Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 8,272 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
/-
Copyright (c) 2022 Eric Wieser. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Eric Wieser, Jujian Zhang
-/
import algebra.direct_sum.module
import algebra.module.submodule.basic
/-!
# Decompositions of additive monoids, groups, and modules into direct sums
## Main definitions
* `direct_sum.decomposition ℳ`: A typeclass to provide a constructive decomposition from
an additive monoid `M` into a family of additive submonoids `ℳ`
* `direct_sum.decompose ℳ`: The canonical equivalence provided by the above typeclass
## Main statements
* `direct_sum.decomposition.is_internal`: The link to `direct_sum.is_internal`.
## Implementation details
As we want to talk about different types of decomposition (additive monoids, modules, rings, ...),
we choose to avoid heavily bundling `direct_sum.decompose`, instead making copies for the
`add_equiv`, `linear_equiv`, etc. This means we have to repeat statements that follow from these
bundled homs, but means we don't have to repeat statements for different types of decomposition.
-/
variables {ι R M σ : Type*}
open_locale direct_sum big_operators
namespace direct_sum
section add_comm_monoid
variables [decidable_eq ι] [add_comm_monoid M]
variables [set_like σ M] [add_submonoid_class σ M] (ℳ : ι → σ)
/-- A decomposition is an equivalence between an additive monoid `M` and a direct sum of additive
submonoids `ℳ i` of that `M`, such that the "recomposition" is canonical. This definition also
works for additive groups and modules.
This is a version of `direct_sum.is_internal` which comes with a constructive inverse to the
canonical "recomposition" rather than just a proof that the "recomposition" is bijective. -/
class decomposition :=
(decompose' : M → ⨁ i, ℳ i)
(left_inv : function.left_inverse (direct_sum.coe_add_monoid_hom ℳ) decompose' )
(right_inv : function.right_inverse (direct_sum.coe_add_monoid_hom ℳ) decompose')
include M
/-- `direct_sum.decomposition` instances, while carrying data, are always equal. -/
instance : subsingleton (decomposition ℳ) :=
⟨λ x y, begin
cases x with x xl xr,
cases y with y yl yr,
congr',
exact function.left_inverse.eq_right_inverse xr yl,
end⟩
variables [decomposition ℳ]
protected lemma decomposition.is_internal : direct_sum.is_internal ℳ :=
⟨decomposition.right_inv.injective, decomposition.left_inv.surjective⟩
/-- If `M` is graded by `ι` with degree `i` component `ℳ i`, then it is isomorphic as
to a direct sum of components. This is the canonical spelling of the `decompose'` field. -/
def decompose : M ≃ ⨁ i, ℳ i :=
{ to_fun := decomposition.decompose',
inv_fun := direct_sum.coe_add_monoid_hom ℳ,
left_inv := decomposition.left_inv,
right_inv := decomposition.right_inv }
protected lemma decomposition.induction_on {p : M → Prop}
(h_zero : p 0) (h_homogeneous : ∀ {i} (m : ℳ i), p (m : M))
(h_add : ∀ (m m' : M), p m → p m' → p (m + m')) : ∀ m, p m :=
begin
let ℳ' : ι → add_submonoid M :=
λ i, (⟨ℳ i, λ _ _, add_mem_class.add_mem, zero_mem_class.zero_mem _⟩ : add_submonoid M),
haveI t : direct_sum.decomposition ℳ' :=
{ decompose' := direct_sum.decompose ℳ,
left_inv := λ _, (decompose ℳ).left_inv _,
right_inv := λ _, (decompose ℳ).right_inv _, },
have mem : ∀ m, m ∈ supr ℳ' :=
λ m, (direct_sum.is_internal.add_submonoid_supr_eq_top ℳ'
(decomposition.is_internal ℳ')).symm ▸ trivial,
exact λ m, add_submonoid.supr_induction ℳ' (mem m) (λ i m h, h_homogeneous ⟨m, h⟩) h_zero h_add,
end
@[simp] lemma decomposition.decompose'_eq : decomposition.decompose' = decompose ℳ := rfl
@[simp] lemma decompose_symm_of {i : ι} (x : ℳ i) :
(decompose ℳ).symm (direct_sum.of _ i x) = x :=
direct_sum.coe_add_monoid_hom_of ℳ _ _
@[simp] lemma decompose_coe {i : ι} (x : ℳ i) :
decompose ℳ (x : M) = direct_sum.of _ i x :=
by rw [←decompose_symm_of, equiv.apply_symm_apply]
lemma decompose_of_mem {x : M} {i : ι} (hx : x ∈ ℳ i) :
decompose ℳ x = direct_sum.of (λ i, ℳ i) i ⟨x, hx⟩ :=
decompose_coe _ ⟨x, hx⟩
lemma decompose_of_mem_same {x : M} {i : ι} (hx : x ∈ ℳ i) :
(decompose ℳ x i : M) = x :=
by rw [decompose_of_mem _ hx, direct_sum.of_eq_same, subtype.coe_mk]
lemma decompose_of_mem_ne {x : M} {i j : ι} (hx : x ∈ ℳ i) (hij : i ≠ j):
(decompose ℳ x j : M) = 0 :=
by rw [decompose_of_mem _ hx, direct_sum.of_eq_of_ne _ _ _ _ hij,
add_submonoid_class.coe_zero]
/-- If `M` is graded by `ι` with degree `i` component `ℳ i`, then it is isomorphic as
an additive monoid to a direct sum of components. -/
@[simps {fully_applied := ff}]
def decompose_add_equiv : M ≃+ ⨁ i, ℳ i := add_equiv.symm
{ map_add' := map_add (direct_sum.coe_add_monoid_hom ℳ),
..(decompose ℳ).symm }
@[simp] lemma decompose_zero : decompose ℳ (0 : M) = 0 := map_zero (decompose_add_equiv ℳ)
@[simp] lemma decompose_symm_zero : (decompose ℳ).symm 0 = (0 : M) :=
map_zero (decompose_add_equiv ℳ).symm
@[simp] lemma decompose_add (x y : M) : decompose ℳ (x + y) = decompose ℳ x + decompose ℳ y :=
map_add (decompose_add_equiv ℳ) x y
@[simp] lemma decompose_symm_add (x y : ⨁ i, ℳ i) :
(decompose ℳ).symm (x + y) = (decompose ℳ).symm x + (decompose ℳ).symm y :=
map_add (decompose_add_equiv ℳ).symm x y
@[simp] lemma decompose_sum {ι'} (s : finset ι') (f : ι' → M) :
decompose ℳ (∑ i in s, f i) = ∑ i in s, decompose ℳ (f i) :=
map_sum (decompose_add_equiv ℳ) f s
@[simp] lemma decompose_symm_sum {ι'} (s : finset ι') (f : ι' → ⨁ i, ℳ i) :
(decompose ℳ).symm (∑ i in s, f i) = ∑ i in s, (decompose ℳ).symm (f i) :=
map_sum (decompose_add_equiv ℳ).symm f s
lemma sum_support_decompose [Π i (x : ℳ i), decidable (x ≠ 0)] (r : M) :
∑ i in (decompose ℳ r).support, (decompose ℳ r i : M) = r :=
begin
conv_rhs { rw [←(decompose ℳ).symm_apply_apply r,
←sum_support_of (λ i, (ℳ i)) (decompose ℳ r)] },
rw [decompose_symm_sum],
simp_rw decompose_symm_of,
end
end add_comm_monoid
/-- The `-` in the statements below doesn't resolve without this line.
This seems to a be a problem of synthesized vs inferred typeclasses disagreeing. If we replace
the statement of `decompose_neg` with `@eq (⨁ i, ℳ i) (decompose ℳ (-x)) (-decompose ℳ x)`
instead of `decompose ℳ (-x) = -decompose ℳ x`, which forces the typeclasses needed by `⨁ i, ℳ i` to
be found by unification rather than synthesis, then everything works fine without this instance. -/
instance add_comm_group_set_like [add_comm_group M] [set_like σ M] [add_subgroup_class σ M]
(ℳ : ι → σ) : add_comm_group (⨁ i, ℳ i) := by apply_instance
section add_comm_group
variables [decidable_eq ι] [add_comm_group M]
variables [set_like σ M] [add_subgroup_class σ M] (ℳ : ι → σ)
variables [decomposition ℳ]
include M
@[simp] lemma decompose_neg (x : M) : decompose ℳ (-x) = -decompose ℳ x :=
map_neg (decompose_add_equiv ℳ) x
@[simp] lemma decompose_symm_neg (x : ⨁ i, ℳ i) :
(decompose ℳ).symm (-x) = -(decompose ℳ).symm x :=
map_neg (decompose_add_equiv ℳ).symm x
@[simp] lemma decompose_sub (x y : M) : decompose ℳ (x - y) = decompose ℳ x - decompose ℳ y :=
map_sub (decompose_add_equiv ℳ) x y
@[simp] lemma decompose_symm_sub (x y : ⨁ i, ℳ i) :
(decompose ℳ).symm (x - y) = (decompose ℳ).symm x - (decompose ℳ).symm y :=
map_sub (decompose_add_equiv ℳ).symm x y
end add_comm_group
section module
variables [decidable_eq ι] [semiring R] [add_comm_monoid M] [module R M]
variables (ℳ : ι → submodule R M)
variables [decomposition ℳ]
include M
/-- If `M` is graded by `ι` with degree `i` component `ℳ i`, then it is isomorphic as
a module to a direct sum of components. -/
@[simps {fully_applied := ff}]
def decompose_linear_equiv : M ≃ₗ[R] ⨁ i, ℳ i := linear_equiv.symm
{ map_smul' := map_smul (direct_sum.coe_linear_map ℳ),
..(decompose_add_equiv ℳ).symm }
@[simp] lemma decompose_smul (r : R) (x : M) : decompose ℳ (r • x) = r • decompose ℳ x :=
map_smul (decompose_linear_equiv ℳ) r x
end module
end direct_sum
|