Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 8,272 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
/-
Copyright (c) 2022 Eric Wieser. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Eric Wieser, Jujian Zhang
-/
import algebra.direct_sum.module
import algebra.module.submodule.basic

/-!
# Decompositions of additive monoids, groups, and modules into direct sums

## Main definitions

* `direct_sum.decomposition ℳ`: A typeclass to provide a constructive decomposition from
  an additive monoid `M` into a family of additive submonoids `ℳ`
* `direct_sum.decompose ℳ`: The canonical equivalence provided by the above typeclass


## Main statements

* `direct_sum.decomposition.is_internal`: The link to `direct_sum.is_internal`.

## Implementation details

As we want to talk about different types of decomposition (additive monoids, modules, rings, ...),
we choose to avoid heavily bundling `direct_sum.decompose`, instead making copies for the
`add_equiv`, `linear_equiv`, etc. This means we have to repeat statements that follow from these
bundled homs, but means we don't have to repeat statements for different types of decomposition.
-/


variables {ι R M σ : Type*}
open_locale direct_sum big_operators
namespace direct_sum

section add_comm_monoid
variables [decidable_eq ι] [add_comm_monoid M]
variables [set_like σ M] [add_submonoid_class σ M] (ℳ : ι → σ)

/-- A decomposition is an equivalence between an additive monoid `M` and a direct sum of additive
submonoids `ℳ i` of that `M`, such that the "recomposition" is canonical. This definition also
works for additive groups and modules.

This is a version of `direct_sum.is_internal` which comes with a constructive inverse to the
canonical "recomposition" rather than just a proof that the "recomposition" is bijective. -/
class decomposition :=
(decompose' : M → ⨁ i, ℳ i)
(left_inv : function.left_inverse (direct_sum.coe_add_monoid_hom ℳ) decompose' )
(right_inv : function.right_inverse (direct_sum.coe_add_monoid_hom ℳ) decompose')

include M

/-- `direct_sum.decomposition` instances, while carrying data, are always equal. -/
instance : subsingleton (decomposition ℳ) :=
⟨λ x y, begin
  cases x with x xl xr,
  cases y with y yl yr,
  congr',
  exact function.left_inverse.eq_right_inverse xr yl,
end⟩

variables [decomposition ℳ]

protected lemma decomposition.is_internal : direct_sum.is_internal ℳ :=
⟨decomposition.right_inv.injective, decomposition.left_inv.surjective⟩

/-- If `M` is graded by `ι` with degree `i` component `ℳ i`, then it is isomorphic as
to a direct sum of components. This is the canonical spelling of the `decompose'` field. -/
def decompose : M ≃ ⨁ i, ℳ i :=
{ to_fun := decomposition.decompose',
  inv_fun := direct_sum.coe_add_monoid_hom ℳ,
  left_inv := decomposition.left_inv,
  right_inv := decomposition.right_inv }

protected lemma decomposition.induction_on {p : M → Prop}
  (h_zero : p 0) (h_homogeneous : ∀ {i} (m : ℳ i), p (m : M))
  (h_add : ∀ (m m' : M), p m → p m' → p (m + m')) : ∀ m, p m :=
begin
  let ℳ' : ι → add_submonoid M :=
    λ i, (⟨ℳ i, λ _ _, add_mem_class.add_mem, zero_mem_class.zero_mem _⟩ : add_submonoid M),
  haveI t : direct_sum.decomposition ℳ' :=
  { decompose' := direct_sum.decompose ℳ,
    left_inv := λ _, (decompose ℳ).left_inv _,
    right_inv := λ _, (decompose ℳ).right_inv _, },
  have mem : ∀ m, m ∈ supr ℳ' :=
    λ m, (direct_sum.is_internal.add_submonoid_supr_eq_top ℳ'
      (decomposition.is_internal ℳ')).symm ▸ trivial,
  exact λ m, add_submonoid.supr_induction ℳ' (mem m) (λ i m h, h_homogeneous ⟨m, h⟩) h_zero h_add,
end

@[simp] lemma decomposition.decompose'_eq : decomposition.decompose' = decompose ℳ := rfl

@[simp] lemma decompose_symm_of {i : ι} (x : ℳ i) :
  (decompose ℳ).symm (direct_sum.of _ i x) = x :=
direct_sum.coe_add_monoid_hom_of ℳ _ _

@[simp] lemma decompose_coe {i : ι} (x : ℳ i) :
  decompose ℳ (x : M) = direct_sum.of _ i x :=
by rw [←decompose_symm_of, equiv.apply_symm_apply]

lemma decompose_of_mem {x : M} {i : ι} (hx : x ∈ ℳ i) :
  decompose ℳ x = direct_sum.of (λ i, ℳ i) i ⟨x, hx⟩ :=
decompose_coe _ ⟨x, hx⟩

lemma decompose_of_mem_same {x : M} {i : ι} (hx : x ∈ ℳ i) :
  (decompose ℳ x i : M) = x :=
by rw [decompose_of_mem _ hx, direct_sum.of_eq_same, subtype.coe_mk]

lemma decompose_of_mem_ne {x : M} {i j : ι} (hx : x ∈ ℳ i) (hij : i ≠ j):
  (decompose ℳ x j : M) = 0 :=
by rw [decompose_of_mem _ hx, direct_sum.of_eq_of_ne _ _ _ _ hij,
  add_submonoid_class.coe_zero]

/-- If `M` is graded by `ι` with degree `i` component `ℳ i`, then it is isomorphic as
an additive monoid to a direct sum of components. -/
@[simps {fully_applied := ff}]
def decompose_add_equiv : M ≃+ ⨁ i, ℳ i := add_equiv.symm
{ map_add' := map_add (direct_sum.coe_add_monoid_hom ℳ),
  ..(decompose ℳ).symm }

@[simp] lemma decompose_zero : decompose ℳ (0 : M) = 0 := map_zero (decompose_add_equiv ℳ)
@[simp] lemma decompose_symm_zero : (decompose ℳ).symm 0 = (0 : M) :=
map_zero (decompose_add_equiv ℳ).symm

@[simp] lemma decompose_add (x y : M) : decompose ℳ (x + y) = decompose ℳ x + decompose ℳ y :=
map_add (decompose_add_equiv ℳ) x y
@[simp] lemma decompose_symm_add (x y : ⨁ i, ℳ i) :
  (decompose ℳ).symm (x + y) = (decompose ℳ).symm x + (decompose ℳ).symm y :=
map_add (decompose_add_equiv ℳ).symm x y

@[simp] lemma decompose_sum {ι'} (s : finset ι') (f : ι' → M) :
  decompose ℳ (∑ i in s, f i) = ∑ i in s, decompose ℳ (f i) :=
map_sum (decompose_add_equiv ℳ) f s
@[simp] lemma decompose_symm_sum {ι'} (s : finset ι') (f : ι' → ⨁ i, ℳ i) :
  (decompose ℳ).symm (∑ i in s, f i) = ∑ i in s, (decompose ℳ).symm (f i) :=
map_sum (decompose_add_equiv ℳ).symm f s

lemma sum_support_decompose [Π i (x : ℳ i), decidable (x ≠ 0)] (r : M) :
  ∑ i in (decompose ℳ r).support, (decompose ℳ r i : M) = r :=
begin
  conv_rhs { rw [←(decompose ℳ).symm_apply_apply r,
    ←sum_support_of (λ i, (ℳ i)) (decompose ℳ r)] },
  rw [decompose_symm_sum],
  simp_rw decompose_symm_of,
end

end add_comm_monoid

/-- The `-` in the statements below doesn't resolve without this line.

This seems to a be a problem of synthesized vs inferred typeclasses disagreeing. If we replace
the statement of `decompose_neg` with `@eq (⨁ i, ℳ i) (decompose ℳ (-x)) (-decompose ℳ x)`
instead of `decompose ℳ (-x) = -decompose ℳ x`, which forces the typeclasses needed by `⨁ i, ℳ i` to
be found by unification rather than synthesis, then everything works fine without this instance. -/
instance add_comm_group_set_like [add_comm_group M] [set_like σ M] [add_subgroup_class σ M]
  (ℳ : ι → σ) : add_comm_group (⨁ i, ℳ i) := by apply_instance

section add_comm_group
variables [decidable_eq ι] [add_comm_group M]
variables [set_like σ M] [add_subgroup_class σ M] (ℳ : ι → σ)
variables [decomposition ℳ]
include M

@[simp] lemma decompose_neg (x : M) : decompose ℳ (-x) = -decompose ℳ x :=
map_neg (decompose_add_equiv ℳ) x
@[simp] lemma decompose_symm_neg (x : ⨁ i, ℳ i) :
  (decompose ℳ).symm (-x) = -(decompose ℳ).symm x :=
map_neg (decompose_add_equiv ℳ).symm x

@[simp] lemma decompose_sub (x y : M) : decompose ℳ (x - y) = decompose ℳ x - decompose ℳ y :=
map_sub (decompose_add_equiv ℳ) x y
@[simp] lemma decompose_symm_sub (x y : ⨁ i, ℳ i) :
  (decompose ℳ).symm (x - y) = (decompose ℳ).symm x - (decompose ℳ).symm y :=
map_sub (decompose_add_equiv ℳ).symm x y

end add_comm_group

section module
variables [decidable_eq ι] [semiring R] [add_comm_monoid M] [module R M]
variables (ℳ : ι → submodule R M)
variables [decomposition ℳ]
include M

/-- If `M` is graded by `ι` with degree `i` component `ℳ i`, then it is isomorphic as
a module to a direct sum of components. -/
@[simps {fully_applied := ff}]
def decompose_linear_equiv : M ≃ₗ[R] ⨁ i, ℳ i := linear_equiv.symm
{ map_smul' := map_smul (direct_sum.coe_linear_map ℳ),
  ..(decompose_add_equiv ℳ).symm }

@[simp] lemma decompose_smul (r : R) (x : M) : decompose ℳ (r • x) = r • decompose ℳ x :=
map_smul (decompose_linear_equiv ℳ) r x

end module

end direct_sum