Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 16,409 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
/-
Copyright (c) 2020 Adam Topaz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Adam Topaz
-/
import algebra.algebra.subalgebra.basic
import algebra.monoid_algebra.basic
/-!
# Free Algebras
Given a commutative semiring `R`, and a type `X`, we construct the free unital, associative
`R`-algebra on `X`.
## Notation
1. `free_algebra R X` is the free algebra itself. It is endowed with an `R`-algebra structure.
2. `free_algebra.ι R` is the function `X → free_algebra R X`.
3. Given a function `f : X → A` to an R-algebra `A`, `lift R f` is the lift of `f` to an
`R`-algebra morphism `free_algebra R X → A`.
## Theorems
1. `ι_comp_lift` states that the composition `(lift R f) ∘ (ι R)` is identical to `f`.
2. `lift_unique` states that whenever an R-algebra morphism `g : free_algebra R X → A` is
given whose composition with `ι R` is `f`, then one has `g = lift R f`.
3. `hom_ext` is a variant of `lift_unique` in the form of an extensionality theorem.
4. `lift_comp_ι` is a combination of `ι_comp_lift` and `lift_unique`. It states that the lift
of the composition of an algebra morphism with `ι` is the algebra morphism itself.
5. `equiv_monoid_algebra_free_monoid : free_algebra R X ≃ₐ[R] monoid_algebra R (free_monoid X)`
6. An inductive principle `induction`.
## Implementation details
We construct the free algebra on `X` as a quotient of an inductive type `free_algebra.pre` by an
inductively defined relation `free_algebra.rel`. Explicitly, the construction involves three steps:
1. We construct an inductive type `free_algebra.pre R X`, the terms of which should be thought
of as representatives for the elements of `free_algebra R X`.
It is the free type with maps from `R` and `X`, and with two binary operations `add` and `mul`.
2. We construct an inductive relation `free_algebra.rel R X` on `free_algebra.pre R X`.
This is the smallest relation for which the quotient is an `R`-algebra where addition resp.
multiplication are induced by `add` resp. `mul` from 1., and for which the map from `R` is the
structure map for the algebra.
3. The free algebra `free_algebra R X` is the quotient of `free_algebra.pre R X` by
the relation `free_algebra.rel R X`.
-/
variables (R : Type*) [comm_semiring R]
variables (X : Type*)
namespace free_algebra
/--
This inductive type is used to express representatives of the free algebra.
-/
inductive pre
| of : X → pre
| of_scalar : R → pre
| add : pre → pre → pre
| mul : pre → pre → pre
namespace pre
instance : inhabited (pre R X) := ⟨of_scalar 0⟩
-- Note: These instances are only used to simplify the notation.
/-- Coercion from `X` to `pre R X`. Note: Used for notation only. -/
def has_coe_generator : has_coe X (pre R X) := ⟨of⟩
/-- Coercion from `R` to `pre R X`. Note: Used for notation only. -/
def has_coe_semiring : has_coe R (pre R X) := ⟨of_scalar⟩
/-- Multiplication in `pre R X` defined as `pre.mul`. Note: Used for notation only. -/
def has_mul : has_mul (pre R X) := ⟨mul⟩
/-- Addition in `pre R X` defined as `pre.add`. Note: Used for notation only. -/
def has_add : has_add (pre R X) := ⟨add⟩
/-- Zero in `pre R X` defined as the image of `0` from `R`. Note: Used for notation only. -/
def has_zero : has_zero (pre R X) := ⟨of_scalar 0⟩
/-- One in `pre R X` defined as the image of `1` from `R`. Note: Used for notation only. -/
def has_one : has_one (pre R X) := ⟨of_scalar 1⟩
/--
Scalar multiplication defined as multiplication by the image of elements from `R`.
Note: Used for notation only.
-/
def has_smul : has_smul R (pre R X) := ⟨λ r m, mul (of_scalar r) m⟩
end pre
local attribute [instance]
pre.has_coe_generator pre.has_coe_semiring pre.has_mul pre.has_add pre.has_zero
pre.has_one pre.has_smul
/--
Given a function from `X` to an `R`-algebra `A`, `lift_fun` provides a lift of `f` to a function
from `pre R X` to `A`. This is mainly used in the construction of `free_algebra.lift`.
-/
def lift_fun {A : Type*} [semiring A] [algebra R A] (f : X → A) : pre R X → A :=
λ t, pre.rec_on t f (algebra_map _ _) (λ _ _, (+)) (λ _ _, (*))
/--
An inductively defined relation on `pre R X` used to force the initial algebra structure on
the associated quotient.
-/
inductive rel : (pre R X) → (pre R X) → Prop
-- force `of_scalar` to be a central semiring morphism
| add_scalar {r s : R} : rel ↑(r + s) (↑r + ↑s)
| mul_scalar {r s : R} : rel ↑(r * s) (↑r * ↑s)
| central_scalar {r : R} {a : pre R X} : rel (r * a) (a * r)
-- commutative additive semigroup
| add_assoc {a b c : pre R X} : rel (a + b + c) (a + (b + c))
| add_comm {a b : pre R X} : rel (a + b) (b + a)
| zero_add {a : pre R X} : rel (0 + a) a
-- multiplicative monoid
| mul_assoc {a b c : pre R X} : rel (a * b * c) (a * (b * c))
| one_mul {a : pre R X} : rel (1 * a) a
| mul_one {a : pre R X} : rel (a * 1) a
-- distributivity
| left_distrib {a b c : pre R X} : rel (a * (b + c)) (a * b + a * c)
| right_distrib {a b c : pre R X} : rel ((a + b) * c) (a * c + b * c)
-- other relations needed for semiring
| zero_mul {a : pre R X} : rel (0 * a) 0
| mul_zero {a : pre R X} : rel (a * 0) 0
-- compatibility
| add_compat_left {a b c : pre R X} : rel a b → rel (a + c) (b + c)
| add_compat_right {a b c : pre R X} : rel a b → rel (c + a) (c + b)
| mul_compat_left {a b c : pre R X} : rel a b → rel (a * c) (b * c)
| mul_compat_right {a b c : pre R X} : rel a b → rel (c * a) (c * b)
end free_algebra
/--
The free algebra for the type `X` over the commutative semiring `R`.
-/
def free_algebra := quot (free_algebra.rel R X)
namespace free_algebra
local attribute [instance]
pre.has_coe_generator pre.has_coe_semiring pre.has_mul pre.has_add pre.has_zero
pre.has_one pre.has_smul
instance : semiring (free_algebra R X) :=
{ add := quot.map₂ (+) (λ _ _ _, rel.add_compat_right) (λ _ _ _, rel.add_compat_left),
add_assoc := by { rintros ⟨⟩ ⟨⟩ ⟨⟩, exact quot.sound rel.add_assoc },
zero := quot.mk _ 0,
zero_add := by { rintro ⟨⟩, exact quot.sound rel.zero_add },
add_zero := begin
rintros ⟨⟩,
change quot.mk _ _ = _,
rw [quot.sound rel.add_comm, quot.sound rel.zero_add],
end,
add_comm := by { rintros ⟨⟩ ⟨⟩, exact quot.sound rel.add_comm },
mul := quot.map₂ (*) (λ _ _ _, rel.mul_compat_right) (λ _ _ _, rel.mul_compat_left),
mul_assoc := by { rintros ⟨⟩ ⟨⟩ ⟨⟩, exact quot.sound rel.mul_assoc },
one := quot.mk _ 1,
one_mul := by { rintros ⟨⟩, exact quot.sound rel.one_mul },
mul_one := by { rintros ⟨⟩, exact quot.sound rel.mul_one },
left_distrib := by { rintros ⟨⟩ ⟨⟩ ⟨⟩, exact quot.sound rel.left_distrib },
right_distrib := by { rintros ⟨⟩ ⟨⟩ ⟨⟩, exact quot.sound rel.right_distrib },
zero_mul := by { rintros ⟨⟩, exact quot.sound rel.zero_mul },
mul_zero := by { rintros ⟨⟩, exact quot.sound rel.mul_zero } }
instance : inhabited (free_algebra R X) := ⟨0⟩
instance : has_smul R (free_algebra R X) :=
{ smul := λ r, quot.map ((*) ↑r) (λ a b, rel.mul_compat_right) }
instance : algebra R (free_algebra R X) :=
{ to_fun := λ r, quot.mk _ r,
map_one' := rfl,
map_mul' := λ _ _, quot.sound rel.mul_scalar,
map_zero' := rfl,
map_add' := λ _ _, quot.sound rel.add_scalar,
commutes' := λ _, by { rintros ⟨⟩, exact quot.sound rel.central_scalar },
smul_def' := λ _ _, rfl }
instance {S : Type*} [comm_ring S] : ring (free_algebra S X) := algebra.semiring_to_ring S
variables {X}
/--
The canonical function `X → free_algebra R X`.
-/
def ι : X → free_algebra R X := λ m, quot.mk _ m
@[simp] lemma quot_mk_eq_ι (m : X) : quot.mk (free_algebra.rel R X) m = ι R m := rfl
variables {A : Type*} [semiring A] [algebra R A]
/-- Internal definition used to define `lift` -/
private def lift_aux (f : X → A) : (free_algebra R X →ₐ[R] A) :=
{ to_fun := λ a, quot.lift_on a (lift_fun _ _ f) $ λ a b h,
begin
induction h,
{ exact (algebra_map R A).map_add h_r h_s, },
{ exact (algebra_map R A).map_mul h_r h_s },
{ apply algebra.commutes },
{ change _ + _ + _ = _ + (_ + _),
rw add_assoc },
{ change _ + _ = _ + _,
rw add_comm, },
{ change (algebra_map _ _ _) + lift_fun R X f _ = lift_fun R X f _,
simp, },
{ change _ * _ * _ = _ * (_ * _),
rw mul_assoc },
{ change (algebra_map _ _ _) * lift_fun R X f _ = lift_fun R X f _,
simp, },
{ change lift_fun R X f _ * (algebra_map _ _ _) = lift_fun R X f _,
simp, },
{ change _ * (_ + _) = _ * _ + _ * _,
rw left_distrib, },
{ change (_ + _) * _ = _ * _ + _ * _,
rw right_distrib, },
{ change (algebra_map _ _ _) * _ = algebra_map _ _ _,
simp },
{ change _ * (algebra_map _ _ _) = algebra_map _ _ _,
simp },
repeat { change lift_fun R X f _ + lift_fun R X f _ = _,
rw h_ih,
refl, },
repeat { change lift_fun R X f _ * lift_fun R X f _ = _,
rw h_ih,
refl, },
end,
map_one' := by { change algebra_map _ _ _ = _, simp },
map_mul' := by { rintros ⟨⟩ ⟨⟩, refl },
map_zero' := by { change algebra_map _ _ _ = _, simp },
map_add' := by { rintros ⟨⟩ ⟨⟩, refl },
commutes' := by tauto }
/--
Given a function `f : X → A` where `A` is an `R`-algebra, `lift R f` is the unique lift
of `f` to a morphism of `R`-algebras `free_algebra R X → A`.
-/
def lift : (X → A) ≃ (free_algebra R X →ₐ[R] A) :=
{ to_fun := lift_aux R,
inv_fun := λ F, F ∘ (ι R),
left_inv := λ f, by {ext, refl},
right_inv := λ F, by
{ ext x,
rcases x,
induction x,
case pre.of :
{ change ((F : free_algebra R X → A) ∘ (ι R)) _ = _,
refl },
case pre.of_scalar :
{ change algebra_map _ _ x = F (algebra_map _ _ x),
rw alg_hom.commutes F x, },
case pre.add : a b ha hb
{ change lift_aux R (F ∘ ι R) (quot.mk _ _ + quot.mk _ _) = F (quot.mk _ _ + quot.mk _ _),
rw [alg_hom.map_add, alg_hom.map_add, ha, hb], },
case pre.mul : a b ha hb
{ change lift_aux R (F ∘ ι R) (quot.mk _ _ * quot.mk _ _) = F (quot.mk _ _ * quot.mk _ _),
rw [alg_hom.map_mul, alg_hom.map_mul, ha, hb], }, }, }
@[simp] lemma lift_aux_eq (f : X → A) : lift_aux R f = lift R f := rfl
@[simp]
lemma lift_symm_apply (F : free_algebra R X →ₐ[R] A) : (lift R).symm F = F ∘ (ι R) := rfl
variables {R X}
@[simp]
theorem ι_comp_lift (f : X → A) :
(lift R f : free_algebra R X → A) ∘ (ι R) = f := by {ext, refl}
@[simp]
theorem lift_ι_apply (f : X → A) (x) :
lift R f (ι R x) = f x := rfl
@[simp]
theorem lift_unique (f : X → A) (g : free_algebra R X →ₐ[R] A) :
(g : free_algebra R X → A) ∘ (ι R) = f ↔ g = lift R f :=
(lift R).symm_apply_eq
/-!
At this stage we set the basic definitions as `@[irreducible]`, so from this point onwards one
should only use the universal properties of the free algebra, and consider the actual implementation
as a quotient of an inductive type as completely hidden.
Of course, one still has the option to locally make these definitions `semireducible` if so desired,
and Lean is still willing in some circumstances to do unification based on the underlying
definition.
-/
attribute [irreducible] ι lift
-- Marking `free_algebra` irreducible makes `ring` instances inaccessible on quotients.
-- https://leanprover.zulipchat.com/#narrow/stream/113488-general/topic/algebra.2Esemiring_to_ring.20breaks.20semimodule.20typeclass.20lookup/near/212580241
-- For now, we avoid this by not marking it irreducible.
@[simp]
theorem lift_comp_ι (g : free_algebra R X →ₐ[R] A) :
lift R ((g : free_algebra R X → A) ∘ (ι R)) = g :=
by { rw ←lift_symm_apply, exact (lift R).apply_symm_apply g }
/-- See note [partially-applied ext lemmas]. -/
@[ext]
theorem hom_ext {f g : free_algebra R X →ₐ[R] A}
(w : ((f : free_algebra R X → A) ∘ (ι R)) = ((g : free_algebra R X → A) ∘ (ι R))) : f = g :=
begin
rw [←lift_symm_apply, ←lift_symm_apply] at w,
exact (lift R).symm.injective w,
end
/--
The free algebra on `X` is "just" the monoid algebra on the free monoid on `X`.
This would be useful when constructing linear maps out of a free algebra,
for example.
-/
noncomputable
def equiv_monoid_algebra_free_monoid : free_algebra R X ≃ₐ[R] monoid_algebra R (free_monoid X) :=
alg_equiv.of_alg_hom
(lift R (λ x, (monoid_algebra.of R (free_monoid X)) (free_monoid.of x)))
((monoid_algebra.lift R (free_monoid X) (free_algebra R X)) (free_monoid.lift (ι R)))
begin
apply monoid_algebra.alg_hom_ext, intro x,
apply free_monoid.rec_on x,
{ simp, refl, },
{ intros x y ih, simp at ih, simp [ih], }
end
(by { ext, simp, })
instance [nontrivial R] : nontrivial (free_algebra R X) :=
equiv_monoid_algebra_free_monoid.surjective.nontrivial
section
/-- The left-inverse of `algebra_map`. -/
def algebra_map_inv : free_algebra R X →ₐ[R] R :=
lift R (0 : X → R)
lemma algebra_map_left_inverse :
function.left_inverse algebra_map_inv (algebra_map R $ free_algebra R X) :=
λ x, by simp [algebra_map_inv]
@[simp] lemma algebra_map_inj (x y : R) :
algebra_map R (free_algebra R X) x = algebra_map R (free_algebra R X) y ↔ x = y :=
algebra_map_left_inverse.injective.eq_iff
@[simp] lemma algebra_map_eq_zero_iff (x : R) : algebra_map R (free_algebra R X) x = 0 ↔ x = 0 :=
map_eq_zero_iff (algebra_map _ _) algebra_map_left_inverse.injective
@[simp] lemma algebra_map_eq_one_iff (x : R) : algebra_map R (free_algebra R X) x = 1 ↔ x = 1 :=
map_eq_one_iff (algebra_map _ _) algebra_map_left_inverse.injective
-- this proof is copied from the approach in `free_abelian_group.of_injective`
lemma ι_injective [nontrivial R] : function.injective (ι R : X → free_algebra R X) :=
λ x y hoxy, classical.by_contradiction $ assume hxy : x ≠ y,
let f : free_algebra R X →ₐ[R] R :=
lift R (λ z, by classical; exact if x = z then (1 : R) else 0) in
have hfx1 : f (ι R x) = 1, from (lift_ι_apply _ _).trans $ if_pos rfl,
have hfy1 : f (ι R y) = 1, from hoxy ▸ hfx1,
have hfy0 : f (ι R y) = 0, from (lift_ι_apply _ _).trans $ if_neg hxy,
one_ne_zero $ hfy1.symm.trans hfy0
@[simp] lemma ι_inj [nontrivial R] (x y : X) : ι R x = ι R y ↔ x = y :=
ι_injective.eq_iff
@[simp] lemma ι_ne_algebra_map [nontrivial R] (x : X) (r : R) : ι R x ≠ algebra_map R _ r :=
λ h,
let f0 : free_algebra R X →ₐ[R] R := lift R 0 in
let f1 : free_algebra R X →ₐ[R] R := lift R 1 in
have hf0 : f0 (ι R x) = 0, from lift_ι_apply _ _,
have hf1 : f1 (ι R x) = 1, from lift_ι_apply _ _,
begin
rw [h, f0.commutes, algebra.id.map_eq_self] at hf0,
rw [h, f1.commutes, algebra.id.map_eq_self] at hf1,
exact zero_ne_one (hf0.symm.trans hf1),
end
@[simp] lemma ι_ne_zero [nontrivial R] (x : X) : ι R x ≠ 0 :=
ι_ne_algebra_map x 0
@[simp] lemma ι_ne_one [nontrivial R] (x : X) : ι R x ≠ 1 :=
ι_ne_algebra_map x 1
end
end free_algebra
/- There is something weird in the above namespace that breaks the typeclass resolution of
`has_coe_to_sort` below. Closing it and reopening it fixes it... -/
namespace free_algebra
/-- An induction principle for the free algebra.
If `C` holds for the `algebra_map` of `r : R` into `free_algebra R X`, the `ι` of `x : X`, and is
preserved under addition and muliplication, then it holds for all of `free_algebra R X`.
-/
@[elab_as_eliminator]
lemma induction {C : free_algebra R X → Prop}
(h_grade0 : ∀ r, C (algebra_map R (free_algebra R X) r))
(h_grade1 : ∀ x, C (ι R x))
(h_mul : ∀ a b, C a → C b → C (a * b))
(h_add : ∀ a b, C a → C b → C (a + b))
(a : free_algebra R X) :
C a :=
begin
-- the arguments are enough to construct a subalgebra, and a mapping into it from X
let s : subalgebra R (free_algebra R X) :=
{ carrier := C,
mul_mem' := h_mul,
add_mem' := h_add,
algebra_map_mem' := h_grade0, },
let of : X → s := subtype.coind (ι R) h_grade1,
-- the mapping through the subalgebra is the identity
have of_id : alg_hom.id R (free_algebra R X) = s.val.comp (lift R of),
{ ext,
simp [of, subtype.coind], },
-- finding a proof is finding an element of the subalgebra
convert subtype.prop (lift R of a),
simp [alg_hom.ext_iff] at of_id,
exact of_id a,
end
end free_algebra
|