Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 16,409 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
/-
Copyright (c) 2020 Adam Topaz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Adam Topaz
-/
import algebra.algebra.subalgebra.basic
import algebra.monoid_algebra.basic

/-!
# Free Algebras

Given a commutative semiring `R`, and a type `X`, we construct the free unital, associative
`R`-algebra on `X`.

## Notation

1. `free_algebra R X` is the free algebra itself. It is endowed with an `R`-algebra structure.
2. `free_algebra.ι R` is the function `X → free_algebra R X`.
3. Given a function `f : X → A` to an R-algebra `A`, `lift R f` is the lift of `f` to an
  `R`-algebra morphism `free_algebra R X → A`.

## Theorems

1. `ι_comp_lift` states that the composition `(lift R f) ∘ (ι R)` is identical to `f`.
2. `lift_unique` states that whenever an R-algebra morphism `g : free_algebra R X → A` is
  given whose composition with `ι R` is `f`, then one has `g = lift R f`.
3. `hom_ext` is a variant of `lift_unique` in the form of an extensionality theorem.
4. `lift_comp_ι` is a combination of `ι_comp_lift` and `lift_unique`. It states that the lift
  of the composition of an algebra morphism with `ι` is the algebra morphism itself.
5. `equiv_monoid_algebra_free_monoid : free_algebra R X ≃ₐ[R] monoid_algebra R (free_monoid X)`
6. An inductive principle `induction`.

## Implementation details

We construct the free algebra on `X` as a quotient of an inductive type `free_algebra.pre` by an
inductively defined relation `free_algebra.rel`. Explicitly, the construction involves three steps:
1. We construct an inductive type `free_algebra.pre R X`, the terms of which should be thought
  of as representatives for the elements of `free_algebra R X`.
  It is the free type with maps from `R` and `X`, and with two binary operations `add` and `mul`.
2. We construct an inductive relation `free_algebra.rel R X` on `free_algebra.pre R X`.
  This is the smallest relation for which the quotient is an `R`-algebra where addition resp.
  multiplication are induced by `add` resp. `mul` from 1., and for which the map from `R` is the
  structure map for the algebra.
3. The free algebra `free_algebra R X` is the quotient of `free_algebra.pre R X` by
  the relation `free_algebra.rel R X`.
-/

variables (R : Type*) [comm_semiring R]
variables (X : Type*)

namespace free_algebra

/--
This inductive type is used to express representatives of the free algebra.
-/
inductive pre
| of : X → pre
| of_scalar : R → pre
| add : pre → pre → pre
| mul : pre → pre → pre

namespace pre

instance : inhabited (pre R X) := ⟨of_scalar 0-- Note: These instances are only used to simplify the notation.
/-- Coercion from `X` to `pre R X`. Note: Used for notation only. -/
def has_coe_generator : has_coe X (pre R X) := ⟨of⟩
/-- Coercion from `R` to `pre R X`. Note: Used for notation only. -/
def has_coe_semiring : has_coe R (pre R X) := ⟨of_scalar⟩
/-- Multiplication in `pre R X` defined as `pre.mul`. Note: Used for notation only. -/
def has_mul : has_mul (pre R X) := ⟨mul⟩
/-- Addition in `pre R X` defined as `pre.add`. Note: Used for notation only. -/
def has_add : has_add (pre R X) := ⟨add⟩
/-- Zero in `pre R X` defined as the image of `0` from `R`. Note: Used for notation only. -/
def has_zero : has_zero (pre R X) := ⟨of_scalar 0/-- One in `pre R X` defined as the image of `1` from `R`. Note: Used for notation only. -/
def has_one : has_one (pre R X) := ⟨of_scalar 1⟩
/--
Scalar multiplication defined as multiplication by the image of elements from `R`.
Note: Used for notation only.
-/
def has_smul : has_smul R (pre R X) := ⟨λ r m, mul (of_scalar r) m⟩

end pre

local attribute [instance]
  pre.has_coe_generator pre.has_coe_semiring pre.has_mul pre.has_add pre.has_zero
  pre.has_one pre.has_smul

/--
Given a function from `X` to an `R`-algebra `A`, `lift_fun` provides a lift of `f` to a function
from `pre R X` to `A`. This is mainly used in the construction of `free_algebra.lift`.
-/
def lift_fun {A : Type*} [semiring A] [algebra R A] (f : X → A) : pre R X → A :=
  λ t, pre.rec_on t f (algebra_map _ _) (λ _ _, (+)) (λ _ _, (*))

/--
An inductively defined relation on `pre R X` used to force the initial algebra structure on
the associated quotient.
-/
inductive rel : (pre R X) → (pre R X) → Prop
-- force `of_scalar` to be a central semiring morphism
| add_scalar {r s : R} : rel ↑(r + s) (↑r + ↑s)
| mul_scalar {r s : R} : rel ↑(r * s) (↑r * ↑s)
| central_scalar {r : R} {a : pre R X} : rel (r * a) (a * r)
-- commutative additive semigroup
| add_assoc {a b c : pre R X} : rel (a + b + c) (a + (b + c))
| add_comm {a b : pre R X} : rel (a + b) (b + a)
| zero_add {a : pre R X} : rel (0 + a) a
-- multiplicative monoid
| mul_assoc {a b c : pre R X} : rel (a * b * c) (a * (b * c))
| one_mul {a : pre R X} : rel (1 * a) a
| mul_one {a : pre R X} : rel (a * 1) a
-- distributivity
| left_distrib {a b c : pre R X} : rel (a * (b + c)) (a * b + a * c)
| right_distrib {a b c : pre R X} : rel ((a + b) * c) (a * c + b * c)
-- other relations needed for semiring
| zero_mul {a : pre R X} : rel (0 * a) 0
| mul_zero {a : pre R X} : rel (a * 0) 0
-- compatibility
| add_compat_left {a b c : pre R X} : rel a b → rel (a + c) (b + c)
| add_compat_right {a b c : pre R X} : rel a b → rel (c + a) (c + b)
| mul_compat_left {a b c : pre R X} : rel a b → rel (a * c) (b * c)
| mul_compat_right {a b c : pre R X} : rel a b → rel (c * a) (c * b)

end free_algebra

/--
The free algebra for the type `X` over the commutative semiring `R`.
-/
def free_algebra := quot (free_algebra.rel R X)

namespace free_algebra

local attribute [instance]
  pre.has_coe_generator pre.has_coe_semiring pre.has_mul pre.has_add pre.has_zero
  pre.has_one pre.has_smul

instance : semiring (free_algebra R X) :=
{ add := quot.map₂ (+) (λ _ _ _, rel.add_compat_right) (λ _ _ _, rel.add_compat_left),
  add_assoc := by { rintros ⟨⟩ ⟨⟩ ⟨⟩, exact quot.sound rel.add_assoc },
  zero := quot.mk _ 0,
  zero_add := by { rintro ⟨⟩, exact quot.sound rel.zero_add },
  add_zero := begin
    rintros ⟨⟩,
    change quot.mk _ _ = _,
    rw [quot.sound rel.add_comm, quot.sound rel.zero_add],
  end,
  add_comm := by { rintros ⟨⟩ ⟨⟩, exact quot.sound rel.add_comm },
  mul := quot.map₂ (*) (λ _ _ _, rel.mul_compat_right) (λ _ _ _, rel.mul_compat_left),
  mul_assoc := by { rintros ⟨⟩ ⟨⟩ ⟨⟩, exact quot.sound rel.mul_assoc },
  one := quot.mk _ 1,
  one_mul := by { rintros ⟨⟩, exact quot.sound rel.one_mul },
  mul_one := by { rintros ⟨⟩, exact quot.sound rel.mul_one },
  left_distrib := by { rintros ⟨⟩ ⟨⟩ ⟨⟩, exact quot.sound rel.left_distrib },
  right_distrib := by { rintros ⟨⟩ ⟨⟩ ⟨⟩, exact quot.sound rel.right_distrib },
  zero_mul := by { rintros ⟨⟩, exact quot.sound rel.zero_mul },
  mul_zero := by { rintros ⟨⟩, exact quot.sound rel.mul_zero } }

instance : inhabited (free_algebra R X) := ⟨0instance : has_smul R (free_algebra R X) :=
{ smul := λ r, quot.map ((*) ↑r) (λ a b, rel.mul_compat_right) }

instance : algebra R (free_algebra R X) :=
{ to_fun := λ r, quot.mk _ r,
  map_one' := rfl,
  map_mul' := λ _ _, quot.sound rel.mul_scalar,
  map_zero' := rfl,
  map_add' := λ _ _, quot.sound rel.add_scalar,
  commutes' := λ _, by { rintros ⟨⟩, exact quot.sound rel.central_scalar },
  smul_def' := λ _ _, rfl }

instance {S : Type*} [comm_ring S] : ring (free_algebra S X) := algebra.semiring_to_ring S

variables {X}

/--
The canonical function `X → free_algebra R X`.
-/
def ι : X → free_algebra R X := λ m, quot.mk _ m

@[simp] lemma quot_mk_eq_ι (m : X) : quot.mk (free_algebra.rel R X) m = ι R m := rfl

variables {A : Type*} [semiring A] [algebra R A]

/-- Internal definition used to define `lift` -/
private def lift_aux (f : X → A) : (free_algebra R X →ₐ[R] A) :=
{ to_fun := λ a, quot.lift_on a (lift_fun _ _ f) $ λ a b h,
  begin
    induction h,
    { exact (algebra_map R A).map_add h_r h_s, },
    { exact (algebra_map R A).map_mul h_r h_s },
    { apply algebra.commutes },
    { change _ + _ + _ = _ + (_ + _),
      rw add_assoc },
    { change _ + _ = _ + _,
      rw add_comm, },
    { change (algebra_map _ _ _) + lift_fun R X f _ = lift_fun R X f _,
      simp, },
    { change _ * _ * _ = _ * (_ * _),
      rw mul_assoc },
    { change (algebra_map _ _ _) * lift_fun R X f _ = lift_fun R X f _,
      simp, },
    { change lift_fun R X f _ * (algebra_map _ _ _) = lift_fun R X f _,
      simp, },
    { change _ * (_ + _) = _ * _ + _ * _,
      rw left_distrib, },
    { change (_ + _) * _ = _ * _ + _ * _,
      rw right_distrib, },
    { change (algebra_map _ _ _) * _ = algebra_map _ _ _,
      simp },
    { change _ * (algebra_map _ _ _) = algebra_map _ _ _,
      simp },
    repeat { change lift_fun R X f _ + lift_fun R X f _ = _,
      rw h_ih,
      refl, },
    repeat { change lift_fun R X f _ * lift_fun R X f _ = _,
      rw h_ih,
      refl, },
  end,
  map_one' := by { change algebra_map _ _ _ = _, simp },
  map_mul' := by { rintros ⟨⟩ ⟨⟩, refl },
  map_zero' := by { change algebra_map _ _ _ = _, simp },
  map_add' := by { rintros ⟨⟩ ⟨⟩, refl },
  commutes' := by tauto }

/--
Given a function `f : X → A` where `A` is an `R`-algebra, `lift R f` is the unique lift
of `f` to a morphism of `R`-algebras `free_algebra R X → A`.
-/
def lift : (X → A) ≃ (free_algebra R X →ₐ[R] A) :=
{ to_fun := lift_aux R,
  inv_fun := λ F, F ∘ (ι R),
  left_inv := λ f, by {ext, refl},
  right_inv := λ F, by
  { ext x,
    rcases x,
    induction x,
    case pre.of :
    { change ((F : free_algebra R X → A) ∘ (ι R)) _ = _,
      refl },
    case pre.of_scalar :
    { change algebra_map _ _ x = F (algebra_map _ _ x),
      rw alg_hom.commutes F x, },
    case pre.add : a b ha hb
    { change lift_aux R (F ∘ ι R) (quot.mk _ _ + quot.mk _ _) = F (quot.mk _ _ + quot.mk _ _),
      rw [alg_hom.map_add, alg_hom.map_add, ha, hb], },
    case pre.mul : a b ha hb
    { change lift_aux R (F ∘ ι R) (quot.mk _ _ * quot.mk _ _) = F (quot.mk _ _ * quot.mk _ _),
      rw [alg_hom.map_mul, alg_hom.map_mul, ha, hb], }, }, }

@[simp] lemma lift_aux_eq (f : X → A) : lift_aux R f = lift R f := rfl

@[simp]
lemma lift_symm_apply (F : free_algebra R X →ₐ[R] A) : (lift R).symm F = F ∘ (ι R) := rfl

variables {R X}

@[simp]
theorem ι_comp_lift (f : X → A) :
  (lift R f : free_algebra R X → A) ∘ (ι R) = f := by {ext, refl}

@[simp]
theorem lift_ι_apply (f : X → A) (x) :
  lift R f (ι R x) = f x := rfl

@[simp]
theorem lift_unique (f : X → A) (g : free_algebra R X →ₐ[R] A) :
  (g : free_algebra R X → A) ∘ (ι R) = f ↔ g = lift R f :=
(lift R).symm_apply_eq

/-!
At this stage we set the basic definitions as `@[irreducible]`, so from this point onwards one
should only use the universal properties of the free algebra, and consider the actual implementation
as a quotient of an inductive type as completely hidden.

Of course, one still has the option to locally make these definitions `semireducible` if so desired,
and Lean is still willing in some circumstances to do unification based on the underlying
definition.
-/
attribute [irreducible] ι lift
-- Marking `free_algebra` irreducible makes `ring` instances inaccessible on quotients.
-- https://leanprover.zulipchat.com/#narrow/stream/113488-general/topic/algebra.2Esemiring_to_ring.20breaks.20semimodule.20typeclass.20lookup/near/212580241
-- For now, we avoid this by not marking it irreducible.

@[simp]
theorem lift_comp_ι (g : free_algebra R X →ₐ[R] A) :
  lift R ((g : free_algebra R X → A) ∘ (ι R)) = g :=
by { rw ←lift_symm_apply, exact (lift R).apply_symm_apply g }

/-- See note [partially-applied ext lemmas]. -/
@[ext]
theorem hom_ext {f g : free_algebra R X →ₐ[R] A}
  (w : ((f : free_algebra R X → A) ∘ (ι R)) = ((g : free_algebra R X → A) ∘ (ι R))) : f = g :=
begin
  rw [←lift_symm_apply, ←lift_symm_apply] at w,
  exact (lift R).symm.injective w,
end

/--
The free algebra on `X` is "just" the monoid algebra on the free monoid on `X`.

This would be useful when constructing linear maps out of a free algebra,
for example.
-/
noncomputable
def equiv_monoid_algebra_free_monoid : free_algebra R X ≃ₐ[R] monoid_algebra R (free_monoid X) :=
alg_equiv.of_alg_hom
  (lift R (λ x, (monoid_algebra.of R (free_monoid X)) (free_monoid.of x)))
  ((monoid_algebra.lift R (free_monoid X) (free_algebra R X)) (free_monoid.lift (ι R)))
begin
  apply monoid_algebra.alg_hom_ext, intro x,
  apply free_monoid.rec_on x,
  { simp, refl, },
  { intros x y ih, simp at ih, simp [ih], }
end
(by { ext, simp, })

instance [nontrivial R] : nontrivial (free_algebra R X) :=
equiv_monoid_algebra_free_monoid.surjective.nontrivial

section

/-- The left-inverse of `algebra_map`. -/
def algebra_map_inv : free_algebra R X →ₐ[R] R :=
lift R (0 : X → R)

lemma algebra_map_left_inverse :
  function.left_inverse algebra_map_inv (algebra_map R $ free_algebra R X) :=
λ x, by simp [algebra_map_inv]

@[simp] lemma algebra_map_inj (x y : R) :
  algebra_map R (free_algebra R X) x = algebra_map R (free_algebra R X) y ↔ x = y :=
algebra_map_left_inverse.injective.eq_iff

@[simp] lemma algebra_map_eq_zero_iff (x : R) : algebra_map R (free_algebra R X) x = 0 ↔ x = 0 :=
map_eq_zero_iff (algebra_map _ _) algebra_map_left_inverse.injective

@[simp] lemma algebra_map_eq_one_iff (x : R) : algebra_map R (free_algebra R X) x = 1 ↔ x = 1 :=
map_eq_one_iff (algebra_map _ _) algebra_map_left_inverse.injective

-- this proof is copied from the approach in `free_abelian_group.of_injective`
lemma ι_injective [nontrivial R] : function.injective (ι R : X → free_algebra R X) :=
λ x y hoxy, classical.by_contradiction $ assume hxy : x ≠ y,
  let f : free_algebra R X →ₐ[R] R :=
    lift R (λ z, by classical; exact if x = z then (1 : R) else 0) in
  have hfx1 : f (ι R x) = 1, from (lift_ι_apply _ _).trans $ if_pos rfl,
  have hfy1 : f (ι R y) = 1, from hoxy ▸ hfx1,
  have hfy0 : f (ι R y) = 0, from (lift_ι_apply _ _).trans $ if_neg hxy,
  one_ne_zero $ hfy1.symm.trans hfy0

@[simp] lemma ι_inj [nontrivial R] (x y : X) : ι R x = ι R y ↔ x = y :=
ι_injective.eq_iff

@[simp] lemma ι_ne_algebra_map [nontrivial R] (x : X) (r : R) : ι R x ≠ algebra_map R _ r :=
λ h,
  let f0 : free_algebra R X →ₐ[R] R := lift R 0 in
  let f1 : free_algebra R X →ₐ[R] R := lift R 1 in
  have hf0 : f0 (ι R x) = 0, from lift_ι_apply _ _,
  have hf1 : f1 (ι R x) = 1, from lift_ι_apply _ _,
  begin
    rw [h, f0.commutes, algebra.id.map_eq_self] at hf0,
    rw [h, f1.commutes, algebra.id.map_eq_self] at hf1,
    exact zero_ne_one (hf0.symm.trans hf1),
  end

@[simp] lemma ι_ne_zero [nontrivial R] (x : X) : ι R x ≠ 0 :=
ι_ne_algebra_map x 0

@[simp] lemma ι_ne_one [nontrivial R] (x : X) : ι R x ≠ 1 :=
ι_ne_algebra_map x 1

end

end free_algebra

/- There is something weird in the above namespace that breaks the typeclass resolution of
`has_coe_to_sort` below. Closing it and reopening it fixes it... -/
namespace free_algebra

/-- An induction principle for the free algebra.

If `C` holds for the `algebra_map` of `r : R` into `free_algebra R X`, the `ι` of `x : X`, and is
preserved under addition and muliplication, then it holds for all of `free_algebra R X`.
-/
@[elab_as_eliminator]
lemma induction {C : free_algebra R X → Prop}
  (h_grade0 : ∀ r, C (algebra_map R (free_algebra R X) r))
  (h_grade1 : ∀ x, C (ι R x))
  (h_mul : ∀ a b, C a → C b → C (a * b))
  (h_add : ∀ a b, C a → C b → C (a + b))
  (a : free_algebra R X) :
  C a :=
begin
  -- the arguments are enough to construct a subalgebra, and a mapping into it from X
  let s : subalgebra R (free_algebra R X) :=
  { carrier := C,
    mul_mem' := h_mul,
    add_mem' := h_add,
    algebra_map_mem' := h_grade0, },
  let of : X → s := subtype.coind (ι R) h_grade1,
  -- the mapping through the subalgebra is the identity
  have of_id : alg_hom.id R (free_algebra R X) = s.val.comp (lift R of),
  { ext,
    simp [of, subtype.coind], },
  -- finding a proof is finding an element of the subalgebra
  convert subtype.prop (lift R of a),
  simp [alg_hom.ext_iff] at of_id,
  exact of_id a,
end


end free_algebra