Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 10,944 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
/-
Copyright (c) 2019 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import data.dfinsupp.basic
import group_theory.submonoid.operations
import group_theory.subgroup.basic
/-!
# Direct sum
This file defines the direct sum of abelian groups, indexed by a discrete type.
## Notation
`⨁ i, β i` is the n-ary direct sum `direct_sum`.
This notation is in the `direct_sum` locale, accessible after `open_locale direct_sum`.
## References
* https://en.wikipedia.org/wiki/Direct_sum
-/
open_locale big_operators
universes u v w u₁
variables (ι : Type v) [dec_ι : decidable_eq ι] (β : ι → Type w)
/-- `direct_sum β` is the direct sum of a family of additive commutative monoids `β i`.
Note: `open_locale direct_sum` will enable the notation `⨁ i, β i` for `direct_sum β`. -/
@[derive [add_comm_monoid, inhabited]]
def direct_sum [Π i, add_comm_monoid (β i)] : Type* := Π₀ i, β i
instance [Π i, add_comm_monoid (β i)] : has_coe_to_fun (direct_sum ι β) (λ _, Π i : ι, β i) :=
dfinsupp.has_coe_to_fun
localized "notation `⨁` binders `, ` r:(scoped f, direct_sum _ f) := r" in direct_sum
namespace direct_sum
variables {ι}
section add_comm_group
variables [Π i, add_comm_group (β i)]
instance : add_comm_group (direct_sum ι β) := dfinsupp.add_comm_group
variables {β}
@[simp] lemma sub_apply (g₁ g₂ : ⨁ i, β i) (i : ι) : (g₁ - g₂) i = g₁ i - g₂ i := rfl
end add_comm_group
variables [Π i, add_comm_monoid (β i)]
@[simp] lemma zero_apply (i : ι) : (0 : ⨁ i, β i) i = 0 := rfl
variables {β}
@[simp] lemma add_apply (g₁ g₂ : ⨁ i, β i) (i : ι) : (g₁ + g₂) i = g₁ i + g₂ i := rfl
variables (β)
include dec_ι
/-- `mk β s x` is the element of `⨁ i, β i` that is zero outside `s`
and has coefficient `x i` for `i` in `s`. -/
def mk (s : finset ι) : (Π i : (↑s : set ι), β i.1) →+ ⨁ i, β i :=
{ to_fun := dfinsupp.mk s,
map_add' := λ _ _, dfinsupp.mk_add,
map_zero' := dfinsupp.mk_zero, }
/-- `of i` is the natural inclusion map from `β i` to `⨁ i, β i`. -/
def of (i : ι) : β i →+ ⨁ i, β i :=
dfinsupp.single_add_hom β i
@[simp] lemma of_eq_same (i : ι) (x : β i) : (of _ i x) i = x :=
dfinsupp.single_eq_same
lemma of_eq_of_ne (i j : ι) (x : β i) (h : i ≠ j) : (of _ i x) j = 0 :=
dfinsupp.single_eq_of_ne h
@[simp] lemma support_zero [Π (i : ι) (x : β i), decidable (x ≠ 0)] :
(0 : ⨁ i, β i).support = ∅ := dfinsupp.support_zero
@[simp] lemma support_of [Π (i : ι) (x : β i), decidable (x ≠ 0)]
(i : ι) (x : β i) (h : x ≠ 0) :
(of _ i x).support = {i} := dfinsupp.support_single_ne_zero h
lemma support_of_subset [Π (i : ι) (x : β i), decidable (x ≠ 0)] {i : ι} {b : β i} :
(of _ i b).support ⊆ {i} := dfinsupp.support_single_subset
lemma sum_support_of [Π (i : ι) (x : β i), decidable (x ≠ 0)] (x : ⨁ i, β i) :
∑ i in x.support, of β i (x i) = x := dfinsupp.sum_single
variables {β}
theorem mk_injective (s : finset ι) : function.injective (mk β s) :=
dfinsupp.mk_injective s
theorem of_injective (i : ι) : function.injective (of β i) :=
dfinsupp.single_injective
@[elab_as_eliminator]
protected theorem induction_on {C : (⨁ i, β i) → Prop}
(x : ⨁ i, β i) (H_zero : C 0)
(H_basic : ∀ (i : ι) (x : β i), C (of β i x))
(H_plus : ∀ x y, C x → C y → C (x + y)) : C x :=
begin
apply dfinsupp.induction x H_zero,
intros i b f h1 h2 ih,
solve_by_elim
end
/-- If two additive homomorphisms from `⨁ i, β i` are equal on each `of β i y`,
then they are equal. -/
lemma add_hom_ext {γ : Type*} [add_monoid γ] ⦃f g : (⨁ i, β i) →+ γ⦄
(H : ∀ (i : ι) (y : β i), f (of _ i y) = g (of _ i y)) : f = g :=
dfinsupp.add_hom_ext H
/-- If two additive homomorphisms from `⨁ i, β i` are equal on each `of β i y`,
then they are equal.
See note [partially-applied ext lemmas]. -/
@[ext] lemma add_hom_ext' {γ : Type*} [add_monoid γ] ⦃f g : (⨁ i, β i) →+ γ⦄
(H : ∀ (i : ι), f.comp (of _ i) = g.comp (of _ i)) : f = g :=
add_hom_ext $ λ i, add_monoid_hom.congr_fun $ H i
variables {γ : Type u₁} [add_comm_monoid γ]
section to_add_monoid
variables (φ : Π i, β i →+ γ) (ψ : (⨁ i, β i) →+ γ)
/-- `to_add_monoid φ` is the natural homomorphism from `⨁ i, β i` to `γ`
induced by a family `φ` of homomorphisms `β i → γ`. -/
def to_add_monoid : (⨁ i, β i) →+ γ :=
(dfinsupp.lift_add_hom φ)
@[simp] lemma to_add_monoid_of (i) (x : β i) : to_add_monoid φ (of β i x) = φ i x :=
dfinsupp.lift_add_hom_apply_single φ i x
theorem to_add_monoid.unique (f : ⨁ i, β i) :
ψ f = to_add_monoid (λ i, ψ.comp (of β i)) f :=
by {congr, ext, simp [to_add_monoid, of]}
end to_add_monoid
section from_add_monoid
/-- `from_add_monoid φ` is the natural homomorphism from `γ` to `⨁ i, β i`
induced by a family `φ` of homomorphisms `γ → β i`.
Note that this is not an isomorphism. Not every homomorphism `γ →+ ⨁ i, β i` arises in this way. -/
def from_add_monoid : (⨁ i, γ →+ β i) →+ (γ →+ ⨁ i, β i) :=
to_add_monoid $ λ i, add_monoid_hom.comp_hom (of β i)
@[simp] lemma from_add_monoid_of (i : ι) (f : γ →+ β i) :
from_add_monoid (of _ i f) = (of _ i).comp f :=
by { rw [from_add_monoid, to_add_monoid_of], refl }
lemma from_add_monoid_of_apply (i : ι) (f : γ →+ β i) (x : γ) :
from_add_monoid (of _ i f) x = of _ i (f x) :=
by rw [from_add_monoid_of, add_monoid_hom.coe_comp]
end from_add_monoid
variables (β)
/-- `set_to_set β S T h` is the natural homomorphism `⨁ (i : S), β i → ⨁ (i : T), β i`,
where `h : S ⊆ T`. -/
-- TODO: generalize this to remove the assumption `S ⊆ T`.
def set_to_set (S T : set ι) (H : S ⊆ T) :
(⨁ (i : S), β i) →+ (⨁ (i : T), β i) :=
to_add_monoid $ λ i, of (λ (i : subtype T), β i) ⟨↑i, H i.prop⟩
variables {β}
omit dec_ι
/-- A direct sum over an empty type is trivial. -/
instance [is_empty ι] : unique (⨁ i, β i) := dfinsupp.unique
/-- The natural equivalence between `⨁ _ : ι, M` and `M` when `unique ι`. -/
protected def id (M : Type v) (ι : Type* := punit) [add_comm_monoid M] [unique ι] :
(⨁ (_ : ι), M) ≃+ M :=
{ to_fun := direct_sum.to_add_monoid (λ _, add_monoid_hom.id M),
inv_fun := of (λ _, M) default,
left_inv := λ x, direct_sum.induction_on x
(by rw [add_monoid_hom.map_zero, add_monoid_hom.map_zero])
(λ p x, by rw [unique.default_eq p, to_add_monoid_of]; refl)
(λ x y ihx ihy, by rw [add_monoid_hom.map_add, add_monoid_hom.map_add, ihx, ihy]),
right_inv := λ x, to_add_monoid_of _ _ _,
..direct_sum.to_add_monoid (λ _, add_monoid_hom.id M) }
section congr_left
variables {κ : Type*}
/--Reindexing terms of a direct sum.-/
def equiv_congr_left (h : ι ≃ κ) : (⨁ i, β i) ≃+ ⨁ k, β (h.symm k) :=
{ map_add' := dfinsupp.comap_domain'_add _ _,
..dfinsupp.equiv_congr_left h }
@[simp] lemma equiv_congr_left_apply (h : ι ≃ κ) (f : ⨁ i, β i) (k : κ) :
equiv_congr_left h f k = f (h.symm k) := dfinsupp.comap_domain'_apply _ _ _ _
end congr_left
section option
variables {α : option ι → Type w} [Π i, add_comm_monoid (α i)]
include dec_ι
/--Isomorphism obtained by separating the term of index `none` of a direct sum over `option ι`.-/
@[simps] noncomputable def add_equiv_prod_direct_sum : (⨁ i, α i) ≃+ α none × ⨁ i, α (some i) :=
{ map_add' := dfinsupp.equiv_prod_dfinsupp_add, ..dfinsupp.equiv_prod_dfinsupp }
end option
section sigma
variables {α : ι → Type u} {δ : Π i, α i → Type w} [Π i j, add_comm_monoid (δ i j)]
/--The natural map between `⨁ (i : Σ i, α i), δ i.1 i.2` and `⨁ i (j : α i), δ i j`.-/
noncomputable def sigma_curry : (⨁ (i : Σ i, _), δ i.1 i.2) →+ ⨁ i j, δ i j :=
{ to_fun := @dfinsupp.sigma_curry _ _ δ _,
map_zero' := dfinsupp.sigma_curry_zero,
map_add' := λ f g, @dfinsupp.sigma_curry_add _ _ δ _ f g }
@[simp] lemma sigma_curry_apply (f : ⨁ (i : Σ i, _), δ i.1 i.2) (i : ι) (j : α i) :
sigma_curry f i j = f ⟨i, j⟩ := @dfinsupp.sigma_curry_apply _ _ δ _ f i j
/--The natural map between `⨁ i (j : α i), δ i j` and `Π₀ (i : Σ i, α i), δ i.1 i.2`, inverse of
`curry`.-/
noncomputable def sigma_uncurry : (⨁ i j, δ i j) →+ ⨁ (i : Σ i, _), δ i.1 i.2 :=
{ to_fun := dfinsupp.sigma_uncurry,
map_zero' := dfinsupp.sigma_uncurry_zero,
map_add' := dfinsupp.sigma_uncurry_add }
@[simp] lemma sigma_uncurry_apply (f : ⨁ i j, δ i j) (i : ι) (j : α i) :
sigma_uncurry f ⟨i, j⟩ = f i j := dfinsupp.sigma_uncurry_apply f i j
/--The natural map between `⨁ (i : Σ i, α i), δ i.1 i.2` and `⨁ i (j : α i), δ i j`.-/
noncomputable def sigma_curry_equiv : (⨁ (i : Σ i, _), δ i.1 i.2) ≃+ ⨁ i j, δ i j :=
{ ..sigma_curry, ..dfinsupp.sigma_curry_equiv }
end sigma
/-- The canonical embedding from `⨁ i, A i` to `M` where `A` is a collection of `add_submonoid M`
indexed by `ι`.
When `S = submodule _ M`, this is available as a `linear_map`, `direct_sum.coe_linear_map`. -/
protected def coe_add_monoid_hom {M S : Type*} [decidable_eq ι] [add_comm_monoid M]
[set_like S M] [add_submonoid_class S M] (A : ι → S) : (⨁ i, A i) →+ M :=
to_add_monoid (λ i, add_submonoid_class.subtype (A i))
@[simp] lemma coe_add_monoid_hom_of {M S : Type*} [decidable_eq ι] [add_comm_monoid M]
[set_like S M] [add_submonoid_class S M] (A : ι → S) (i : ι) (x : A i) :
direct_sum.coe_add_monoid_hom A (of (λ i, A i) i x) = x :=
to_add_monoid_of _ _ _
lemma coe_of_apply {M S : Type*} [decidable_eq ι] [add_comm_monoid M]
[set_like S M] [add_submonoid_class S M] {A : ι → S} (i j : ι) (x : A i) :
(of _ i x j : M) = if i = j then x else 0 :=
begin
obtain rfl | h := decidable.eq_or_ne i j,
{ rw [direct_sum.of_eq_same, if_pos rfl], },
{ rw [direct_sum.of_eq_of_ne _ _ _ _ h, if_neg h, add_submonoid_class.coe_zero], },
end
/-- The `direct_sum` formed by a collection of additive submonoids (or subgroups, or submodules) of
`M` is said to be internal if the canonical map `(⨁ i, A i) →+ M` is bijective.
For the alternate statement in terms of independence and spanning, see
`direct_sum.subgroup_is_internal_iff_independent_and_supr_eq_top` and
`direct_sum.is_internal_submodule_iff_independent_and_supr_eq_top`. -/
def is_internal {M S : Type*} [decidable_eq ι] [add_comm_monoid M]
[set_like S M] [add_submonoid_class S M] (A : ι → S) : Prop :=
function.bijective (direct_sum.coe_add_monoid_hom A)
lemma is_internal.add_submonoid_supr_eq_top {M : Type*} [decidable_eq ι] [add_comm_monoid M]
(A : ι → add_submonoid M)
(h : is_internal A) : supr A = ⊤ :=
begin
rw [add_submonoid.supr_eq_mrange_dfinsupp_sum_add_hom, add_monoid_hom.mrange_top_iff_surjective],
exact function.bijective.surjective h,
end
end direct_sum
|