero ι] :=
(one : A 0)

/-- `ghas_one` implies `has_one (graded_monoid A)` -/
instance ghas_one.to_has_one [has_zero ι] [ghas_one A] : has_one (graded_monoid A) :=
⟨⟨_, ghas_one.one⟩⟩

/-- A graded version of `has_mul`. Multiplication combines grades additively, like
`add_monoid_algebra`. -/
class ghas_mul [has_add ι] :=
(mul {i j} : A i → A j → A (i + j))

/-- `ghas_mul` implies `has_mul (graded_monoid A)`. -/
instance ghas_mul.to_has_mul [has_add ι] [ghas_mul A] :
  has_mul (graded_monoid A) :=
⟨λ (x y : graded_monoid A), ⟨_, ghas_mul.mul x.snd y.snd⟩⟩

lemma mk_mul_mk [has_add ι] [ghas_mul A] {i j} (a : A i) (b : A j) :
  mk i a * mk j b = mk (i + j) (ghas_mul.mul a b) :=
rfl

namespace gmonoid

variables {A} [add_monoid ι] [ghas_mul A] [ghas_one A]

/-- A default implementation of power on a graded monoid, like `npow_rec`.
`gmonoid.gnpow` should be used instead. -/
def gnpow_rec : Π (n : ℕ) {i}, A i → A (n • i)
| 0 i a := cast (congr_arg A (zero_nsmul i).symm) ghas_one.one
| (n + 1) i a := cast (congr_arg A (succ_nsmul i n).symm) (ghas_mul.mul a $ gnpow_rec _ a)

@[simp] lemma gnpow_rec_zero (a : graded_monoid A) : graded_monoid.mk _ (gnpow_rec 0 a.snd) = 1 :=
sigma.ext (zero_nsmul _) (heq_of_cast_eq _ rfl).symm

/-- Tactic used to autofill `graded_monoid.gmonoid.gnpow_zero'` when the default
`graded_monoid.gmonoid.gnpow_rec` is used. -/
meta def apply_gnpow_rec_zero_tac : tactic unit := `[apply graded_monoid.gmonoid.gnpow_rec_zero]

@[simp] lemma gnpow_rec_succ (n : ℕ) (a : graded_monoid A) :
  (graded_monoid.mk _ $ gnpow_rec n.succ a.snd) = a * ⟨_, gnpow_rec n a.snd⟩ :=
sigma.ext (succ_nsmul _ _) (heq_of_cast_eq _ rfl).symm

/-- Tactic used to autofill `graded_monoid.gmonoid.gnpow_succ'` when the default
`graded_monoid.gmonoid.gnpow_rec` is used. -/
meta def apply_gnpow_rec_succ_tac : tactic unit := `[apply graded_monoid.gmonoid.gnpow_rec_succ]

end gmonoid

/-- A graded version of `monoid`.

Like `monoid.npow`, this has an optional `gmonoid.gnpow` field to allow definitional control of
natural powers of a graded monoid. -/
class gmonoid [add_monoid ι]  extends ghas_mul A, ghas_one A :=
(one_mul (a : graded_monoid A) : 1 * a = a)
(mul_one (a : graded_monoid A) : a * 1 = a)
(mul_assoc (a b c : graded_monoid A) : a * b * c = a * (b * c))
(gnpow : Π (n : ℕ) {i}, A i → A (n • i) := gmonoid.gnpow_rec)
(gnpow_zero' : Π (a : graded_monoid A), graded_monoid.mk _ (gnpow 0 a.snd) = 1
  . gmonoid.apply_gnpow_rec_zero_tac)
(gnpow_succ' : Π (n : ℕ) (a : graded_monoid A),
  (graded_monoid.mk _ $ gnpow n.succ a.snd) = a * ⟨_, gnpow n a.snd⟩
  . gmonoid.apply_gnpow_rec_succ_tac)

/-- `gmonoid` implies a `monoid (graded_monoid A)`. -/
instance gmonoid.to_monoid [add_monoid ι] [gmonoid A] :
  monoid (graded_monoid A) :=
{ one := (1), mul := (*),
  npow := λ n a, graded_monoid.mk _ (gmonoid.gnpow n a.snd),
  npow_zero' := λ a, gmonoid.gnpow_zero' a,
  npow_succ' := λ n a, gmonoid.gnpow_succ' n a,
  one_mul := gmonoid.one_mul, mul_one := gmonoid.mul_one, mul_assoc := gmonoid.mul_assoc }

lemma mk_pow [add_monoid ι] [gmonoid A] {i} (a : A i) (n : ℕ) :
  mk i a ^ n = mk (n • i) (gmonoid.gnpow _ a) :=
begin
  induction n with n,
  { rw [pow_zero],
    exact (gmonoid.gnpow_zero' ⟨_, a⟩).symm, },
  { rw [pow_succ, n_ih, mk_mul_mk],
    exact (gmonoid.gnpow_succ' n ⟨_, a⟩).symm, },
end

/-- A graded version of `comm_monoid`. -/
class gcomm_monoid [add_comm_monoid ι] extends gmonoid A :=
(mul_comm (a : graded_monoid A) (b : graded_monoid A) : a * b = b * a)

/-- `gcomm_monoid` implies a `comm_monoid (graded_monoid A)`, although this is only used as an
instance locally to define notation in `gmonoid` and similar typeclasses. -/
instance gcomm_monoid.to_comm_monoid [add_comm_monoid ι] [gcomm_monoid A] :
  comm_monoid (graded_monoid A) :=
{ mul_comm := gcomm_monoid.mul_comm, ..gmonoid.to_monoid A }

end defs


/-! ### Instances for `A 0`

The various `g*` instances are enough to promote the `add_comm_monoid (A 0)` structure to various
types of multiplicative structure.
-/

section grade_zero

variables (A : ι → Type*)

section one
variables [has_zero ι] [ghas_one A]

/-- `1 : A 0` is the value provided in `ghas_one.one`. -/
@[nolint unused_arguments]
instance grade_zero.has_one : has_one (A 0) :=
⟨ghas_one.one⟩

end one

section mul
variables [add_zero_class ι] [ghas_mul A]

/-- `(•) : A 0 → A i → A i` is the value provided in `graded_monoid.ghas_mul.mul`, composed with
an `eq.rec` to turn `A (0 + i)` into `A i`.
-/
instance grade_zero.has_smul (i : ι) : has_smul (A 0) (A i) :=
{ smul := λ x y, (zero_add i).rec (ghas_mul.mul x y) }

/-- `(*) : A 0 → A 0 → A 0` is the value provided in `graded_monoid.ghas_mul.mul`, composed with
an `eq.rec` to turn `A (0 + 0)` into `A 0`.
-/
instance grade_zero.has_mul : has_mul (A 0) :=
{ mul := (•) }

variables {A}

@[simp] lemma mk_zero_smul {i} (a : A 0) (b : A i) : mk _ (a • b) = mk _ a * mk _ b :=
sigma.ext (zero_add _).symm $ eq_rec_heq _ _

@[simp] lemma grade_zero.smul_eq_mul (a b : A 0) : a • b = a * b := rfl


end mul

section monoid
variables [add_monoid ι] [gmonoid A]

instance : has_pow (A 0) ℕ :=
{ pow := λ x n, (nsmul_zero n).rec (gmonoid.gnpow n x : A (n • 0)) }

variables {A}

@[simp] lemma mk_zero_pow (a : A 0) (n : ℕ) : mk _ (a ^ n) = mk _ a ^ n :=
sigma.ext (nsmul_zero n).symm $ eq_rec_heq _ _

variables (A)

/-- The `monoid` structure derived from `gmonoid A`. -/
instance grade_zero.monoid : monoid (A 0) :=
function.injective.monoid (mk 0) sigma_mk_injective rfl mk_zero_smul mk_zero_pow

end monoid

section monoid
variables [add_comm_monoid ι] [gcomm_monoid A]

/-- The `comm_monoid` structure derived from `gcomm_monoid A`. -/
instance grade_zero.comm_monoid : comm_monoid (A 0) :=
function.injective.comm_monoid (mk 0) sigma_mk_injective rfl mk_zero_smul mk_zero_pow

end monoid

section mul_action
variables [add_monoid ι] [gmonoid A]

/-- `graded_monoid.mk 0` is a `monoid_hom`, using the `graded_monoid.grade_zero.monoid` structure.
-/
def mk_zero_monoid_hom : A 0 →* (graded_monoid A) :=
{ to_fun := mk 0, map_one' := rfl, map_mul' := mk_zero_smul }

/-- Each grade `A i` derives a `A 0`-action structure from `gmonoid A`. -/
instance grade_zero.mul_action {i} : mul_action (A 0) (A i) :=
begin
  letI := mul_action.comp_hom (graded_monoid A) (mk_zero_monoid_hom A),
  exact function.injective.mul_action (mk i) sigma_mk_injective mk_zero_smul,
end

end mul_action

end grade_zero

end graded_monoid

/-! ### Dependent products of graded elements -/

section dprod

variables {α : Type*} {A : ι → Type*} [add_monoid ι] [graded_monoid.gmonoid A]

/-- The index used by `list.dprod`. Propositionally this is equal to `(l.map fι).sum`, but
definitionally it needs to have a different form to avoid introducing `eq.rec`s in `list.dprod`. -/
def list.dprod_index (l : list α) (fι : α → ι) : ι :=
l.foldr (λ i b, fι i + b) 0

@[simp] lemma list.dprod_index_nil (fι : α → ι) : ([] : list α).dprod_index fι = 0 := rfl
@[simp] lemma list.dprod_index_cons (a : α) (l : list α) (fι : α → ι) :
  (a :: l).dprod_index fι = fι a + l.dprod_index fι := rfl

lemma list.dprod_index_eq_map_sum (l : list α) (fι : α → ι) :
  l.dprod_index fι = (l.map fι).sum :=
begin
  dunfold list.dprod_index,
  induction l,
  { simp, },
  { simp [l_ih], },
end

/-- A dependent product for graded monoids represented by the indexed family of types `A i`.
This is a dependent version of `(l.map fA).prod`.

For a list `l : list α`, this computes the product of `fA a` over `a`, where each `fA` is of type
`A (fι a)`. -/
def list.dprod (l : list α) (fι : α → ι) (fA : Π a, A (fι a)) :
  A (l.dprod_index fι) :=
l.foldr_rec_on _ _ graded_monoid.ghas_one.one (λ i x a ha, graded_monoid.ghas_mul.mul (fA a) x)

@[simp] lemma list.dprod_nil (fι : α → ι) (fA : Π a, A (fι a)) :
  (list.nil : list α).dprod fι fA = graded_monoid.ghas_one.one := rfl

-- the `( : _)` in this lemma statement results in the type on the RHS not being unfolded, which
-- is nicer in the goal view.
@[simp] lemma list.dprod_cons (fι : α → ι) (fA : Π a, A (fι a)) (a : α) (l : list α) :
  (a :: l).dprod fι fA = (graded_monoid.ghas_mul.mul (fA a) (l.dprod fι fA) : _) := rfl

lemma graded_monoid.mk_list_dprod (l : list α) (fι : α → ι) (fA : Π a, A (fι a)) :
  graded_monoid.mk _ (l.dprod fι fA) = (l.map (λ a, graded_monoid.mk (fι a) (fA a))).prod :=
begin
  induction l,
  { simp, refl  },
  { simp [←l_ih, graded_monoid.mk_mul_mk, list.prod_cons],
    refl, },
end

/-- A variant of `graded_monoid.mk_list_dprod` for rewriting in the other direction. -/
lemma graded_monoid.list_prod_map_eq_dprod (l : list α) (f : α → graded_monoid A) :
  (l.map f).prod = graded_monoid.mk _ (l.dprod (λ i, (f i).1) (λ i, (f i).2)) :=
begin
  rw [graded_monoid.mk_list_dprod, graded_monoid.mk],
  simp_rw sigma.eta,
end

lemma graded_monoid.list_prod_of_fn_eq_dprod {n : ℕ} (f : fin n → graded_monoid A) :
  (list.of_fn f).prod =
    graded_monoid.mk _ ((list.fin_range n).dprod (λ i, (f i).1) (λ i, (f i).2)) :=
by rw [list.of_fn_eq_map, graded_monoid.list_prod_map_eq_dprod]

end dprod

/-! ### Concrete instances -/
section

variables (ι) {R : Type*}

@[simps one]
instance has_one.ghas_one [has_zero ι] [has_one R] : graded_monoid.ghas_one (λ i : ι, R) :=
{ one := 1 }

@[simps mul]
instance has_mul.ghas_mul [has_add ι] [has_mul R] : graded_monoid.ghas_mul (λ i : ι, R) :=
{ mul := λ i j, (*) }

/-- If all grades are the same type and themselves form a monoid, then there is a trivial grading
structure. -/
@[simps gnpow]
instance monoid.gmonoid [add_monoid ι] [monoid R] : graded_monoid.gmonoid (λ i : ι, R) :=
{ one_mul := λ a, sigma.ext (zero_add _) (heq_of_eq (one_mul _)),
  mul_one := λ a, sigma.ext (add_zero _) (heq_of_eq (mul_one _)),
  mul_assoc := λ a b c, sigma.ext (add_assoc _ _ _) (heq_of_eq (mul_assoc _ _ _)),
  gnpow := λ n i a, a ^ n,
  gnpow_zero' := λ a, sigma.ext (zero_nsmul _) (heq_of_eq (monoid.npow_zero' _)),
  gnpow_succ' := λ n ⟨i, a⟩, sigma.ext (succ_nsmul _ _) (heq_of_eq (monoid.npow_succ' _ _)),
  ..has_one.ghas_one ι,
  ..has_mul.ghas_mul ι }

/-- If all grades are the same type and themselves form a commutative monoid, then there is a
trivial grading structure. -/
instance comm_monoid.gcomm_monoid [add_comm_monoid ι] [comm_monoid R] :
  graded_monoid.gcomm_monoid (λ i : ι, R) :=
{ mul_comm := λ a b, sigma.ext (add_comm _ _) (heq_of_eq (mul_comm _ _)),
  ..monoid.gmonoid ι }

/-- When all the indexed types are the same, the dependent product is just the regular product. -/
@[simp] lemma list.dprod_monoid {α} [add_monoid ι] [monoid R] (l : list α) (fι : α → ι)
  (fA : α → R) :
  (l.dprod fι fA : (λ i : ι, R) _) = ((l.map fA).prod : _) :=
begin
  induction l,
  { rw [list.dprod_nil, list.map_nil, list.prod_nil], refl },
  { rw [list.dprod_cons, list.map_cons, list.prod_cons, l_ih], refl },
end

end

/-! ### Shorthands for creating instance of the above typeclasses for collections of subobjects -/

section subobjects

variables {R : Type*}

/-- A version of `graded_monoid.ghas_one` for internally graded objects. -/
class set_like.has_graded_one {S : Type*} [set_like S R] [has_one R] [has_zero ι]
  (A : ι → S) : Prop :=
(one_mem : (1 : R) ∈ A 0)

lemma set_like.one_mem_graded {S : Type*} [set_like S R] [has_one R] [has_zero ι] (A : ι → S)
  [set_like.has_graded_one A] : (1 : R) ∈ A 0 := set_like.has_graded_one.one_mem

instance set_like.ghas_one {S : Type*} [set_like S R] [has_one R] [has_zero ι] (A : ι → S)
  [set_like.has_graded_one A] : graded_monoid.ghas_one (λ i, A i) :=
{ one := ⟨1, set_like.one_mem_graded _⟩ }

@[simp] lemma set_like.coe_ghas_one {S : Type*} [set_like S R] [has_one R] [has_zero ι] (A : ι → S)
  [set_like.has_graded_one A] : ↑(@graded_monoid.ghas_one.one _ (λ i, A i) _ _) = (1 : R) := rfl

/-- A version of `graded_monoid.ghas_one` for internally graded objects. -/
class set_like.has_graded_mul {S : Type*} [set_like S R] [has_mul R] [has_add ι]
  (A : ι → S) : Prop :=
(mul_mem : ∀ ⦃i j⦄ {gi gj}, gi ∈ A i → gj ∈ A j → gi * gj ∈ A (i + j))

lemma set_like.mul_mem_graded {S : Type*} [set_like S R] [has_mul R] [has_add ι] {A : ι → S}
  [set_like.has_graded_mul A] ⦃i j⦄ {gi gj} (hi : gi ∈ A i) (hj : gj ∈ A j) :
  gi * gj ∈ A (i + j) :=
set_like.has_graded_mul.mul_mem hi hj

instance set_like.ghas_mul {S : Type*} [set_like S R] [has_mul R] [has_add ι] (A : ι → S)
  [set_like.has_graded_mul A] :
  graded_monoid.ghas_mul (λ i, A i) :=
{ mul := λ i j a b, ⟨(a * b : R), set_like.mul_mem_graded a.prop b.prop⟩ }

@[simp] lemma set_like.coe_ghas_mul {S : Type*} [set_like S R] [has_mul R] [has_add ι] (A : ι → S)
  [set_like.has_graded_mul A] {i j : ι} (x : A i) (y : A j) :
    ↑(@graded_monoid.ghas_mul.mul _ (λ i, A i) _ _ _ _ x y) = (x * y : R) := rfl

/-- A version of `graded_monoid.gmonoid` for internally graded objects. -/
class set_like.graded_monoid {S : Type*} [set_like S R] [monoid R] [add_monoid ι]
  (A : ι → S) extends set_like.has_graded_one A, set_like.has_graded_mul A : Prop

namespace set_like
variables {S : Type*} [set_like S R] [monoid R] [add_monoid ι]
variables {A : ι → S} [set_like.graded_monoid A]

lemma pow_mem_graded (n : ℕ) {r : R} {i : ι} (h : r ∈ A i) : r ^ n ∈ A (n • i) :=
begin
  induction n,
  { rw [pow_zero, zero_nsmul], exact one_mem_graded _ },
  { rw [pow_succ', succ_nsmul'], exact mul_mem_graded n_ih h },
end

lemma list_prod_map_mem_graded {ι'} (l : list ι') (i : ι' → ι) (r : ι' → R)
  (h : ∀ j ∈ l, r j ∈ A (i j)) :
  (l.map r).prod ∈ A (l.map i).sum :=
begin
  induction l,
  { rw [list.map_nil, list.map_nil, list.prod_nil, list.sum_nil],
    exact one_mem_graded _ },
  { rw [list.map_cons, list.map_cons, list.prod_cons, list.sum_cons],
    exact mul_mem_graded
      (h _ $ list.mem_cons_self _ _) (l_ih $ λ j hj, h _ $ list.mem_cons_of_mem _ hj) },
end

lemma list_prod_of_fn_mem_graded {n} (i : fin n → ι) (r : fin n → R) (h : ∀ j, r j ∈ A (i j)) :
  (list.of_fn r).prod ∈ A (list.of_fn i).sum :=
begin
  rw [list.of_fn_eq_map, list.of_fn_eq_map],
  exact list_prod_map_mem_graded _ _ _ (λ _ _, h _),
end

end set_like

/-- Build a `gmonoid` instance for a collection of subobjects. -/
instance set_like.gmonoid {S : Type*} [set_like S R] [monoid R] [add_monoid ι] (A : ι → S)
  [set_like.graded_monoid A] :
  graded_monoid.gmonoid (λ i, A i) :=
{ one_mul := λ ⟨i, a, h⟩, sigma.subtype_ext (zero_add _) (one_mul _),
  mul_one := λ ⟨i, a, h⟩, sigma.subtype_ext (add_zero _) (mul_one _),
  mul_assoc := λ ⟨i, a, ha⟩ ⟨j, b, hb⟩ ⟨k, c, hc⟩,
    sigma.subtype_ext (add_assoc _ _ _) (mul_assoc _ _ _),
  gnpow := λ n i a, ⟨a ^ n, set_like.pow_mem_graded n a.prop⟩,
  gnpow_zero' := λ n, sigma.subtype_ext (zero_nsmul _) (pow_zero _),
  gnpow_succ' := λ n a, sigma.subtype_ext (succ_nsmul _ _) (pow_succ _ _),
  ..set_like.ghas_one A,
  ..set_like.ghas_mul A }

@[simp] lemma set_like.coe_gnpow {S : Type*} [set_like S R] [monoid R] [add_monoid ι] (A : ι → S)
  [set_like.graded_monoid A] {i : ι} (x : A i) (n : ℕ) :
    ↑(@graded_monoid.gmonoid.gnpow _ (λ i, A i) _ _ n _ x) = (x ^ n : R) := rfl

/-- Build a `gcomm_monoid` instance for a collection of subobjects. -/
instance set_like.gcomm_monoid {S : Type*} [set_like S R] [comm_monoid R] [add_comm_monoid ι]
  (A : ι → S) [set_like.graded_monoid A] :
  graded_monoid.gcomm_monoid (λ i, A i) :=
{ mul_comm := λ ⟨i, a, ha⟩ ⟨j, b, hb⟩, sigma.subtype_ext (add_comm _ _) (mul_comm _ _),
  ..set_like.gmonoid A}

section dprod
open set_like set_like.graded_monoid
variables {α S : Type*} [set_like S R] [monoid R] [add_monoid ι]

/-- Coercing a dependent product of subtypes is the same as taking the regular product of the
coercions. -/
@[simp] lemma set_like.coe_list_dprod (A : ι → S) [set_like.graded_monoid A]
  (fι : α → ι) (fA : Π a, A (fι a)) (l : list α) :
  ↑(l.dprod fι fA : (λ i, ↥(A i)) _) = (list.prod (l.map (λ a, fA a)) : R) :=
begin
  induction l,
  { rw [list.dprod_nil, coe_ghas_one, list.map_nil, list.prod_nil] },
  { rw [list.dprod_cons, coe_ghas_mul, list.map_cons, list.prod_cons, l_ih], },
end

include R

/-- A version of `list.coe_dprod_set_like` with `subtype.mk`. -/
lemma set_like.list_dprod_eq (A : ι → S) [set_like.graded_monoid A]
  (fι : α → ι) (fA : Π a, A (fι a)) (l : list α) :
  (l.dprod fι fA : (λ i, ↥(A i)) _) =
    ⟨list.prod (l.map (λ a, fA a)), (l.dprod_index_eq_map_sum fι).symm ▸
      list_prod_map_mem_graded l _ _ (λ i hi, (fA i).prop)⟩ :=
subtype.ext $ set_like.coe_list_dprod _ _ _ _

end dprod

end subobjects

section homogeneous_elements

variables {R S : Type*} [set_like S R]

/-- An element `a : R` is said to be homogeneous if there is some `i : ι` such that `a ∈ A i`. -/
def set_like.is_homogeneous (A : ι → S) (a : R) : Prop := ∃ i, a ∈ A i

@[simp] lemma set_like.is_homogeneous_coe {A : ι → S} {i} (x : A i) :
  set_like.is_homogeneous A (x : R) :=
⟨i, x.prop⟩

lemma set_like.is_homogeneous_one [has_zero ι] [has_one R]
  (A : ι → S) [set_like.has_graded_one A] : set_like.is_homogeneous A (1 : R) :=
⟨0, set_like.one_mem_graded _⟩

lemma set_like.is_homogeneous.mul [has_add ι] [has_mul R] {A : ι → S}
  [set_like.has_graded_mul A] {a b : R} :
  set_like.is_homogeneous A a → set_like.is_homogeneous A b → set_like.is_homogeneous A (a * b)
| ⟨i, hi⟩ ⟨j, hj⟩ := ⟨i + j, set_like.mul_mem_graded hi hj⟩

/-- When `A` is a `set_like.graded_monoid A`, then the homogeneous elements forms a submonoid. -/
def set_like.homogeneous_submonoid [add_monoid ι] [monoid R]
  (A : ι → S) [set_like.graded_monoid A] : submonoid R :=
{ carrier := { a | set_like.is_homogeneous A a },
  one_mem' := set_like.is_homogeneous_one A,
  mul_mem' := λ a b, set_like.is_homogeneous.mul }

end homogeneous_elements